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Abstract

Background: Hepatocellular carcinoma (HCC) is the leading cause of cancer-related mortality worldwide. Despite advances in ther-
apeutic approaches, the lack of effective biomarkers continues to limit early detection and prognostic evaluation. Pseudogenes, once
considered nonfunctional, have emerged as regulators of biological processes in tumors and as potential biomarkers. This study aimed
to identify and validate BMS1 Pseudogene 8 (BMS1P8) as a liver-specific, clinically relevant diagnostic and prognostic biomarker in
HCC. Methods: A comprehensive survey of pseudogene expression across different stages of liver disease was performed and vali-
dated using clinical HCC samples. Correlation, enrichment, and competing endogenous RNA (ceRNA) analyses integrating matched
microRNA (miRNA)-seq and mRNA-seq were used to explore the functional networks surrounding BMS1P8. Public RNA-seq datasets
(GSE114564, The Cancer GenomeAtlas-Liver Hepatocellular Carcinoma (TCGA_LIHC)) were used to delineate differentially expressed
pseudogenes, and 98 paired tumor and non-tumor tissues were assessed using quantitative reverse transcription polymerase chain reac-
tion. Diagnostic and prognostic performances were evaluated using receiver operating characteristic curves and Kaplan–Meier statistics.
Results: BMS1P8 was markedly upregulated in HCC and was overexpressed in 25 other cancer types. Receiver operating characteris-
tics analysis yielded an area under the curve of 0.81, underscoring the diagnostic utility. High BMS1P8 expression and enrichment of
cell cycle pathways were associated with poor survival. ceRNA screening revealed an inverse BMS1P8–miR-30c-2-3p correlation and
concordant NME/NM23 nucleoside diphosphate kinase 6 (NME6) upregulation, with the BMS1P8/miR-30c-2-3p/NME6 triad further
stratifying patient outcomes. Conclusion: Our findings highlight BMS1P8 as a novel liver-specific biomarker with substantial diagnos-
tic and prognostic value in HCC. Its diagnostic utility suggests its potential application in early detection and personalized treatment
strategies, contributing to improved patient outcomes.
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1. Introduction
Hepatocellular carcinoma (HCC) is one of the most

common and lethal malignancies worldwide, representing a
major global health burden owing to its high incidence and
mortality rates [1]. It typically develops in the context of
chronic liver disease, including hepatitis B virus (HBV) or
hepatitis C virus (HCV) infection, alcoholic liver disease,
and non-alcoholic steatohepatitis (NASH) [2–4]. Despite
advances in the management of early-stage HCC with sur-
gical resection, transplantation, and local ablative therapies,
most cases are diagnosed at an advanced stage, contributing
to poor long-term outcomes [5].

Thus, the early and accurate detection of HCC is
imperative to improve patient survival. Although sev-
eral diagnostic modalities, including imaging and serologi-
cal tests, exist, these approaches have inherent limitations.
Alpha-fetoprotein (AFP), the most commonly used serum

biomarker, lacks the sensitivity and specificity required
for reliable screening in the general population [6]. This
shortcoming underscores the urgent need for more effec-
tive molecular biomarkers that can reliably detect HCC at
an early stage and provide prognostic insights.

Recently, pseudogenes have attracted increasing inter-
est as potential cancer biomarkers. Originally viewed as
nonfunctional remnants of gene duplication or retrotrans-
position events, pseudogenes can be transcribed and exhibit
regulatory functions like non-coding RNAs [7]. Grow-
ing evidence suggests that pseudogenes are involved in di-
verse biological processes, including cell cycle regulation,
signal transduction, and epigenetic control [8]. For ex-
ample, the phosphatase and tensin homolog pseudogene 1
(PTENP1) has gained attention for its capacity to regulate
the tumor-suppressor gene PTEN by functioning as a mi-
croRNA (miRNA) decoy, thereby influencing cancer cell
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proliferation and survival in several malignancies [9–11].
Similarly, POU class 5 homeobox 1B (POU5F1B), a pseu-
dogene of POU5F1/OCT4, is upregulated in gastric cancer
and contributes to oncogenic behaviors [12]. Above these
and other studies have underscored how pseudogenes can
actively shape tumor biology and serve as potential diag-
nostic or prognostic markers across diverse cancer types.

In this study, we conducted a comprehensive anal-
ysis of pseudogene expression across multiple stages of
liver disease and HCC, using publicly available RNA-
seq datasets (GSE114564 and The Cancer Genome At-
las - Liver Hepatocellular Carcinoma (TCGA_LIHC)) and
clinical samples. Our findings revealed that BMS1 Pseu-
dogene 8 (BMS1P8) is highly upregulated in HCC with
strong diagnostic performance and potential prognostic rel-
evance. We further investigated its functional relation-
ships using correlation analyses and pathway enrichment,
which implicated BMS1P8 in cell cycle regulation and
underscored its importance as a candidate biomarker for
HCC. Moreover, competing endogenous RNA (ceRNA)
analysis suggested that BMS1P8 may act as a molecu-
lar sponge for tumor-suppressive miR-30c-2-3p, thereby
reducing the post-transcriptional repression of the onco-
genic effector NME/NM23 nucleoside diphosphate kinase
6 (NME6). These findings provide a foundation for future
studies to validate BMS1P8’s clinical utility and explore its
mechanism of action in hepatocarcinogenesis.

2. Materials and Methods
2.1 Expression and Prognosis in Public Omics Data

We developed the GSE114564 dataset (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114564) by
integrating RNA-seq data from previously published HCC-
related studies, capturing a range of phenotypes, including
normal liver tissues and various HCC subtypes [13–15].
This comprehensive dataset, comprising 39,864 genes and
7913 pseudogenes, was used to characterize the progres-
sion from normal liver (NL) to advanced HCC (aHCC),
encompassing intermediate stages such as chronic hepati-
tis (CH), liver cirrhosis (LC), dysplastic nodules (DN), and
early-stage HCC (eHCC). Differential expression analysis
was performed to identify pseudogenes significantly upreg-
ulated (log2 fold change [FC] ≥ 0.5 and *p < 0.05) during
the progression from NL to HCC.

