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Abstract

Glutamate is an important neurotransmitter in the mammalian brain. Among the receptors that glutamate interacts with is metabotropic
glutamate (mGlu) receptor 2, a Gαi/o-coupled receptor. These receptors are primarily located on glutamatergic nerve terminals and act
as presynaptic autoreceptors to produce feedback inhibition of glutamate release. Abundant mGlu2 receptors are distributed in major
glutamatergic pathways in the basal ganglia, especially the corticostriatal and thalamostriatal projections in the striatum. These receptors
are involved in the regulation of motivation, reward processing, learning, motor, and cognitive functions. As an inhibitory presynaptic
receptor, mGlu2 is linked to the addictive properties of drugs of abuse, a topic summarized in this review. Chronic exposure to multiple
addictive drugs and alcohol causes the adaptive downregulation of mGlu2 receptors in their expression and function in the key regions
of the limbic reward circuit. This downregulation contributes to the remodeling of limbic excitatory synaptic transmission and plasticity
critical for enduring drug-seeking behavior. Normalization of mGlu2 activity by pharmacological or genetic approaches attenuates drug
taking and seeking. Here, we highlight that recent progress in mGlu2 biology research demonstrates the pivotal roles of mGlu2 receptors
in different aspects of drug addiction. mGlu2 subtype-selective agents (both orthosteric and allosteric compounds) thus have the potential
to be developed into novel pharmacotherapies for addictive conditions.
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1. Introduction
Metabotropic glutamate (mGlu) receptors are G

protein-coupled receptors densely expressed in the mam-
malian brain. Eight mGlu subtypes (mGlu1-8) are subdi-
vided into three functional groups (I–III) based on sequence
homology, associated post-receptor signaling transduction
pathways, and pharmacological properties [1]. Group II
receptors are comprised of mGlu2 and mGlu3 subtypes.
Both are coupled to the Gαi/o heterotrimeric G proteins and
show similarities and differences in localization, expression
level, and physiology. Activation of the mGlu2 subtype in-
hibits adenylyl cyclase and thereby reduces cyclic adeno-
sine monophosphate (cAMP) production and protein kinase
A (PKA) activity [1]. Additionally, mGlu2 receptors modu-
late many other cytoplasmic and synaptic effectors, includ-
ing extracellular signal-regulated kinases (ERK), voltage-
gated Ca2+ channels (VGCC) and G-protein-coupled in-
wardly rectifying K+ (GIRK) channels, and induce a chem-
ical form of synaptic plasticity, i.e., mGlu2-dependent long-
term depression (LTD), at glutamatergic synapses [1,2].

The GRM2 gene encodes human mGlu2 receptor pro-
teins [mGlu2 receptor accession numbers: NP_000830 (hu-
man), NP_001099181 (rat), and NP_001153825 (mouse)]
[2–4]. The mGlu2 amino acid sequence shares approxi-
mately 70% homology with the mGlu3 receptor [5]. Un-

like GRM3 encoding mGlu3 receptors, no alternative splic-
ing of GRM2 has been observed at present. As with other
mGlu receptors, mGlu2 receptors function primarily in the
form of homodimers (mGlu2/2). Additionally, mGlu2 can
heterodimerize with mGlu4 to form functional mGlu2/4
heterodimers in brain cells in vivo [6,7] and with mGlu7
to form an mGlu2/mGlu7 heterodimer structure in which
mGlu7 predominantly controls dimeric association and G-
protein activation [8].

mGlu2 receptors are expressed in neurons but not in
glial cells. They are enriched at synaptic sites and are pre-
dominantly presynaptic, as opposed to group I receptors
(mGlu1/5) which are mostly postsynaptic. At the ultra-
structural level, mGlu2 receptors like mGlu3 reside in an
area outside of the active zone of axon terminals, differing
from group III receptors that are localized within the active
zone [9]. Such perisynaptic arrangement positions mGlu2
to mainly sense synaptic glutamate overflow and glutamate
from astrocytes. Notably, abundant mGlu2 receptors are
present on glutamatergic presynaptic nerve terminals in the
basal ganglia. These autoreceptors produce robust feedback
inhibition of glutamate release and play pivotal roles in var-
ious neuropsychiatric disorders, including drugs of abuse.

