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Abstract

Background: Obesity is a chronic condition linked to health issues such as diabetes, heart disease, and increased cancer risk. High body
mass index (BMI) is associated with cancers such as breast and colorectal cancer due to hormone imbalances and inflammation from
excess fat, whereas a low BMI can raise cancer risk by weakening the immune system. Maintaining a normal BMI improves cancer
treatment outcomes, but in some cases, higher BMI might offer protective effects—a phenomenon known as the “obesity paradox”. This
study explores how BMI affects gene expression in cancer, using data from The Cancer Genome Atlas (TCGA), aiming to uncover links
between BMI and cancer progression while identifying potential treatment targets. Methods: To analyze the data, a two-stage method
using overlapping group screening (OGS) was applied. First, gene groups were identified with the “grpregOverlap” R package. Then,
their interactions were tested using the sequence kernel association test. Significant gene-gene interactions were selected based on statis-
tical measures. In the second stage, predictive models were built using regularized regression techniques such as ridge regression, lasso,
and adaptive lasso, with generalized ridge regression used to improve accuracy and stability in handling high-dimensional data. Results:
The proposed OGS-based method was tested on simulated and real-world datasets. Results showed that combining OGSwith generalized
ridge regression and adaptive lasso (OGS_G.ridge_ALasso) gave the best prediction performance, with lower error rates and greater sta-
bility compared to other models like support vector regression, k-nearest neighbors, and random forests. In practical applications, gene
expression and BMI data from TCGA patients (including bladder, cervical, esophageal and liver cancers) were integrated to identify key
genes and interactions related to BMI. Conclusions: Through evaluations on both simulated synthetic datasets and real-world datasets,
we demonstrated the effectiveness of the proposed method in terms of predictive accuracy. Additionally, we identified BMI-associated
genes and gene-gene interaction biomarkers across different cancer types and presented the corresponding network structures. Based on
the key genes and gene interactions identified, we further explored how BMI influences cancer development and prognosis, providing
deeper insights into the biological mechanisms underlying these associations.

Keywords: body mass index; gene-gene interaction; overlapping group screening; precision medicine; regularized linear regression;
TCGA

1. Introduction
According to the World Health Organization (WHO)

in its report Obesity and Overweight, obesity is a chronic
and multifaceted condition characterized by excessive fat
accumulation that can negatively affect health. It increases
the risk of developing conditions such as type 2 diabetes,
heart disease and certain cancers. Obesity also impacts
bone health, reproductive function, and can reduce quality
of life by affecting sleep and physical activity levels [1].
The link between Body Mass Index (BMI) and cancer risk
is a critical concern in the field of health. BMI, a metric
calculated from a person’s height and weight, is commonly
used to assess whether an individual is underweight, over-
weight, or at a healthy weight. The formula for calculating
BMI is: BMI = weight (kg) / height (m)2. Both high and
low BMI are associated with an increased risk of develop-
ing cancer.

A high BMI (overweight or obesity) increases the risk
of several cancers including breast, colorectal, endometrial,

esophageal and kidney cancers [2–4]. Excess fat alters hor-
mone levels, such as androgens, estrogens and progesterone
that can promote cancer growth [5]. It is also linked to in-
sulin resistance and elevated insulin levels, further increas-
ing cancer risk. Obesity triggers chronic inflammation and
immune response changes that support cancer cell growth
[6]. Conversely, low BMI (underweight) can increase can-
cer risk due to malnutrition and weakened immunity, mak-
ing the body more susceptible to cancer while also being
associated with digestive system cancers such as oral and
gastric cancers [7]. Maintaining a healthy BMI (18.5–24.9)
through a balanced diet andmoderate exercise can therefore
help reduce cancer risk.

BMI significantly affects the prognosis of cancer pa-
tients. Huang et al. [8] showed that a high BMI (obe-
sity) is linked to poorer outcomes, with obese patients fac-
ing higher risks of complications, treatment failure and
cancer recurrence, especially in breast and colorectal can-
cers. Obese patients also have higher mortality risks in can-
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cers like uterine, colorectal, ovarian and liver cancers [7].
In contrast, underweight patients may experience malnu-
trition, weakened immunity, poor treatment tolerance and
longer recovery, leading to shorter survival [9]. Maintain-
ing a normal BMI (18.5–24.9) improves prognosis, with
better treatment outcomes, lower recurrence and longer sur-
vival, as it supports immune function, reduces metabolic is-
sues, and enhances treatment effectiveness.