Expression levels in non-tumor (NT) versus tumor (T)
samples were further assessed using TCGA_LIHC dataset
(https://xenabrowser.net/datapages/?cohort=GDC%20T
CGA%20Liver%20Cancer%20(LIHC)&removeHub=ht
tps%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443),
followed by overall survival (OS) and disease-free survival
(DFS) analyses to evaluate prognostic relevance. Here, OS
was defined as the time from HCC diagnosis to death from
any cause, and DFS was defined as the time from curative
treatment to disease recurrence. Additionally, pan-cancer
expression data from the TCGA database were examined

to assess whether BMS1P8 expression was specific to
liver cancer or also present in other malignancies. These
data were downloaded from the Genomic Data Commons
(GDC) hub of UCSC Xena (https://xena.ucsc.edu/) to
ensure comprehensive coverage and accessibility [16].

2.2 Quantitative Reverse Transcription PCR (qRT-PCR)
Total RNA was extracted from frozen tissues using

QIAzol Reagent (Qiagen, Cat# 79306, Hilden, Germany),
following the manufacturer’s instructions. cDNA was
synthesized from 500 ng of total RNA using 5× Prime-
Script™ RT Master Mix (Takara Bio, Cat# RR036A,
Shiga, Japan) under the following conditions: 37 °C
for 15 min, 85 °C for 5 s, and 4 °C. qRT-PCR was
performed with amfiSure qGreen Q-PCR Master Mix
(GenDEPOT, Barker, Cat# Q5602, TX, USA) on a CFX
Connect Real-Time PCR Detection System (Bio-Rad
Laboratories, Hercules, CA, USA). Expression levels were
normalized to hydroxymethylbilane synthase (HMBS) as
an internal control. The amplification BMS1P8 primer
sequences were 5′-GCACATTCCAAAAGCCTTGC-3′
(forward) and 5′-TGTGCACCATACTCAGTGCA-3′
(reverse); and the HMBS primer sequences were 5′-
ACGGCTCAGATAGCATACAAGAG-3′ (forward) and
5′-GTTACGAGCAGTGATGCCTACC-3′ (reverse). The
PCR conditions were as follows: 95 °C for 2 min, 40
cycles of 95 °C for 15 s, 58 °C for 34 s, and 72 °C for 30 s,
followed by a dissociation stage at 95 °C for 10 s, 65 °C for
5 s, and 95 °C for 5 s. The relative standard curve method
(2−∆∆Ct) was used to determine the relative expression.
All experiments were performed at least three times.

2.3 Clinical Sample Collection
To validate the BMS1P8 expression patterns identified

from public omics data, 98 paired HCC and corresponding
non-cancerous liver tissues were obtained from the Biobank
of Ajou University Hospital (Suwon, South Korea). qRT-
PCR analysis was carried out as described above. Demo-
graphic and clinical information, including age, sex, etiol-
ogy of liver disease, body mass index (BMI), platelet count,
serum albumin, total bilirubin, international normalized ra-
tio (INR), creatinine, sodium, aspartate aminotransferase
(AST), alanine aminotransferase (ALT), AFP, protein in-
duced by vitamin K absence-II (PIVKA-II), hemoglobin,
glucose, total cholesterol levels, and the presence of ascites,
was recorded (Table 1).

2.4 Enrichment Analysis Using Databases
Gene Ontology (GO) analyses of the enriched genes

were performed using the enrichGO function in the R clus-
terProfiler package (v3.18.1, Bioconductor; https://biocon
ductor.org/packages/clusterProfiler). Enrichment analysis
of the MSigDB Hallmark 2020 database (Broad Institute,
Cambridge, MA, USA; https://www.gsea-msigdb.org/gsea
/msigdb) was conducted using the enrichr function in the
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Table 1. Clinical characteristics of the HCC cohort.
Variables HCC (n = 98)

Age (years), mean ± SD (range) 56 ± 10.2 (29–75)
Male sex, n (%) 74 (75.5)
Etiology, n (%) ––

HBV 91 (92.9)
HCV 4 (4.1)
Alcohol 2 (2)
HCV + Alcohol 1 (1)

Cirrhosis, n (%) 71 (72.4)
Ascites, n (%) 15 (15.3)
BMI (kg/m2), mean ± SD (range) 24.1 ± 3.8 (16.6–36.0)
Platelet, ×109/L, mean ± SD (range) 178.4 ± 68.5 (58–534)
Albumin (g/dL), mean ± SD (range) 4.5 ± 0.6 (0.3–5.4)
Total bilirubin (mg/dL), mean ± SD (range) 0.8 ± 1.3 (0.1–12.9)
INR, mean ± SD (range) 1.1 ± 0.1 (0.91–1.94)
Creatinine (mg/dL), mean ± SD (range) 0.92 ± 0.2 (0.5–2.01)
Sodium (mmol/L), mean ± SD (range) 139.3 ± 2.2 (130–143)
AST (U/L), mean ± SD (range) 43.5 ± 57.8 (15–541)
ALT (U/L), mean ± SD (range) 40.5 ± 42.1 (8–332)
AFP (ng/mL), mean ± SD (range) 3185.2 ± 9989.2 (1.3–60,500)
PIVKA-II (mAU/mL), mean ± SD (range) 8711.3 ± 34,086.5 (13–300,000)
Hemoglobin (g/dL), mean ± SD (range) 14.4 ± 1.6 (8.2–17.1)
Glucose (mg/dL), mean ± SD (range) 123.0 ± 53.5 (72–411)
Total cholesterol (mg/dL), mean ± SD (range) 170.4 ± 41.0 (97–289)

AFP, alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate aminotrans-
ferase; BMI, body mass index; HBV, hepatitis B virus; HCC, hepatocellular carcinoma;
HCV, hepatitis C virus; INR, international normalized ratio; PIVKA-II, protein induced
by vitamin K absence-II.

R enrichR package (v3.0; https://cran.r-project.org/packa
ge=enrichR). Additional pathway analyses, including the
Kyoto Encyclopedia of Genes and Genomes (KEGG) 2021
Human (Kanehisa Laboratories, Kyoto, Japan; https://ww
w.genome.jp/kegg/) andReactome Pathways 2024 (Ontario
Institute for Cancer Research, Toronto, Canada; https://reac
tome.org), were also carried out with clusterProfiler to iden-
tify biological processes and signaling pathways potentially
associated with BMS1P8.

2.5 Risk Score Calculation for the 7-Gene Signature

A composite risk score was calculated by standardiz-
ing expression levels of the seven genes (BMS1P8, CCNB2,
CDC20,CDC45, ESPL1, PLK1, and PTTG1) using Z-score
transformation across the TCGA_LIHC cohort. Z-scores
were computed for each gene as follows:

Z =
(X − µ)

σ

whereX is the individual gene expression, µ is the mean ex-
pression, and σ is the standard deviation across the cohort.