Substance addiction is a common neuropsychiatric
disorder with less clear brain mechanisms underlying its
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etiology. Accumulative evidence indicates pivotal roles
of dysregulated glutamatergic transmission in the patho-
physiology of drug-seeking behavior [10], particularly for
glutamatergic hyperactivity in the limbic reward circuit.
Remarkably, recent preclinical studies in animals found
that mGlu2 receptors are sensitive to drugs and may con-
tribute to drug-induced remodeling of glutamatergic trans-
mission. Namely, as summarized in this review, chronic
exposure to substances like psychostimulants (e.g., cocaine
and amphetamines), nicotine, and alcohol induces long-
lasting adaptive downregulation of presynaptic mGlu2 au-
toreceptors. This adaptive change affects mGlu2 expres-
sion and function in the nucleus accumbens (NAc) and other
key limbic reward regions. This reduces mGlu2-mediated
feedback inhibition of glutamate release, leading to en-
hanced synaptic glutamatergic transmission, which is criti-
cal for persistent drug-seeking behavior. As such, restora-
tion of mGlu2 activity could effectively attenuate the ad-
dictive properties of drugs. Novel mGlu2 selective agents
(either orthosteric or allosteric compounds) are therefore of
therapeutic value for treating addiction [11–13]. This re-
view aims to summarize the literature on the relationship
between mGlu2 receptors and drug addiction and to clarify
the role of mGlu2 receptors in shaping long-term adaptive
changes in limbic glutamatergic transmission related to per-
sistent drug-seeking behavior.

2. Distribution of mGlu2 Receptors in the
Basal Ganglia

The striatum is the largest structure in the basal gan-
glia and is divided into the ventral NAc and the dorsal cau-
date putamen (CPu) [14]. Medium spiny projection neurons
(MSN) comprise 95% of the total striatal neuronal popula-
tion. These γ-aminobutyric acid (GABA)ergic neurons are
segregated into twomajor phenotypes: D1-bearing striaton-
igral neurons projecting to the substantia nigra pars reticu-
lata (SNr) and internal globus pallidus (direct pathway) and
D2-bearing striatopallidal neurons projecting to the exter-
nal globus pallidus (indirect pathway). In addition to pro-
jection neurons, the striatum contains several types of in-
terneurons, including the large aspiny cholinergic interneu-
ron (CIN). The CPu and NAc receive dopaminergic inputs
from the substantia nigra pars compacta (SNc) and the ven-
tral tegmental area (VTA), respectively. Other crucial in-
puts are glutamatergic. In the CPu, these inputs converge
from the cortex and thalamus, while in the NAc, they come
from the prefrontal cortex (PFC), ventral hippocampus, ba-
solateral amygdala, and thalamus.

In situ hybridization studies were carried out to map
mGlu2 mRNA expression in the rat brain [15,16]. It was
found that mGlu2 mRNAs were specifically labeled in neu-
ronal cells. Neurons in the whole cortex, hippocampus,
amygdala, thalamus, and subthalamic nucleus expressed
moderate to high levels of mGlu2 mRNAs. Weakly labeled
neurons were sparsely scattered in the striatum. No and

very low levels of mGlu2 mRNAs were detected in the sub-
stantia nigra (SNr and SNc) and VTA, respectively. At the
protein level, several immunohistochemical studies used a
dual mGlu2/3 polyclonal antibody [17–21]. In immuno-
histochemical studies with an mGlu2 selective monoclonal
antibody [19,22–24], no glial cells were found to express
mGlu2 receptors, in contrast to mGlu3 receptors that are
expressed in both neurons and glial cells throughout the
brain [25]. However, a study found weak mGlu2 expres-
sion in astrocytes in the monkey dorsolateral PFC [26]. Of
note, neuropil immunostaining of mGlu2 was intense in the
CPu and NAc [23], corresponding to robust ligand bind-
ing of mGlu2 receptors in these regions [27,28]. The set
of mGlu2 receptors labeled in the striatum is assumed to
be mainly presynaptic receptors located on axon terminals
of glutamatergic corticostriatal and thalamostriatal projec-
tion fibers [23]. In support of this, decortication reduced
mGlu2/3 binding and immunoreactivity in the striatum, al-
though responses of the individual group II subtypes were
not examined [20,29]. BesidesmGlu2, mGlu3 receptors are
localized in anterogradely-labeled corticostriatal axon ter-
minals that form asymmetric (excitatory) synapses on stri-
atal neurons [24]. Both mGlu2 and mGlu3 immunoreactiv-
ity was never associated with GABAergic axon fibers in the
striatum [30], tyrosine hydroxylase-containing dopaminer-
gic axon terminals in the striatum, and dopamine neuronal
soma in the SNc [20,30]. Unlike abundant neuropil stain-
ing, mGlu2 immunoreactive neuronal cell bodies were only
distributed sparsely in the striatum [23]. Most of these neu-
rons were rather large and aspiny and were subsequently
confirmed to be CINs asmGlu2with little or nomGlu3mR-
NAs were expressed in these biochemically identified CINs
[31,32]. In addition to the striatum, weak neuropil label-
ing of mGlu2 immunoreactivity was seen in the SNc, SNr,
VTA, and globus pallidus [23]. At synaptic sites, mGlu2
receptors are predominantly presynaptic, while the receptor
could also be postsynaptic, e.g., in Golgi cells in the cere-
bellar cortex [22]. In the rat hippocampus, mGlu2 receptors
reside in an area outside of the active zone of axon terminals
as opposed to group III receptors that are located within the
active zone [9]. In the monkey dorsolateral PFC, mGlu2
receptors were either targeted to the active zone or local-
ized perisynaptically [26]. A perisynaptic location allows
the receptor to preferentially sense glutamate overflow and
glutamate from astrocytes [9,10,18].