Obese breast cancer patients, especially post-
menopausal women, have a higher risk of recurrence
after surgery [10]. Overweight and obese prostate cancer
patients are at greater risk of postoperative recurrence and
have lower survival rates [11] while further reducing treat-
ment effectiveness and inducing more severe side effects
[12]. Significant weight changes, whether loss or gain,
can affect prognosis, particularly during chemotherapy,
and markedly, excessive weight loss (cancer cachexia) is
linked to poorer survival outcomes [13]. In conclusion,
both high and low BMI are associated with worse cancer
prognosis, while maintaining a normal BMI improves
treatment outcomes and survival.

While obesity is traditionally seen as a carcinogen,
it may have a protective effect in certain stages and types
of cancer by enhancing antitumor immunotherapy. This
challenges the view that obesity increases cancer mortality
risk, known as the “Obesity Paradox”. The paradox sug-
gests that overweight and Class 1 obese (BMI = 25–34.9)
cancer patients may have a better prognosis than lean in-
dividuals, though this is not true for all patients or cancer
types [14]. Studies like Tu et al. [15] found that although
overweight or obesity increases the risk of developing can-
cer, among patients already diagnosed with cancer, having
a slightly higher body weight around the time of diagnosis
is associated with lower risk of death and longer survival,
and this finding applies to most cancer types. Petrelli et al.
[16] found that obese patients with cancers like renal cell
carcinoma, lung cancer and melanoma may better tolerate
chemotherapy and experience lower mortality rates.

Alifano et al. [17] studied the impact of preoperative
BMI on survival in non-small cell lung cancer (NSCLC)
patients undergoing lung resection, and determined that un-
derweight patients had lower survival rates, while over-
weight and obese patients had better outcomes. For obese
patients, a higher BMI was associated with improved sur-
vival, even after adjusting for various factors. In breast can-
cer, Modi et al. [18] found that a higher BMI worsened sur-
vival in early breast cancer (EBC) but improved survival in
advanced breast cancer (ABC). In colorectal cancer, some
studies linked obesity to a higher risk of death, while others
showed that obese patients had longer survival and better
treatment tolerance [19]. In summary, while obesity is gen-
erally associated with increased health risks, in certain can-
cer patients, a higher BMI may be linked to lower mortality,
potentially due to factors like treatment tolerance, biologi-
cal mechanisms, hormone levels and cancer subtypes.

This study used The Cancer Genome Atlas (TCGA)
data to explore the relationship between BMI and gene
expression. BMI, as an indicator of body fat, can influ-
ence various aspects of a cancer patient’s physiological con-
dition, nutritional status and immune system. Abnormal
BMI (either high or low) is often associated with biological
changes that may affect gene expression, metabolic path-
ways, immune responses and more. By analyzing TCGA
data, we can investigate the correlation between BMI and
specific genes or gene clusters related to metabolism, in-
flammation, hormone regulation or cell proliferation, pro-
viding insights into how BMI impacts cancer development
and prognosis. Additionally, genes interact to regulate pro-
cesses like cell growth, death and migration, and studying
such interactions between BMI-related genes can offer a
more comprehensive understanding of how BMI influences
cancer biology. For example, certain genes may collab-
orate in high BMI patients to drive cancer progression or
influence treatment response. This research could uncover
molecular mechanisms linking BMI to cancer and identify
new targets or biomarkers to better understand how BMI
affects cancer onset and prognosis.

The BMI Characteristics of TCGA Cancer Samples

We analyzed data from 1825 patients across seven
TCGA cancer types to explore BMI-associated molecu-
lar characteristics with details shown in Table 1. Due to
the small number of underweight cases (BMI <18.5), pa-
tients were grouped based on Hu et al. [20] into normal
weight (BMI<25), overweight (25≤BMI< 30) and obese
(BMI ≥30). The study focused on BMI characteristics
analysis for bladder urothelial carcinoma (BLCA), cervi-
cal squamous cell carcinoma and endocervical adenocar-
cinoma (CESC), colon adenocarcinoma (COAD), colorec-
tal adenocarcinoma (COADREAD), esophageal carcinoma
(ESCA), kidney renal papillary cell carcinoma (KIRP) and
liver hepatocellular carcinoma (LIHC).