The individual risk score for each patient was then defined
as the arithmetic mean of the Z-scores of the seven genes:

Risk score =

(
1

7

)∑7

i=1
Zi

This composite metric integrates the combined ex-
pression pattern into a single prognostic variable. Receiver
operating characteristic (ROC) curve analysis was subse-
quently performed using these risk scores to evaluate the
diagnostic and prognostic performance of the 7-gene signa-
ture.

2.6 miRNA Expression Profiling and ceRNA Network
Construction

Raw mature-miRNA read counts for TCGA_LIHC
were downloaded from the GDC using the TCGAbiolinks
pipeline (v2.30.1, Bioconductor; https://bioconductor.org/p
ackages/TCGAbiolinks) [17,18]. Counts were filtered to
retain miRNAs expressed at≥1 count per million (CPM) in
≥30% of samples, then TMM-normalized and transformed
to log2-CPM with the edgeR package (v4.2, Bioconductor;
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https://bioconductor.org/packages/edgeR). Differential ex-
pression between non-tumor (NT) and tumor (T) tissues
was assessed with limma-voom (v3.58, Bioconductor; http
s://bioconductor.org/packages/limma); miRNAs with |log2
FC| ≥ 0.5 and false discovery rate (FDR)< 0.05 were con-
sidered significantly deregulated.

For ceRNA screening, Pearson correlation coeffi-
cients (r) were calculated between BMS1P8 and each
miRNA across matched mRNA- and miRNA-seq tumor
samples. Candidate tumor-suppressive miRNAs were de-
fined as (i) downregulated in tumors (log2 FC≤ –0.5, FDR
< 0.05) and (ii) inversely correlated with BMS1P8 (r ≤ –
0.20, *p< 0.05). Putative mRNA targets of each candidate
miRNA were retrieved from miRDB (https://mirdb.org/)
with a target score ≥70 [19]. Predicted targets were fil-
tered to keep transcripts that were (i) upregulated in tumors
(log2 FC ≥ 0.5, FDR < 0.05) and (ii) positively correlated
with BMS1P8 (r ≥ 0.20, *p < 0.05) while showing a nega-
tive correlation with the cognate miRNA (r ≤ –0.20, *p <

0.05).

2.7 Statistical Analysis
All results are expressed as mean ± standard devia-

tion (SD). Unpaired Student’s t-tests (GraphPad Software,
version 10.0, San Diego, CA, USA) were used to deter-
mine differences between groups. Kaplan–Meier survival
curves were generated for both OS and DFS, with signifi-
cance assessed via the log-rank test. ROC curve analyses
were conducted using MedCalc (MedCalc Software Ltd.,
version 22.0, Ostend, Belgium), providing the area under
the curve (AUC), 95% confidence intervals (CIs), sensitiv-
ity, and specificity. Statistical significance was defined as p
< 0.05. All experiments were repeated at least three times.

3. Results
3.1 Comprehensive Analysis of Pseudogene Expression in
Liver Disease and HCC Progression

Using the multistage liver disease and cancer dataset
GSE114564, RNA sequencing analysis was conducted to
systematically evaluate gene expression changes across
different stages of liver disease and cancer progression.
A total of 39,864 genes were analyzed, classified into
eight categories based on their coding potential: protein-
coding genes (46.20%), long non-coding RNA (lncRNA)
genes (13.09%), pseudogenes (19.85%), antisense tran-
scripts (10.35%), miscellaneous RNA (2.58%), sense in-
tronic RNA (2.16%), and processed transcripts (1.10%)
(Fig. 1A, left pie chart). Among these, 7913 pseudogenes
were identified and further categorized based on their bio-
genesis and characteristics. The majority, 71.06%, were
processed pseudogenes, which are retro-transposed copies
of functional genes that have lost their coding potential.
The second-largest group, 11.03%, included unprocessed
pseudogenes that retain introns and resemble their parent
genes. Additionally, 6.46% were transcribed unprocessed

pseudogenes, and 4.40% were transcribed processed pseu-
dogenes. Smaller fractions included 3.48% generic pseudo-
genes, 1.58% IG_V_pseudogenes, and 1.36% unitary pseu-
dogenes. The remaining 0.63% were classified as etc., en-
compassing pseudogenes with ambiguous or uncommon
features (Fig. 1A, right pie chart).

Based on these classifications, the hepatic tissue sam-
ples were categorized into six groups to represent the differ-
ent stages of liver disease and cancer progression: NL, CH,
LC, DN, eHCC, and aHCC (Fig. 1B). Heatmap analysis of
171 differentially expressed pseudogenes revealed dynamic
expression patterns across these stages, with 98 pseudo-
genes significantly upregulated in advancedHCC (Fig. 1B).
Notably, BMS1P8, RP11-390F10.3, RP11-443P15.2, and
ZNF192P1 showed consistent upregulation during disease
progression, highlighting their potential role in driving
HCC development (Fig. 1C). Although PTGES3P1 clus-
tered with other upregulated pseudogenes in early- and late-
stage HCC (Fig. 1C), further analysis indicated it may not
be a robust liver cancer–specific biomarker. PTGES3P1
showed elevated expression in the chronic hepatitis (CH)
group, suggesting non-specific upregulation. Analysis of
variance (ANOVA) with Tukey’s multiple comparisons test
revealed significant differences only between normal liver
and aHCC and between LC and aHCC, without consistent
stepwise increases in HCC progression. Moreover, ROC
analysis yielded an AUC below 0.7 for distinguishing tu-
mor from non-tumor tissues, indicating limited diagnostic
potential. Based on these findings, we concluded that PT-
GES3P1 does not meet the criteria for a promising HCC-
specific biomarker (Supplementary Fig. 1A). These find-
ings underscore the importance of pseudogene expression
in the molecular landscape of liver cancer progression.

3.2 Diagnostic and Prognostic Significance of the
Candidate Pseudogenes in HCC Progression

The expression patterns of four pseudogenes,
BMS1P8, RP11-390F10.3, RP11-443P15.2, and
ZNF192P1, were analyzed across six stages of liver
disease progression (NL, CH, LC, DN, eHCC, and aHCC)
using the GSE114564 dataset. Among these, BMS1P8,
RP11-443P15.2, and ZNF192P1 exhibited progressive
and statistically significant increases in expression as the
disease advanced, reaching peak levels in advanced HCC.
In contrast, RP11-390F10.3 showed a less pronounced
and statistically non-significant increase across the stages
(Fig. 2A, left panels for each pseudogene).