3. mGlu2 Receptor Signaling and Physiology
As Gαi/o-coupled receptors, mGlu2 inhibits adeny-

lyl cyclase and as a result, reduces cAMP production and
PKA activity [1]. In addition to this canonical signal-
ing pathway, mGlu2 receptors are positively coupled to
the ERK1/2 pathway in heterologous cells [33–35] and
likely in cultured rat cortical neurons [36]. Active ERK1/2
could subsequently phosphorylate and thereby negatively
affect Munc18-1, a presynaptic protein essential for synap-
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Fig. 1. Possible molecular mechanisms underlying presynaptic metabotropic glutamate (mGlu) receptor 2-mediated feedback
inhibition of glutamate release. Presynaptic membrane depolarization causes voltage-gated Ca2+ channels (VGCC) to open, allowing
the influx of Ca2+ ions that triggers glutamate to release. On the other hand, activation of G-protein-coupled inwardly rectifying K+

(GIRK) channels results in the efflux of K+ ions, leading to presynaptic membrane hyperpolarization and reduction of glutamate release.
Presynaptic Gαi/o-coupled mGlu2 receptors could reduce glutamate release by inhibiting cyclic adenosine monophosphate (cAMP)-
dependent protein kinase A (PKA) activity, inhibiting VGCCs, and/or activating GIRK channels. Additionally, mGlu2 receptors could
negatively modulate glutamate release by activating the extracellular signal-regulated kinase 1/2 (ERK1/2). Active ERK1/2 in turn
phosphorylate and thereby negatively regulate Munc18-1, a presynaptic protein essential for synaptic vesicle release.

tic vesicle exocytosis [37]. mGlu2 receptors also inhibit
VGCCs and activate GIRK channels [38,39]. In heterol-
ogous cells and cultured mouse cortical neurons, mGlu2
receptors transactivate insulin-like growth factor 1 recep-
tors via a Gβγ subunits/phospholipase C/focal adhesion ki-
nase pathway, leading to ERK1/2 activation [40]. Each
of the above signaling connections, in addition to possi-
ble others [41], could contribute to the negative feedback

modulation of transmitter release (Fig. 1). Additionally,
mGlu2 interacts with the neurotrophin receptor TrkB and
triggers phosphorylation of TrkB at tyrosine 816 in the
mouse PFC [42]. As with other mGlu receptors, mGlu2
receptors function primarily as homodimers (mGlu2/2) in
vivo. Recent studies reveal an asymmetric dimerization
mechanism crucial for mGlu2 receptor activation [43–45].
Besides, mGlu2 heterodimerizes with (1) mGlu3 to form
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mGlu2/3 heterodimers that underwent conformational re-
arrangement upon activation [46,47], (2) mGlu4 to form
mGlu2/4 heterodimers in brain cells that represent the most
studied pair among heterodimer mGlu subtypes surveyed
[6,7,48–53], and (3) mGlu7 to form mGlu2/7 heterodimers
in which mGlu7 dominantly controls dimeric association
and G-protein activation [8]. Additionally, mGlu2 forms
heterodimers with 5-hydroxytryptamine 2A receptors [54–
56], which is critical for the functional crosstalk between
the two receptors [54].