As shown in Fig. 1, over 60% of patients in most can-
cer types had a BMI>25, except for ESCA and LIHC. The
low obesity rate in ESCA could result from symptoms like
difficulty or pain when swallowing, vomiting after meals,
and weight loss; similarly, LIHC patients often suffer from
appetite loss and rapid weight loss, leading to more normal-
weight individuals and fewer with obesity.

Fig. 2 (top) shows the distribution of overweight and
obese patients across cancer types, totaling 1093 individu-
als. BLCA had the highest number (209 patients, 19.1%),
while ESCA had the lowest (78 patients, 7.1%), consistent
with the previously noted lower BMI trend in ESCA. Pa-
tients were also grouped by sex: 750 females and 1075
males. As shown in Fig. 2 (middle), BLCA was the most
common cancer type among overweight and obese males.
Based on these findings, we further examined BMI-related
gene expressions in BLCA and CESC. In Fig. 2 (bottom),
CESC had the highest proportion among overweight and
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Fig. 1. Proportion of four BMI groups across different cancer types. BMI, Body Mass Index.

Table 1. BMI information of all cancer patients.
Cancer Type Number of Patients Underweight (BMI <18.5) Normal (BMI 18.5–25) Overweight (BMI 25–30) Obese (BMI ≥30)

BLCA 356 9 138 124 85
CESC 258 12 88 72 86
COAD 211 1 70 74 66
COADREAD 279 5 84 109 81
ESCA 175 8 89 49 29
KIRP 212 5 46 86 75
LIHC 334 21 156 89 68
BMI, BodyMass Index; BLCA, bladder urothelial carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma;
COAD, colon adenocarcinoma; COADREAD, colorectal adenocarcinoma; ESCA, esophageal carcinoma; KIRP, kidney renal papillary cell
carcinoma; LIHC, liver hepatocellular carcinoma.

obese females. This supports findings by Clarke et al. [21],
which suggest that overweight and obese women face a
higher risk of CESC, potentially due to under-diagnosis of
precancerous lesions.

Fig. 3 shows the BMI distribution for male and female
patients across various cancer types. The boxplot highlights
the median BMI, interquartile range (IQR) and outliers.
Generally, the median BMI is similar for both genders, ex-
cept in BLCA and KIRP, where males have slightly higher
BMIs. In COAD, COADREAD and ESCA, females have
a slightly higher median BMI. Additionally, CESC shows
greater BMI variability, suggesting more significant differ-
ences among patients.

Fig. 4 displays the two-year and five-year survival
rates for patients across different cancer types. Except for
ESCA and LIHC, which have lower obesity rates, other
cancer types with higher obesity proportions have a two-
year survival rate above 35%, some exceeding 55% (e.g.,
KIRP), while five-year survival rate differences are less
pronounced. Fig. 5 showsKaplan-Meier survival curves for
each BMI category (normal, overweight, obese), with a log-
rank test p-value of 0.001, indicating a significant survival
difference between the groups where overweight and obese
groups have higher survival rates than the normal group.

We conducted a Cox regression analysis using the
three BMI categories (normal, overweight and obese) as a
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Fig. 2. Percentage of overweight and obese patients by cancer type and gender.
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Fig. 3. BMI distribution by gender and cancer type.

Table 2. Cox model results adjusted for age and gender with BMI categories.
Cancer Type Number of Patients Censoring rate Coef (p-value) of BMI_overweight Coef (p-value) of BMI_obesity

All DATA 1825 0.7200 –0.2307 (0.0223) –0.4190 (0.0003)
BLCA 356 0.5787 0.2539 (0.1760) –0.0461 (0.8341)
CESC 258 0.7984 –0.5499 (0.1429) –0.3802 (0.2326)
COAD 211 0.8009 –0.0657 (0.8402) –1.3015 (0.0182)
COADREAD 279 0.8029 –0.0869 (0.7681) –0.7899 (0.0567)
ESCA 175 0.6000 –0.0514 (0.8601) 0.2367 (0.4470)
KIRP 212 0.8585 0.0251 (0.9580) –0.2200 (0.6640)
LIHC 334 0.6647 –0.3190 (0.1730) –0.2047 (0.4090)

categorical variable, adjusting for age and gender. Table 2
shows the coefficient estimates, p-values and hazard ratios
for BMI (overweight) and BMI (obesity) across seven can-
cer types with results indicating that, except for BLCA and
ESCA, the coefficient estimates for BMI (overweight) and
BMI (obesity) were mostly negative, suggesting a lower
risk of death with higher BMI. Specifically, negative and
statistically significant coefficients for BMI (obesity) were
seen in COAD, COADREAD and the combined data, while
the coefficient for BMI (overweight) was also negative and
significant for the combined data.