The diagnostic potential was assessed through ROC
curve analysis. Among the four pseudogenes, BMS1P8
showed strong diagnostic performancewith anAUCof 0.81
(95% CI: 0.73–0.89, p < 0.0001), and RP11-443P15.2 ex-
hibited the highest AUC value of 0.84 (95% CI: 0.77–0.92,
p < 0.0001). ZNF192P1 also demonstrated strong diag-
nostic capability with an AUC of 0.81 (95% CI: 0.73–0.89,
p < 0.0001), while RP11-390F10.3 had moderate diagnos-
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Fig. 1. Identification of differentially expressed pseudogenes in HCC. (A) Gene composition of the GSE114564 dataset, including
39,864 genes, with 7913 pseudogenes. (B) Heatmap of 171 pseudogenes showing differential expression across liver disease stages
including non-cancerous liver (NL, normal liver; CH, chronic hepatitis; LC, liver cirrhosis; DN, dysplastic nodule) and tumor (eHCC,
early-stage HCC; aHCC, advanced HCC) tissues, with 98 pseudogenes significantly upregulated during HCC progression. (C) Key
upregulated pseudogenes, including BMS1P8, RP11-390F10.3, RP11-443P15.2, and ZNF192P1, identified as potential HCC diagnostic
markers.

tic potential (AUC = 0.66, 95% CI: 0.56–0.76, p = 0.003)
(Fig. 2A, right panels for each pseudogene).

To validate tumor-specific expression, these pseudo-
genes were analyzed in T (n = 371) versus NT (n = 50) tis-
sues using the TCGA_LIHC dataset. BMS1P8 and RP11-
443P15.2 were significantly upregulated in tumor tissues,
with fold changes (FCs) of 2.1 and 2.3, respectively (p <

0.001 for both). ZNF192P1 showed a mild but statistically
significant increase (FC = 1.1, p < 0.001), whereas RP11-
390F10.3 did not show significant differential expression
(Fig. 2B).

Kaplan–Meier survival analysis revealed the prognos-
tic significance of BMS1P8 and RP11-443P15.2. High
expression of BMS1P8 was significantly associated with
poorer OS, with a hazard ratio (HR) of 1.64 (95% CI: 1.16–
2.31, p = 0.005) (Fig. 2C, left). While RP11-443P15.2
showed a trend toward worse survival, its result was not
statistically significant (HR = 1.36, 95% CI: 0.96–1.91, p
= 0.08) (Fig. 2C, right). These findings highlight BMS1P8
as a strong candidate for further investigation owing to its
diagnostic and prognostic value in liver disease and HCC
progression.

3.3 Comparative Analysis of BMS1 Pseudogenes in HCC
and Identification of BMS1P8 as a Leading Diagnostic
Candidate

To evaluate the diagnostic potential of BMS1-derived
pseudogenes in HCC, matched T and NT tissue pairs (n =
50) were examined to identify the pseudogenes that were
significantly upregulated in cancerous liver tissues. Among
the 17 tested genes, eight, including BMS1P1, BMS1P2,
BMS1P4, BMS1P8, BMS1P10, BMS1P16, BMS1P17, and
BMS1P20, exhibited markedly higher expression levels in
tumor tissues than those in their NT counterparts (Fig. 3A).

ROC curve analyses were then performed to assess the
diagnostic performance of each pseudogene. While several
BMS1 pseudogenes demonstrated moderate diagnostic ca-
pabilities (AUC = 0.58–0.74), both BMS1P8 and BMS1P20
showed particularly high AUC values of 0.80 (95% CI:
0.71–0.89) and 0.84 (95% CI: 0.76–0.92), respectively, in-
dicating strong potential for HCC detection (Fig. 3B).

Although BMS1P20 appeared to be a strong candi-
date based on the preliminary findings, further validation
using a dataset encompassing multistage liver disease and
HCC progression (GSE114564) revealed limited diagnos-
tic relevance. BMS1P20 did not exhibit a statistically sig-
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Fig. 2. Diagnostic and prognostic significance of four pseudogenes in hepatocellular carcinoma (HCC) progression. (A) Relative
expression levels of BMS1P8, RP11-390F10.3, RP11-443P15.2, and ZNF192P1 in NL, CH, LC, DN, eHCC, and aHCC, based on the
GSE114564 dataset (the left panels for each pseudogene). Receiver operating characteristic (ROC) curves demonstrate the diagnostic
performance of each pseudogene in distinguishing HCC from non-tumor liver tissue, with area under the curve (AUC) values and 95%
confidence intervals (CIs) (the right panels for each pseudogene). (B) Validation of tumor-specific expression for the four pseudogenes
in paired non-tumor (NT) and tumor (T) tissues from The Cancer Genome Atlas - Liver Hepatocellular Carcinoma (TCGA_LIHC)
dataset (n = 421). The y-axis represents fragments per kilobase of transcript per million mapped reads (FPKM) on a log2(x + 1) scale,
highlighting fold changes (FC). (C) Kaplan–Meier overall survival (OS) analyses for BMS1P8 and RP11-443P15.2 in the TCGA_LIHC
dataset. High-expression groups (purple) show worse survival compared to low-expression groups (green). Hazard ratios (HRs), 95%
CIs, and log-rank p values are presented. Statistically significant differences were determined using the log-rank test; *p < 0.05, **p <
0.01, ***p < 0.001, ****p < 0.0001. Data are shown as mean ± SD.

nificant differential expression between non-cancerous and
cancerous tissues, and its AUC value for distinguishing
these groups was relatively low (AUC = 0.60, p = 0.06)
(Supplementary Fig. 1). In contrast, BMS1P8 consis-
tently demonstrated robust diagnostic performance across
both datasets and maintained significant differences in ex-
pression between the T and NT samples (Fig. 2A). Collec-
tively, these findings highlightBMS1P8 as themost promis-
ing BMS1 pseudogene marker for HCC diagnosis, under-
scoring its potential utility for early detection and guid-
ing future investigations into the clinical implications of
pseudogene-based biomarkers.