As aforementioned, striatal activity is driven by glu-
tamatergic inputs to MSNs from the cortex, thalamus, and
other subcortical regions. Several electrophysiological and
neurochemical studies revealed that a dual mGlu2/3 agonist
(e.g., CHPG, DCG-IV, L-CCG-I, LY354740, or LY379268)
inhibited evoked Ca2+ influx in corticostriatal axon termi-
nals in the striatum, suppressed excitatory corticostriatal
transmission, and induced LTD at corticostriatal synapses
[30,57–60]. Since the mGlu2/3 agonist increased paired-
pulse ratios at corticostriatal synapses, the agonist is be-
lieved to act presynaptically to reduce glutamate release
probability [59,61]. Other studies used mGlu2 selective
agents and mGlu2 knockout mice to determine the subtype-
specific role of mGlu2 receptors in regulating corticostriatal
and thalamostriatal transmission. Johnson and co-workers
[62] found that mGlu2 receptors mediate depression of stri-
atal excitatory transmission broadly evoked by electrical
stimulation via a presynaptic mechanism, while mGlu3 re-
ceptors are less likely to play a role in this event. More im-
portantly, using optogenetic techniques that distinguish cor-
ticostriatal versus thalamostriatal pathways, Johnson et al.
[62] provide direct evidence that presynaptic mGlu2 recep-
tors similarly depress excitatory transmission at both corti-
costriatal and thalamostriatal synapses in the dorsal stria-
tum. Further evidence supporting the role of mGlu2 re-
ceptors includes (1) the ability of mGlu2 potentiators to
inhibit excitatory synaptic responses to stimulation of cor-
ticostriatal afferents [63] and (2) a loss of efficacy of an
mGlu2/3 agonist in suppressing evoked field potentials in
the striatum of mice lacking mGlu2 receptors [64]. In ad-
dition to the striatum, other basal ganglia sites show the
mGlu2-mediated negative regulation of excitatory synaptic
transmission. In the globus pallidus, mGlu2/3 receptors are
present on glutamatergic preterminal axons, and the mGlu2
positive allosteric modulator (PAM) LY487379 potentiated
the mGlu2/3 agonist-induced inhibition of local excitatory
synaptic transmission [65]. In the SNr, activation of mGlu2
rather than mGlu3 receptors induced LTD at glutamatergic
subthalamic nucleus-SNr synapses [66].

mGlu2 receptors also regulate basal and drug-evoked
dopamine release in the striatum, likely via an indirect
mechanism. mGlu2 mRNAs were not detected in the sub-
stantia nigra [15]. No mGlu2 receptors reside on dopamine
fibers in the striatum and dopamine neurons in the SNc
[20,30]. Thus, mGlu2 receptors may not modulate local

dopamine release by acting as a heteroreceptor on dopamin-
ergic axon terminals. Indeed, mGlu2/3 activation did not
affect striatal dopamine release induced by direct elec-
trical stimulation of dopamine neurons in the midbrain
[67]. In contrast, mGlu2/3 activation reduced basal and
drug (amphetamine or cocaine)-induced dopamine release
in the striatum [67–70]. Mechanisms underlying this nega-
tive regulation of dopamine release are not completely un-
derstood. An indirect mechanism may play a role [62].
Namely, it is known that both cortical and thalamic gluta-
matergic inputs drive CINs to release acetylcholine, which
in turn activates nicotinic receptors on dopamine termi-
nals to release dopamine in a way that bypasses activ-
ity in dopamine neurons [71–73]. Thus, mGlu2 receptors
on corticostriatal and/or thalamostriatal terminals could in-
hibit CINs via presynaptic actions [31] and thereby lower
dopamine levels. Alternatively, activation of mGlu2 het-
eroreceptors on CIN axon terminals could inhibit acetyl-
choline release, thereby reducing the cholinergic stimula-
tion of dopamine release. A subtype-specific role of mGlu2
receptors in the regulation of the acetylcholine-dopamine
interplay is supported by findings that (1) mGlu2 but not
mGlu3 receptors are primarily expressed in CINs [23,31,
32], (2) an mGlu2 agonist reduced electrically-induced
acetylcholine release from striatal slices [32], similar to a
group II agonist that inhibited potassium chloride-induced
acetylcholine release from striatal synaptosomes [74], and
(3) LY395756, an mGlu2 agonist and mGlu3 antagonist, in-
hibited striatal dopamine release evoked by optogenetic ac-
tivation of the thalamostriatal pathway [67]. In addition,
an increase in dopamine release in the NAc induced by
an mGlu2/3 antagonist [68,75] supports the existence of a
basal glutamatergic tone on group II receptors for inhibiting
tonic dopamine release.