In summary, this study analyzed 1825 patients from
seven TCGA cancer types to investigate the relationship be-
tween BMI, cancer characteristics and prognosis. Most pa-
tients were overweight or obese except for those with ESCA
and LIHC, likely due to weight loss related to disease symp-
toms. Among high-BMI patients, bladder cancer (BLCA)
was most common in males, and cervical cancer (CESC)
in females. Higher BMI was generally associated with bet-
ter two-year survival rates. Kaplan-Meier and Cox regres-
sion analyses indicated that, except for BLCA and ESCA,
higher BMI was linked to a lower risk of death in most can-
cer types.

Although the Kaplan–Meier curves indicate that over-
weight and obese patients had significantly better survival

rates (p = 0.001), the Cox regression results varied across
cancer types. The non-significant findings in BLCA and
ESCA might be due to limited sample sizes (particularly
in ESCA), tumor heterogeneity, or the lack of clinical in-
formation such as treatment details and comorbidities in
the TCGA dataset. It is also important to note that the
Kaplan–Meier analysis reflects unadjusted survival differ-
ences, while the Coxmodel adjusts for variables such as age
and gender, so such adjustment might dilute the effect of
BMI, especially in cancer types where these covariates have
a strong impact on prognosis. Caution should therefore be
exercised when interpreting the relationship between BMI
and survival.

2. Materials and Methods
2.1 Data Structure and the Multiple Pathways

We conducted a study with n subjects, each with
genetic data represented by a vector of p genes xi =

(xi1, . . . , xip)
′ , the interactions between genes are repre-

sented bywi = (xi1xi2, . . . , xi1xip, xi2xi3, . . . , xip−1xip)
′ ,

based on a specific genotyping encoding. The number of
genes might exceed the sample size, and high-dimensional
statistics literature, such as Jacob et al. [22] provides theo-
retical guidance on the relationship between p and n. Genes
are grouped intoG potentially overlapping pathways, where
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Fig. 4. Two-year and five-year survival rates by cancer type.

a gene could belong to multiple pathways, reflecting their
hierarchical structure—common in gene expression data.
The study aimed to identify genes and interactions associ-
ated with BMI phenotype using this natural structure. Path-
way data are available from the human molecular signa-
ture database (MSigDB): http://www.broadinstitute.org/g
sea/msigdb.

TCGA transcriptomic data were obtained using the
R package “UCSCXenaTools” [23], while genomic data
for TCGA BLCA, LIHC, ESCA and CESC used in this
study were available from the TCGA Hub on the UCSC
Xena platform (https://tcga.xenahubs.net). For example,
the TCGA BLCA dataset comprised 365 patients with
recorded height and weight measurements, along with gene

expression profiles covering 20,501 genes per individual.
BMI was derived from the height and weight data.

2.2 Regression Model Performance Metrics

To compare the performance of regression models, the
study used several performance metrics from the R pack-
age “Metrics” such as Min-Max Accuracy, mean absolute
percentage error (MAPE), symmetric mean absolute per-
centage error (SMAPE), root mean squared error (RMSE),
mean absolute scaled error (MASE), mean absolute error
(MAE) andmedian absolute error (MDAE). The definitions
are as follows:

Min−Max Accuracy = 1−
∑

|yi − ŷi|
max(y)−min (y)

;
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Fig. 5. Kaplan-Meier survival curves by BMI group.