3.4 BMS1P8 is Overexpressed in HCC and Exhibits
Liver-Specific Diagnostic Potential

To investigate the potential cancer-specific expression
of BMS1P8, we initially performed a broad pan-cancer sur-
vey using TCGA database, spanning 25 different tumor
types. BMS1P8 expression was largely undetectable or re-
mained at very low levels in most cancer types. In contrast,
LIHC samples exhibited a pronounced increase in BMS1P8
expression relative to NT tissues (Fig. 4A). This discrep-
ancy underscores the possibility that BMS1P8 plays a role
in the oncogenic processes of the liver rather than in a broad
spectrum of malignancies.
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Fig. 3. Comparative expression and diagnostic evaluation of BMS1 pseudogenes in matched HCC and non-tumor liver tissues.
(A) Expression patterns of 17 BMS1 pseudogenes in paired non-tumor (NT) and tumor (T) samples (n = 50). Each connected line
represents an individual patient sample. The y-axis shows fragments per kilobase of transcript per million mapped reads (FPKM) on a
log2(x + 1) scale. (B) Receiver operating characteristic (ROC) curves evaluating the diagnostic performance of the eight most upregulated
BMS1 pseudogenes (BMS1P1, BMS1P2, BMS1P4, BMS1P8, BMS1P10, BMS1P16, BMS1P17, and BMS1P20) in distinguishing tumor
from non-tumor tissues. Area under the curve (AUC), 95% confidence interval (CI), and corresponding p values are shown for each
pseudogene. Higher AUC values indicate stronger diagnostic potential. Statistical significance levels (*p < 0.05, **p < 0.01, ***p <

0.001) are indicated where applicable.

To confirm these pan-cancer observations at the clini-
cal level, paired tumor and NT liver tissues were collected
from 98 patients with HCC undergoing hepatectomy. The
relevant clinical information is detailed in Table 1. qRT-
PCR revealed that 80 of 98 (82%) patient samples demon-
strated significantly elevatedBMS1P8 expression (Fig. 4B),
thus reinforcing the findings from both the TCGA and
GSE114564 datasets. The high proportion of overexpress-
ing cases suggests that BMS1P8 may be functionally rele-
vant to HCC pathogenesis or tumor progression.

In alignment with these expression data, BMS1P8
exhibited robust diagnostic performance in distinguishing
HCC tissues from non-tumor tissues. Specifically, ROC

curve analysis yielded an AUC of 0.81 (95% CI: 0.74–0.89,
p< 0.001) (Fig. 4C), indicating a high degree of sensitivity
and specificity. This diagnostic potential complements the
observed overexpression patterns, indicating that BMS1P8
may serve as a practical biomarker for the early detection
or clinical monitoring of HCC.

3.5 BMS1P8 May Regulate HCC Prognosis Through
Interactions With Cell Cycle–Related Genes

To elucidate the functional importance of BMS1P8 in
HCC, correlation analysis in the TCGA_LIHC dataset iden-
tified 1784 genes (|r| ≥ 0.2), including 1175 protein-coding
genes, that were associated with BMS1P8. Pathway enrich-
ment analysis using EnrichR and referencing the MSigDB

7

https://www.imrpress.com


Fig. 4. BMS1P8 exhibits liver-specific overexpression and robust diagnostic potential in an independent HCC cohort. (A) Pan-
cancer analysis of BMS1P8 expression across 25 tumor types in the TCGA dataset. The y-axis indicates FPKM on a log2 scale, high-
lighting that BMS1P8 is predominantly overexpressed in LIHC compared with other malignancies. (B) Fold change (log2) of BMS1P8
expression in 98 paired HCC and non-tumor liver tissues from the Ajou University cohort. Bars above the x-axis indicate samples with
upregulated BMS1P8, while those below represents downregulation. (C) ROC curve evaluating BMS1P8 as a diagnostic marker for
distinguishing HCC from NT tissues in the Ajou University cohort. The area under the curve (AUC) is 0.81 (95% CI: 0.74–0.89, p <

0.001), underscoring its potential clinical utility. Data are shown as mean± SD. LIHC, Liver hepatocellular carcinoma; GBM, Glioblas-
toma multiforme; SARC, Sarcoma; CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma; KIRC, Kidney renal
clear cell carcinoma; KIRP, Kidney renal papillary cell carcinoma; ESCA, Esophageal carcinoma; LUSC, Lung squamous cell carci-
noma; LUAD, Lung adenocarcinoma; THCA, Thyroid carcinoma; CHOL, Cholangiocarcinoma; BLCA, Bladder urothelial carcinoma;
PAAD, Pancreatic adenocarcinoma; SKCM, Skin cutaneous melanoma; OV, Ovarian serous cystadenocarcinoma; THYM, Thymoma;
PCPG, Pheochromocytoma and paraganglioma; BRCA, Breast invasive carcinoma; HNSC, Head and neck squamous cell carcinoma;
PRAD, Prostate adenocarcinoma; STAD, Stomach adenocarcinoma; COAD, Colon adenocarcinoma; UCEC, Uterine corpus endometrial
carcinoma; READ, Rectum adenocarcinoma; KICH, Kidney chromophobe.

Hallmark 2020, KEGG 2021 Human, and Reactome Path-
ways 2024 databases consistently highlighted the G2–M
checkpoint and cell cycle pathways among the top-ranked
categories (Fig. 5A–C). This overarching pattern suggests
that BMS1P8 orchestrates pivotal cell-cycle processes in-
volved in HCC progression.

A Venn diagram analysis focusing on cell cycle–
related genes correlated with BMS1P8 across the three
databases uncovered six overlapping genes, such as
CCNB2, CDC20, CDC45, ESPL1, PLK1, and PTTG1
(Fig. 5D). Subsequent validation within the TCGA_LIHC
dataset confirmed significant positive correlations (r> 0.2)
between BMS1P8 and each of these genes (Fig. 5E), rein-
forcing the notion that BMS1P8 functions as a central node
in cell cycle regulation.

To assess prognostic implications, BMS1P8 was com-
bined with the six correlated cell cycle genes to form a
7-gene signature (7 sigs), comprising BMS1P8 plus the
six correlated genes including CCNB2, CDC20, CDC45,
ESPL1, PLK1, and PTTG1. Kaplan–Meier analyses of
OS and DFS revealed significantly worse outcomes in pa-
tients exhibiting high expression of this signature (Fig. 5F).
Specifically, OS analysis yielded a log-rank p = 6.2× 10−6

with a HR = 3, while DFS analysis produced a log-rank
p = 9.2 × 10−5 and an HR = 2.3. Collectively, these re-
sults underscore the critical role of BMS1P8 in modulating
cell cycle–associated pathways and highlight the potential
of this 7-gene signature as a robust prognostic marker for
HCC. To further evaluate the diagnostic capability of the
7-gene signature, ROC curve analyses were performed in

8

https://www.imrpress.com


two clinically relevant comparisons. When comparing all
available non-tumor samples (NT, n = 50) with all tumor
samples (T, n = 371) in the TCGA_LIHC cohort, the sig-
nature achieved an AUC of 0.92 (95% CI: 0.89–0.95, p <

0.0001). Additionally, analysis of 50 paired NT and T tis-
sues from the same patients demonstrated an AUC of 0.98
(95%CI: 0.95–1.00, p< 0.0001), indicating strong discrim-
inatory performance even in matched samples (Fig. 5G).
When comparing the 7-gene signature with BMS1P8 alone,
the 7-gene signature showed significantly improved diag-
nostic performance, with a higher AUC of 0.92 compared
to BMS1P8’s AUC of 0.80 (Fig. 3B). Collectively, these re-
sults underscore the critical role of BMS1P8 in modulating
cell cycle–associated pathways and highlight the potential
of this 7-gene signature as both a robust prognostic marker
and a promising diagnostic biomarker panel for HCC.