4. Psychostimulants
Extensive pharmacological studies have implicated

group II mGlu receptors in the addictive properties of psy-
chostimulants, such as cocaine, amphetamine, andmetham-
phetamine [11,76–83], and in the cue-triggered reward-
seeking behavior [84,85]. Since increasing evidence in-
dicates that mGlu2 and mGlu3 receptors are different in
their distributions and physiology in the basal ganglia, at-
tention has shifted to focus on the specific role of either
subtype. As a prominent presynaptic receptor in the lim-
bic reward circuit, mGlu2 receptors inhibit phasic gluta-
mate and dopamine release in the striatum (see above).
As such, mGlu2 receptors are reasoned to suppress neu-
rochemical and behavioral responses to stimulants. In
fact, acute cocaine or amphetamine is well characterized
to elevate dopamine and glutamate release in the stria-
tum, resulting in hyperlocomotor behavior [86,87]. mGlu2
PAMs (LY487379, TASP0433864, and others), similar to
mGlu2/3 orthosteric agonists, reduced locomotor activi-
ties induced by acute stimulants (amphetamine or metham-
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phetamine) in rats and mice [88–90], and LY487379 atten-
uated the acute cocaine-induced activation of the ERK1/2
pathway in the mouse striatum [91]. LY541850, an
mGlu2 agonist and mGlu3 antagonist, also reduced hyper-
locomotion in acute amphetamine-treated mice [92]. In
mGlu2(−/−) mice, acute cocaine administration induced a
more rapid and greater increase in glutamate and dopamine
release in the NAc, respectively [93]. These results together
implicate the mGlu2 subtype in the negative regulation of
stimulant actions. Moreover, mGlu2 rather than mGlu3 re-
ceptors are central for processing stimulant effects, given
that (1) an mGlu2/3 agonist reversed acute amphetamine-
stimulated hyperlocomotion in wild-type and mGlu3(−/−)

but not mGlu2(−/−) mice [94,95] and (2) the antipsychotic-
like effect of an mGlu2/3 agonist on amphetamine-evoked
motor responses was absent in mGlu2-lacking Han Wistar
rats but not in control Wistar rats [96].

mGlu2 knockout mice exhibited an increase in lo-
comotor sensitization and conditioned place preference in
response to repeated cocaine administration, implying the
mGlu2-dependent inhibition of the addictive and reinforc-
ing effects of cocaine [93], although a nonsense mutation
at the mGlu2 gene decreased mGlu2 receptor expression
and reduced sensitivity to cocaine reward in rats [97]. In
an operant self-administration model closely mimicking the
addiction condition in humans [98], novel mGlu2 PAMs
were used to examine the role of mGlu2 receptors in dif-
ferent aspects of stimulant dependence. Acute systemic
administration of mGlu2 PAMs inhibited the reinforcing
property of cocaine by reducing cocaine (reinforcer) self-
administration in rats [99,100]. The mGlu2 PAMs (BINA
and AZD8529) also reduced cue-primed reinstatement of
cocaine and methamphetamine self-administration (i.e., re-
lapse) [99,101]. Since these two PAMs did not affect
food-seeking behavior, in contrast to the mGlu2/3 agonist
LY379268 that reduced motivation for a natural reinforcer,
their action to prevent relapse was less likely due to motor
deficits or off-target side effects. In an optogenetic study,
mice were able to acquire operant self-stimulation of tha-
lamostriatal terminals, indicating a reinforcing nature of
stimulation of the thalamostriatal pathway [102]. Notably,
this reinforcing property of thalamostriatal activity was re-
duced by an mGlu2 PAM. Besides, mGlu3(−/−) mice ex-
hibited normal cocaine self-administration, extinction, and
reinstatement [103]. The results together support that stim-
ulation of mGlu2 receptors is necessary and sufficient to at-
tenuate the reinforcement and reinstatement of stimulants.

It is worth mentioning that mGlu2 PAMs bind to an al-
losteric site of mGlu2 receptors that is topographically dif-
ferent from the orthosteric site bound by the endogenous
ligand and that PAMs exert their modulatory effects on the
receptor only in the presence of glutamate [11,12]. Since al-
losteric sites are less evolutionarily conserved than orthos-
teric sites, allosteric modulators may have the potential to
gain greater selectivity for individual mGlu subtypes than

orthosteric ligands. Moreover, by preserving the temporal
aspects of native receptor signaling, mGlu2 PAMs produce
less tolerance than exogenous orthosteric agonists. This
is of advantage, considering that tolerance following re-
peated administration of dual mGlu2/3 orthosteric agonists
reduces the efficacy of these agonists as addiction medica-
tions [11,12].