MAPE =
1

n

∑n

i=1
|yi − ŷi

yi
| × 100%;

SMAPE =
1

n

∑n

i=1

|yi − ŷi|
(|yi|+ |ŷi| ) /2

× 100%;

RMSE =

√
1

n

∑n

i=1
(yi − ŷi)

2
;

MASE =
1
n

∑n
i=1 |yi − ŷi|

1
m

∑m
j=1 |yj − yj−1|

;

MAE =
1

n

∑n

i=1
|yi − ŷi|;

MDAE = median(|y1 − ŷ1|, |y2 − ŷ2|, · · · , |yn − ŷn|).

Among these metrics, only Min-Max Accuracy favors
values close to 1, indicating better model performance; for
all others, so smaller values imply fewer errors and better
predictions. Each metric suits different contexts: RMSE

emphasizes larger errors and is suitable when extreme er-
rors matter, while MAE provides a general average error
size. MDAE, based on the median, is more robust to out-
liers and useful when extreme values exist. MASE is com-
mon in time series analysis, allowing comparison across
different scales. MAPE and SMAPE express errors as per-
centages; however, MAPE can become unstable when ac-
tual values near zero, while SMAPE mitigates this through
symmetric treatment. Studies [24] highlight MAPE’s bias
toward low predictions, making it less reliable in some
cases. SMAPE, introduced to address MAPE’s limitations,
is gaining popularity due to its balanced error expression
[25,26]. Thus, this study focuses on SMAPE results. In
summary, selecting the right metric based on data traits is
crucial for meaningful model evaluation.

2.3 The Overlapping Group Screening Approach for
Quantitative Trait

This study applied overlapping group screening
(OGS) to identify gene and interaction biomarkers related
to quantitative phenotypes. OGS has been widely used in
genomics, addressing outcomes such as censored survival
time [27], binary tissue classification [28] and multinomial
cancer subtype classification [29]. The method uses a two-
stage group screening to detect both main and interaction
effects. Since gene pathways can overlap, the latent effect
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model by Jacob et al. [22] is adopted to handle shared genes
across groups. All transcriptomic data must be standardized
before applying OGS. The procedure of the OGS method
for linear regression models yi = x′iβ + w′

iθ + εi, i =

1, . . . , n. is as follows.
Step 1: To identify biologically relevant gene sets (i.e.,

pathways), we began by applying the overlapping group bi-
nary logistic regression framework, implemented via the
R package “grpregOverlap” [30]. This approach enables
simultaneous feature selection while accommodating gene
membership in multiple functional groups.

Step 2: Building on the strategy proposed by Wang
and Chen [27], we generated sets of gene-gene (G-G) in-
teraction pairs, which fall into three categories: interac-
tions occurring within a single candidate pathway, inter-
actions spanning two distinct candidate pathways identi-
fied in Step 1, and interactions linking one selected path-
way with a previously uncharacterized pathway. For each
group of G-G interactions, we evaluated its association with
the quantitative trait using the Sequence Kernel Association
Test (SKAT) [31]. This test yields a group-level p-value by
aggregating the effects of individual interactions through
a weighted sum of chi-square distributions. The p-values
are derived using the Davies method [32], implemented in
the “CompQuadForm” R package [33]. A lower p-value
signifies stronger evidence for association and thus higher
relevance in downstream analysis. Interaction groups are
retained for model development if their p-values fall below
a predetermined threshold.

Step 3: Finally, incorporating the selected pathways
and interaction groups, we constructed a predictive model
for BMI based onmicroarray data. This is achieved through
regularized linear regression methods, including ridge re-
gression, lasso [34] and adaptive lasso [35], as implemented
in the “glmnet” R package [36]. We also provided a detailed
description of the OGS method, including its mathematical
formulation, underlying assumptions (such as group spar-
sity and gene overlap), and the associated optimization pro-
cedure, with full details presented in the Supplementary
Material.

2.4 Regularized Linear Regression
Regularized regression controls model complexity by

adding a penalty term to the objective function, aiming to
prevent overfitting, improve generalization, and identify
key variables in high-dimensional data. It extends ordinary
least squares (OLS) by penalizing both large and small re-
gression coefficients to reduce overfitting and model com-
plexity. Common methods include ridge (L2), lasso (L1)
and adaptive lasso. Adaptive lasso builds on ridge estimates
to reduce multi-collinearity, then uses their absolute values
in a weighted lasso penalty, increasing the chance of shrink-
ing unimportant coefficients to zero and selecting the most
relevant features.