3.6 BMS1P8 Functions as a ceRNA Modulating the
miR-30c-2-3p–NME6 Axis in HCC

Because pseudogenes, like lncRNAs, are well known
to function as ceRNAs modulating miRNA availability
and downstream gene expression, we investigated whether
BMS1P8 might engage in a ceRNA regulatory network in-
fluencing HCC progression [10]. This analysis aimed to ex-
plore a potential mechanistic link by identifying miRNAs
that could interact with BMS1P8 and affect expression of
relevant oncogenic targets. Following the analytical work-
flow (Fig. 6A), miRNAs sharing complementary sequences
with BMS1P8 were identified using BLAST (https://blas
t.ncbi.nlm.nih.gov/Blast.cgi) and miRNA-target prediction
from miRDB. Among the seven downregulated miRNAs
that showed negative correlations with BMS1P8 in HCC
(Supplementary Table 1, Supplementary Fig. 2), we fo-
cused on hsa-miR-30c-2-3p, which showed the most signif-
icantly reduced expression in HCC and the strongest nega-
tive correlation with BMS1P8. miRDB prediction yielded
267 target genes with a target score ≥70, and among them,
46 genes were found to be upregulated in tumors and posi-
tively correlated with BMS1P8 in the TCGA_LIHC cohort
(Supplementary Table 2). Among these, the only gene
that showed both a significant negative correlationwith hsa-
miR-30c-2-3p (r≤ –0.2, p< 0.05) and a significant positive
correlation with BMS1P8 (r ≥ 0.3, p < 0.05) was NME6
(Fig. 6B). Expression analysis showed that hsa-miR-30c-2-
3p was significantly downregulated in HCC (p < 0.0001),
with a diagnostic AUC of 0.79 (95% CI: 0.75–0.84), while
NME6 was markedly upregulated (p < 0.0001) with an
AUC of 0.97 (95% CI: 0.95–0.99) (Fig. 6C). Furthermore,
to validate these findings in an independent in-house co-
hort, we analyzed RNA-seq and miRNA-seq data from the
KOSIN cohort. Consistent with TCGA results, hsa-miR-
30c-2-3p expression was significantly reduced in HCC (p =
0.004), yielding a diagnostic AUC of 0.66 (95% CI: 0.56–
0.76), while NME6 expression was significantly elevated
(p = 0.01) with a diagnostic AUC of 0.64 (95% CI: 0.53–

0.74) (Fig. 6D). Correlation analysis in the TCGA_LIHC
dataset revealed significant inverse associations between
miR-30c-2-3p and both NME6 (r = –0.26, p < 0.001) and
BMS1P8 (r = –0.29, p < 0.001), along with a positive cor-
relation between BMS1P8 and NME6 (r = 0.33, p< 0.001).
These findings suggest a potential ceRNA regulatory net-
work among the three molecules. To independently vali-
date these associations, we performed correlation analysis
using RNA-seq and miRNA-seq data from the KOSIN co-
hort, which confirmed similar trends: miR-30c-2-3p was
inversely correlated with both NME6 (r = –0.36, p< 0.001)
and BMS1P8 (r = –0.20, p = 0.03), while BMS1P8 showed
a significant positive correlation with NME6 (r = 0.29, p
< 0.001) (Fig. 6E). Although correlation coefficients in the
KOSIN cohort were comparable to those observed in the
TCGA dataset, this additional analysis provides robust, in-
dependent support for the proposed ceRNA axis involving
BMS1P8, miR-30c-2-3p, and NME6 in HCC. In survival
analysis, high expression of NME6 was significantly asso-
ciated with worse OS (HR = 2.02, 95% CI: 1.41–2.89, p
< 0.001), while low expression of miR-30c-2-3p showed a
non-significant trend toward poor prognosis (HR = 1.27, p
= 0.19) (Fig. 6F). Notably, patients with high expression of
both BMS1P8 and NME6 showed markedly poorer OS and
DFS compared to other groups (OS: HR = 2.75, 95% CI:
1.74–4.34; DFS: HR = 2.28, 95% CI: 1.53–3.39, both p <

0.001) (Fig. 6G). A mechanistic model summarizing these
findings is presented in Fig. 7, where in normal hepatocytes,
miR-30c-2-3p is sufficiently expressed to repress NME6
mRNA via RNA-induced silencing complex (RISC) com-
plex formation, whereas in HCC, increased BMS1P8 se-
questers miR-30c-2-3p, preventing RISC-mediated repres-
sion and thereby releasing NME6 from post-transcriptional
inhibition, potentially contributing to tumor progression.