Expression and function of mGlu2 receptors in the
basal ganglia may undergo adaptive changes in response
to stimulant exposure, which contributes to the remodel-
ing of excitatory transmission critical for enduring drug-
seeking behavior [104]. A variety of anatomical and func-
tional approaches targeting both mGlu2/3 receptors have
been utilized to assess the effects of drugs on expres-
sion and/or activity of mGlu2/3 receptors and have yielded
somewhat varying results [81,105–109]. Multiple stud-
ies reported downregulation of the expression and func-
tion of mGlu2/3 receptors in the PFC and striatum after re-
peated investigator-administration of cocaine in a sensiti-
zation model or self-administration of cocaine [105–108].
Similarly, methamphetamine self-administration decreased
total and surface mGlu2/3 protein levels in the rat dor-
sal striatum and NAc [110]. Notably, this decrease was
reversed by extinction training of methamphetamine self-
administration. Using antibodies selective for either the
mGlu2 or mGlu3 subtype, a recent study revealed that co-
caine self-administration reduced total and surface expres-
sion of mGlu2 but not mGlu3 receptors in the NAc core of
both male and female rats [111]. This reduction may con-
stitute a key element in a series of glutamatergic adapta-
tions to stimulants. In detail, a well-characterized neuroad-
aptation model [10] includes an increase in evoked synap-
tic glutamate release in the NAc during cocaine- and cue-
primed reinstatement of cocaine seeking [112–114] coupled
with a decrease in basal extrasynaptic glutamate levels af-
ter cocaine self-administration [112,115]. The reduction of
mGlu2-mediated feedback inhibition of synaptic glutamate
release could then serve as a molecular mechanism con-
tributing to an increase in evoked synaptic glutamate re-
lease, leading to the reinstatement of cocaine-seeking be-
havior. As such, restoring mGlu2 expression could reduce
this reinstatement. Indeed, ceftriaxone, a β-lactam antibi-
otic, restored mGlu2 expression in the NAc core [111],
which likely acted to reduce an increase in synaptic gluta-
mate release [114,116] and prevent reinstatement of cocaine
seeking [111]. Similarly, stimulation of remaining mGlu2
receptors with mGlu2 PAMs was sufficient to attain relapse
prevention (see above), despite a reduced level of mGlu2
expression after cocaine self-administration.

Recent studies further analyzed the relationship be-
tween group II mGlu receptors and methamphetamine. Re-
peated methamphetamine administration elevated mGlu2/3
expression in the mouse PFC, and activation of presynaptic
mGlu2/3 receptors did not inhibit but rather augmented the
depolarization-induced D-aspartate release in PFC synap-
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tosomes prepared from methamphetamine-treated mice
[117]. These changes in the expression and function of
PFC mGlu2/3 receptors may contribute to the remodel-
ing of local excitatory synaptic transmission and thus to
the methamphetamine-induced memory deficit. Similarly,
methamphetamine-stimulated locomotion and dopamine
release in striatal slices were reduced in mGlu2(−/−), but
not in mGlu3(−/−), mice [118]. Future studies need to de-
fine the accurate roles of mGlu2 versus mGlu3 receptors in
processing methamphetamine action under different exper-
imental conditions (types of drugs, species, models, dosing,
timing, brain regions, etc.).

5. Alcohol
Alcohol abuse is a leading health problem worldwide

with limited effectiveness of pharmacotherapies. Available
evidence supports a link between limbic mGlu2 receptors
and alcoholism [119–121]. The mGlu2 PAM AZD8529
modestly reduced alcohol self-administration at doses that
did not affect operant responses to a non-drug reinforcer,
saccharin, in rats [122]. AZD8529 also blocked cue-
induced reinstatement of alcohol seeking [122], although
the mGlu2 PAM BINA had no effect [123]. Addition-
ally, the mGlu2 PAM LY487379 reduced alcohol relapse
in both male and female rats [124]. Thus, activation of
mGlu2 likely attenuates the reinforcing value of alcohol and
relapse-like behavior.