4. Discussion
Pseudogenes are traditionally considered junk DNA

or nonfunctional remnants arising from gene duplication
or retrotransposition events [20]. Their sequences typi-
cally harbor premature stop codons or frame shifts, pre-
venting the production of functional proteins [21]. How-
ever, with the advent of high-throughput technologies, in-
cluding next-generation RNA sequencing, single-cell tran-
scriptomics, and clustered regularly interspaced short palin-
dromic repeat-based functional screens, our understand-
ing of these genetic elements has evolved substantially
[22,23]. This paradigm shift has been supported by emerg-
ing research data: many pseudogenes are transcription-
ally active and can exert regulatory functions analogous
to non-coding RNAs, influencing fundamental cellular
processes including proliferation, apoptosis, and metasta-
sis [8]. For instance, the pseudogene-expressed lncRNA
small ubiquitin-like modifier 1 pseudogene 3 (SUMO1P3)
has been identified as upregulated in gastric cancer tis-
sues compared with adjacent nontumorous tissues, and
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Fig. 5. BMS1P8 and its cell cycle–related 7-gene signature predict prognosis and accurately distinguish HCC tissues. Pathway
enrichment analyses of BMS1P8-correlated genes (|r| ≥ 0.2) using three different databases: (A) MSigDB Hallmark 2020, (B) KEGG
2021 Human, and (C) Reactome Pathways 2024. Bar graphs depict the top enriched pathways based on combined scores and adjusted
p values. Of note, G2–M checkpoint and cell cycle processes consistently emerge among the highest-ranked categories. (D) Venn
diagram analysis illustrating the overlap of cell cycle–associated genes correlated with BMS1P8 across the three databases. Six genes,
including CCNB2, CDC20, CDC45, ESPL1, PLK1, and PTTG1, are commonly identified. (E) Scatter plots showing significant positive
correlations (r > 0.2, p < 0.001) between BMS1P8 and the six overlapping cell cycle genes in the TCGA_LIHC dataset, suggesting
BMS1P8 as a regulatory node in cell cycle control. (F) Kaplan–Meier curves for overall survival (OS) and disease-free survival (DFS) in
patients stratified by a 7-gene signature (comprising BMS1P8 plus the six correlated genes including CCNB2, CDC20, CDC45, ESPL1,
PLK1, and PTTG1). High 7-gene signature expression (purple) is associated with markedly poorer OS and DFS. Log-rank p values and
hazard ratios (HR) are presented, highlighting the prognostic relevance of BMS1P8 and its cell cycle–related partners. (G) Receiver
operating characteristic (ROC) curves illustrating the diagnostic accuracy of the 7-gene signature, calculated as the mean of standardized
expression (Z-scores) of BMS1P8 and six correlated cell cycle genes (CCNB2, CDC20, CDC45, ESPL1, PLK1, PTTG1). (Top) ROC
curve comparing all non-tumor samples (NT, n = 50) to all tumor samples (T, n = 371) in the TCGA_LIHC cohort. (Bottom) ROC curve
for 50 paired NT and T tissues from the same patients.

10

https://www.imrpress.com


Fig. 6. A BMS1P8–miR-30c-2-3p–NME6 competing-endogenous-RNA (ceRNA) axis in HCC. (A) Analytical workflow showing the
five-step in-silico pipeline that identified miR-30c-2-3p and its target NME6 within the BMS1P8 ceRNA network. (B) Funnel diagram
summarizing progressive filtering of miR-30c-2-3p targets: 267 predicted targets → 46 targets upregulated in tumors and positively
correlated with BMS1P8 → NME6, the only transcript also inversely correlated with miR-30c-2-3p (r ≤ –0.2, p < 0.05). (C) Box plot
(left) and receiver operating characteristic (ROC) curve (right) for miR-30c-2-3p and NME6 expression in TCGA cohort. (D) Box plot
(left) and ROC curve (right) for miR-30c-2-3p and NME6 expression in KOSIN cohort. Box plots show log2-transformed transcripts
per million (TPM) levels comparing NT and T tissues; ROC curves show sensitivity versus 1 – specificity for distinguishing T from
NT samples. (E) Pair-wise Pearson correlation scatterplots in both TCGA (n = 368) and KOSIN (n = 112) cohort: miR-30c-2-3p versus
BMS1P8, BMS1P8 versus NME6, and miR-30c-2-3p versus NME6; correlation coefficients (r) and two-tailed p values are indicated. (F)
Kaplan–Meier overall survival (OS) curves comparing low- versus high-expression groups (median split) for miR-30c-2-3p and NME6;
hazard ratio (HR) with 95 % CI and log-rank p values are shown. (G) Kaplan–Meier curves for OS (left) and disease-free survival (DFS,
right) stratified by combined BMS1P8 and NME6 expression status (bothLow, eitherHigh, bothHigh). Statistical comparisons of expression
used unpaired Student’s t-tests; survival differences used log-rank tests. *p < 0.05, **p < 0.01, ***p < 0.001. Data are presented as
mean ± SD unless otherwise stated.
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Fig. 7. Proposed mechanistic model of the BMS1P8–miR-30c-2-3p–NME6 ceRNA axis in HCC. In normal hepatocytes (left), miR-
30c-2-3p binds to NME6 mRNA, recruiting the RNA-induced silencing complex (RISC) complex and leading to translational repression
and mRNA degradation of NME6. In HCC cells (right), elevated BMS1P8 sequesters miR-30c-2-3p, preventing RISC formation on
NME6 mRNA, thereby relieving translational repression and resulting in increased NME6 expression. The figure was created using
BioRender.com (Agreement number: MG28JOSDOF). The original figure source is available at https://BioRender.com/5bss1pr.

its expression associated with tumor size, differentiation,
lymphatic metastasis, and invasion [24]. In parallel, re-
cent work has delineated additional pseudogene-driven cir-
cuits that shape the key hallmarks of HCC. Double home-
obox A pseudogene 8 (DUXAP8) sponges miR-490-5p, re-
leasing budding uninhibited by benzimidazoles 1 (BUB1)
and intensifying phosphatidylinositol-4,5-bisphosphate 3-
kinase catalytic subunit beta (PI3K)/AKT serine/threonine
kinase 1 (AKT)-driven proliferation, while misato family
member 2, pseudogene (MSTO2P) simultaneously boosts
E-cadherin and activates the PI3K/AKT/mechanistic tar-
get of rapamycin kinase (mTOR) axis to sustain tumor
growth [25,26]. Also, methyltransferase 3, N6-adenosine-
methyltransferase complex catalytic subunit (METTL3)-
mediated N6-methyladenosine modification stabilizes glu-
cosylceramidase beta 1 like, pseudogene (GBAP1); the re-
sultant GBAP1 overexpression sequesters miR-22-3p, up-
regulates bone morphogenetic protein receptor type 1A
(BMPR1A), and activates both BMP/Smad family mem-
ber and PI3K/AKT cascades, promoting hepatocarcinogen-
esis [27,28]. Small nuclear ribonucleoprotein polypeptide
F pseudogene 1 (SNRPFP1) is markedly up-regulated in
HCC, associates with poor prognosis, and promotes pro-
liferation, motility, and apoptosis resistance by sponging

the tumor-suppressive miR-126-5p [29], whereas onco-
genic ubiquitin conjugating enzyme E2 M pseudogene 1
(UBE2MP1) promotes proliferation and apoptosis resis-
tance by sponging miR-145-5p to de-repress regulator of G
protein signaling 3 (RGS3) [30]. Collectively, these mecha-
nistic insights—highlighting the emerging theme that pseu-
dogene exert their influence primarily through miRNA-
sponge activity—have driven the development of multi-
pseudogene prognostic signatures that outperform conven-
tional clinicopathologic variables, thereby reinforcing the
regulatory and clinical relevance of pseudogenes in HCC
and broader cancer biology.

In this study, we identified BMS1P8 as a liver cancer–
specific pseudogene with diagnostic and prognostic impli-
cations. By conducting a comprehensive analysis of RNA-
seq datasets and validating the findings in clinical sam-
ples, we observed that BMS1P8 expression was minimal
in most other tumor types but prominently upregulated in
HCC. Notably, BMS1P8 remained barely detectable in CH
and LC but rose modestly in DN and surged in both early-
and advanced-stage HCC (Fig. 2A), indicating that its in-
duction is tumor-specific rather than a generic response to
chronic liver injury. The robust diagnostic performance of
BMS1P8 underscores its potential as a biomarker for early
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detection or patient stratification. Moreover, our correla-
tion and pathway enrichment analysis implicated BMS1P8
in cell cycle regulation, a critical pathway often dysregu-
lated in HCC progression. These insights were supported
by the positive associations between BMS1P8 expression
and multiple cell cycle–related genes as well as the adverse
prognostic outcomes linked to a BMS1P8-based 7-gene sig-
nature including CCNB2, CDC20, CDC45, ESPL1, PLK1,
and PTTG1. Although the threshold of correlation coef-
ficient (r ≥ |0.2|) applied in this study may appear rela-
tively low, it reflects a practical consideration when ana-
lyzing pseudogenes or non-coding RNAs with inherently
low basal expression levels and high variability in large-
scale datasets like TCGA. Prior study of ceRNA networks
has also demonstrated that modest correlations (r = 0.2–
0.3) can reveal biologically meaningful interactions, espe-
cially when these findings are further supported by inde-
pendent pathway enrichment results [31]. This integrated
approach provides additional confidence in the biological
relevance of BMS1P8–cell cycle associations despite the
moderate r values Additionally, our ceRNA analysis sug-
gested that BMS1P8 sponge the tumor-suppressive miR-
30c-2-3p, thereby derepressing NME6. This interaction
could disrupt the normal regulatory network of miR-30c-
2-3p, thereby promoting the expression of NME6, which is
involved in tumor progression. Also, this axis was tightly
linked to poorer OS and DFS in TCGA, suggesting a dual
contribution of BMS1P8 to HCC progression through both
cell-cycle promotion and post-transcriptional regulation of
oncogenic transcripts.

NME/NM23 nucleoside diphosphate kinase 6
(NME6) is a member of the NME gene family, which plays
important roles in cellular processes such as nucleoside
diphosphate kinase activity, maintenance of nucleotide
pools, and regulation of cell proliferation and differentia-
tion [32,33]. While several NME family members, such
as NME1 and NME2, have been extensively studied as
metastasis suppressors in various cancers, the specific bio-
logical functions of NME6 remain less well characterized
[34]. Nonetheless, emerging studies have reported that
NME6 expression is elevated in multiple malignancies,
including breast, colorectal, and lung cancer, where it has
been associated with increased tumor cell proliferation, en-
hanced metastatic potential, and poorer clinical outcomes
[35–37]. Although direct experimental research on NME6
in HCC is limited, data mining analyses have indicated that
NME6 expression is elevated in HCC tissues and inversely
correlated with patient survival, suggesting a potential
oncogenic role for NME6 in liver cancer progression [38].
In our analysis, we observed significant upregulation of
NME6 in HCC tumor tissues compared to non-tumor
samples, accompanied by a strong association with poor
prognosis. Furthermore, our ceRNA network analysis indi-
cated that BMS1P8 may sequester miR-30c-2-3p, leading
to derepression of NME6, thereby implicating this axis as a

potential driver of HCC progression through dysregulation
of cell cycle–related and oncogenic pathways.

One of the most notable findings is the liver specificity
of BMS1P8, which helps distinguish it from other pseudo-
genes that may be broadly upregulated across multiple ma-
lignancies. This tissue specificity may allow BMS1P8 to
serve as a more targeted biomarker for HCC, potentially
reducing false-positive results that can occur with conven-
tional markers such as AFP [6]. Furthermore, the strong
prognostic value observed for BMS1P8 supports its clinical
utility not only in diagnosing HCC but also in risk stratifica-
tion and treatment decision-making. Despite these promis-
ing results, our study has certain limitations. Although the
correlation and enrichment data suggest a functional role
for BMS1P8 in cell cycle regulation, we did not perform in
vitro or in vivo functional assays to validate the mechanistic
underpinnings of how BMS1P8 might drive tumorigenesis.

In conclusion, our findings demonstrate the diagnostic
and prognostic importance of BMS1P8 in HCC and high-
light its potential tissue specificity. Moreover, our identifi-
cation of links between BMS1P8 expression and cell cycle-
related pathways provides a foundation for understanding
its role in liver cancer progression. Although this study de-
rived key insights primarily from tissue-based RNA analy-
sis, we recognize that tissue sampling is invasive and may
limit clinical applicability. However, with the recent ad-
vancements in liquid biopsy technologies, including extra-
cellular vesicle (EV)-based RNA analysis, there is poten-
tial for BMS1P8 to be detected in serum or plasma-derived
EVs. This raises the possibility of applying BMS1P8 as
a non-invasive biomarker in clinical practice. Therefore,
further studies evaluating the detectability of BMS1P8 in
patient blood samples and its correlation with tissue ex-
pression will be essential. Future mechanistic studies of
this pseudogene could lead to improved early diagnosis and
therapeutic strategies for HCC patients.

5. Conclusion
This study identified BMS1P8 as a liver-specific pseu-

dogene biomarker with a strong diagnostic and prognos-
tic value in HCC. Its distinct upregulation in liver can-
cer compared with other malignancies underscores its po-
tential clinical utility for early detection and patient strat-
ification. Furthermore, the correlation between BMS1P8
and cell cycle–related pathways highlight its relevance to
disease progression. Our results also revealed a poten-
tial BMS1P8/miR-30c-2-3p/NME6 ceRNA circuit that may
amplify oncogenic signaling in HCC. Elucidating and tar-
geting this newly defined axis could broaden the therapeutic
possibilities for BMS1P8. These findings not only enhance
our understanding of the molecular landscape of HCC but
also provide a foundation for future translational research
aimed at integrating BMS1P8 into diagnostic workflows
and exploring its potential as a target for therapeutic inter-
vention.
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