It was reported that ‘optimistic’ rats showed lower al-
cohol consumption than ‘pessimistic’ rats [125]. A possi-
ble mechanism for this may involve an elevated level of
mGlu2 receptor expression in the amygdala of ‘optimistic’
rats. On the other hand, loss of mGlu2may enhance the vul-
nerability to alcoholism. Alcohol-preferring (P) rats are an
animal model that mimics many important aspects of hu-
man alcoholism, such as tolerance, physical dependence,
alcohol-seeking behavior, and tendency to relapse follow-
ing a period of abstinence [126,127]. In these P rats, a
naturally occurring stop codon mutation at cysteine 407 in
Grm2 (cys407*) was recently identified, which leads to the
loss of functional mGlu2 protein expression [64,128]. This
Grm2 mutation was linked to increased alcohol consump-
tion and preference. Such linkage in P rats was substan-
tiated by elevated alcohol consumption and preference in
Grm2(−/−) mice. Moreover, an mGlu2 PAM lost its abil-
ity to block alcohol relapse in P rats [122]. An mGlu2/3
antagonist escalated alcohol self-administration in Wistar
rats and alcohol-non-preferring rats that express functional
mGlu2 receptors [64]. Of note, the cys407* mutation is
common in some commercially available rats [128]. There-
fore, caution needs to be exercised when selecting strains
and sources of rats for neurochemical and behavior studies
involving mGlu2 receptors.

Cre-dependent and neuron-specific knockdown of
mGlu2 receptors in the infralimbic cortex was sufficient
to generate a phenotype of excessive alcohol seeking in

nondependent rats [129]. However, short-hairpin RNA-
mediated knockdown of mGlu2 receptors in the rat prelim-
bic cortex by a magnitude of ~40% did not alter voluntary
alcohol drinking [130]. Future studies will need to examine
the effect of mGlu2 knockdown on alcohol-seeking behav-
ior at a range of different percentages or in additional limbic
reward sites.

Chronic alcohol exposure produces maladaptive
changes in mGlu2 activity. Human anterior cingulate cor-
tex from patients with chronic alcohol exposure showed a
reduced level of mGlu2 transcripts [131]. Chronic alco-
hol exposure reduced mGlu2 but not mGlu3mRNA expres-
sion in the rat PFC [131]. The mGlu2 reduction occurred
specifically in infralimbic-accumbal glutamatergic projec-
tion neurons. Similarly, ethanol-dependent mice showed
a lowered level of mGlu2 proteins in the NAc core [132].
Functionally, the mGlu2 autoreceptor activity in inhibiting
glutamate release was downregulated at the corticoaccum-
bal synapses in the NAc [100]. A similar downregulation
was seen in the prelimbic cortex, although not theNAc core,
of rats that developed alcohol use disorder [133]. In an-
other study, mGlu2-LTD at corticostriatal/thalamostriatal
synapses in the dorsolateral striatum was impaired after
chronic ethanol exposure in adolescent mice [134]. An
mGlu2 PAM fully rescued mGlu2-LTD in ethanol-treated
mice. Acute ethanol exposure to striatal slices failed to dis-
rupt mGlu2-LTD. Since mGlu2 mRNA expression in sev-
eral cortical regions and the thalamus and mGlu2 protein
expression in the dorsal striatum were not significantly al-
tered by ethanol, the downregulation of mGlu2 function in
inducing LTDmay bemediated by other mechanisms [134].
Together, these data imply a downregulation of mGlu2 au-
toreceptor function in the human and rodent striatum or in
other limbic regions as a critical neuroadaptation compo-
nent and a key mediator of alcohol dependence. Normal-
ization of mGlu2 function could then prevent alcohol re-
instatement. Indeed, restoration of mGlu2 expression in
the infralimbic neurons projecting to the NAc via viral-
mediated gene transfer attenuated excessive cue-induced al-
cohol seeking [131]. Finally, intermittent access to ethanol
induced a cell type-specific increase in synaptic strength
and mGlu2/3 receptor plasticity on mouse PFC intratelen-
cephalic pyramidal cells, providing an additional rationale
for developing mGlu2 and/or mGlu3 selective agents for
treating alcohol use disorders [135].

6. Nicotine and Opioids
Nicotine is another addictive substance associated

withmGlu2 participation. Given the critical involvement of
hyperactive glutamatergic transmission in nicotine depen-
dence [136], compounds that reduce glutamatergic trans-
mission have therapeutic potential. In fact, systemic admin-
istration of the mGlu2/3 receptor agonist LY379268 and in-
jection of this agonist into the VTA or NAc decreased nico-
tine, but not food, self-administration in rats [137]. Similar
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to the mGlu2/3 agonist, mGlu2 selective PAMs decreased
nicotine self-administration in rats [138,139] and squirrel
monkeys [140]. Both LY379268 and the mGlu2 PAM
AZD8529 reduced a nicotine-induced increase in dopamine
release in the rat NAc [140,141], and LY379268 notably ex-
erted this effect only in the presence of a nicotine-associated
context [141]. Thus, mGlu2 receptors negatively regulate
the reinforcing property of nicotine consumption, and inhi-
bition of NAc dopamine release contributes in part to this
event. Additionally, mGlu2 PAMs blocked cue-primed re-
instatement of nicotine seeking in rats [139] and squirrel
monkeys [140]. These findings link mGlu2 activity to nico-
tine relapse and support the therapeutic value of mGlu2
PAMs for relapse prevention [13,142]. Of note, adolescent
nicotine exposure reduced mGlu2 protein levels and func-
tion on presynaptic glutamatergic terminals in the rat PFC
[143]. Restoring mGlu2 receptor activity in the local PFC
rescued cognitive impairments.

As with drugs discussed above, the dual mGlu2/3 ag-
onists inhibited rewarding and reinstatement of morphine
or heroin seeking [144–148]. In addition, the mGlu2 PAM
ADX106772 reduced seeking behavior in male Wistar rats
treated with oxycodone (the most abused prescription opi-
oid) [149]. A study with transgenic mGlu2 knockout
rats found that deletion of mGlu2 receptors profoundly al-
tered multiple addictive properties of opioids, including in-
creased NAc dopamine release in response to acute heroin,
enhanced behavioral sensitization to repeated heroin, es-
calated heroin self-administration, and more potent anal-
gesic effect with morphine administration [150]. These re-
sults suggest that a lack of mGlu2 receptors is a risk factor
for opioid abuse and that a low level of mGlu2 expression
may present a useful biomarker for assessing vulnerabil-
ity to opioid addiction. In addition, mGlu2/3 protein ex-
pression and mGlu2/3-LTD at corticoaccumbal synapses in
the NAc were downregulated after repeated morphine ad-
ministration [151,152]. Future studies will assess changes
and roles of individual mGlu2 or mGlu3 subtypes in opioid
abuse.

7. Conclusions
Gαi/o-coupled mGlu2 receptors reside on glutamater-

gic nerve terminals and serve as presynaptic autoreceptors
to produce feedback inhibition of glutamate release. A high
level of presynaptic mGlu2 receptors is distributed in the
basal ganglia, especially in the CPu and NAc. By modu-
lating glutamatergic transmission and synaptic plasticity in
the striatum, mGlu2 receptors participate in controlling mo-
tivational, reward, motor, and cognitive functions. Chronic
exposure to addictive drugs such as psychostimulants (co-
caine and amphetamines), nicotine, and alcohol reduces the
expression and function ofmGlu2 autoreceptors in the stria-
tum. This impairs the mGlu2-mediated feedback inhibi-
tion of glutamate release, reshaping synaptic glutamater-
gic transmission and plasticity critical for enduring drug-

seeking behavior. As a result, restoring mGlu2 activity at-
tenuates drug taking and seeking. Increasing preclinical ev-
idence supports the potential of mGlu2 subtype-selective
agents (orthosteric agonists and PAMs) as pharmacothera-
pies for treating addiction.

While a great deal of progress has beenmade in the un-
derstanding of mGlu2 receptor biology and its roles in drug
addiction, detailed molecular mechanisms are incompletely
understood. Future studies are warranted to elucidate the
underlying mechanisms for the regulation of mGlu2 re-
ceptors and their contributions to drug seeking. Anatom-
ically, precise localizations of mGlu2 receptors on gluta-
matergic nerve terminals that project to the striatum from
different source regions (cortex, thalamus, and others) and
make excitatory asymmetric synapses with distinct subsets
of projection (striatonigral versus striatopallidal) neurons
or interneurons need to be mapped at the ultrastructural
level. Physiologically, molecular mechanisms underlying
the basal and activity-dependent regulation of mGlu2 re-
ceptors are unclear. Future studies will investigate the role
of posttranslational modifications, such as phosphorylation,
palmitoylation, ubiquitination, etc., in the dynamic regula-
tion of the receptor. Finally, the mGlu2 receptor in its adap-
tations to drug exposure and its roles in mediating drug ef-
fects needs to be compared with other mGlu subtypes, es-
pecially the mGlu3 subtype. It is likely that multiple mGlu
subtypes, as well as ionotropic glutamate receptors, work
in concert to reshape limbic glutamatergic transmission to
a state of pro-addiction.
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