According to the study by Hoerl and Kennard [37], the
objective function of the ridge regularized linear regression
model is as follows:

η̂ = argminη

{∑n

i=1
(yi − uiη)

2
+ λ

∑d

j=1
η2j

}
.

The vector u represents the genes and gene interaction
terms selected using the OGS method, while λ

∑d
j=1 η

2
j

is the penalty term, which corresponds to the sum of the
squared coefficients of the variables considered in the can-
didate model.

According to the study by Tibshirani [34], the objec-
tive function of the linear regression model with lasso (least
absolute shrinkage and selection operator) is as follows:

η̂ = argminη

{∑n

i=1
(yi − uiη)

2
+ λ

∑d

j=1

∣∣ηj∣∣ } .

The vector u represents the genes and gene interaction
terms selected using the OGS method, while λ

∑d
j=1

∣∣ηj∣∣
is the penalty term, which corresponds to the sum of the ab-
solute values of the coefficients of the variables considered
in the candidate model.

Adaptive lasso is an improved regularization method
of lasso, primarily aimed at overcoming the issue of selec-
tion inconsistency in lasso and enhancing the accuracy of
variable selection. The core idea is to introduce weights
into the penalty term of lasso, adjusting the penalty based
on the importance of the variables. According to Zou [35],
the objective function of adaptive lasso is as follows:

η̂ = argminη(
∑n

i=1
(yi − uiη)

2
+ λ

∑d

j=1
wj |ηj |).

The vector u represents the genes and gene interac-
tion terms selected using the OGS method, and wj =

1

|β̂∗
j |γ

(where, in cases with more parameters than samples, it is
recommended to use the OLS estimated coefficients; oth-
erwise, the ridge method’s estimated coefficients are sug-
gested as the initial estimates for the weights). The param-
eter γ > 0 controls the degree of weight decay, and λ is
the regularization parameter. This design allows adaptive
lasso to apply smaller penalties to variables with larger co-
efficients and larger penalties to those with smaller coeffi-
cients, thus enhancing the consistency of variable selection
when identifying important variables. The advantages and
disadvantages of the three regularization functions are sum-
marized in Supplementary Table 1.

2.5 Generalized Ridge Regression
In high-dimensional data (where p > n), traditional

linear regression is not suitable for processing such data,
so ridge regression is typically used for these types of data.
Traditional ridge regression uniformly shrinks all regres-
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sion coefficients towards zero, which might not be the best
strategy when dealing with high-dimensional and sparse
data. However, generalized ridge regression is a regres-
sion method designed for high-dimensional data and sparse
models [38] where the goal is to extend uniform shrink-
age in high-dimensional scenarios to non-uniform shrink-
age, replacing the identitymatrix In in ridge regressionwith
a diagonal matrixW (∆), and it proposes

β̂ (λ,∆) =
{
X

′
X + λŴ (∆)

}−1

X
′
y,

where λ > 0 is the shrinkage parameter, and ∆ ≥ 0 is
the threshold parameter. The diagonal elements of the main
diagonal matrix Ŵ (∆) are suggested to take larger values
for β components that are close to zero, forming

Ŵ (∆) = diag {w1 (∆) , · · · , wp(∆)} ,

where

ŵJ (∆) =


1
2 ,

β̂
0

j

SD(β̂
0
)
≥ ∆

1,
β̂
0

j

SD(β̂
0
)
< ∆

 , j = 1, · · · , p;

SD
(
β̂

0
)
=

{∑p

j=1

(
β̂
0

j −
1

p

∑p

j=1
β̂
0

j

)2

/(p− 1)

}1/2

;

β̂
0
= (β̂

0

1, · · · , β̂
0

p)
′

, β̂
0

j = X
′

jy/X
′

jXj .
The optimal (λ,∆) is estimated through the modified

generalized cross-validation function, which is defined as:

V (λ,∆) =
1
n∥ {In −A (λ,∆)}y∥ 2[
1
nTr {In −A (λ,∆)}

]2 ,
where A (λ,∆) = X

{
X

′
X + λŴ (∆)

}−1

X
′
. Then,

(λ̂, ∆̂) are defined as
(
λ̂, ∆̂

)
= argminλ≥0,∆≥0V (λ,∆).

Given∆, V (λ,∆) is continuous with respect to λ, and any
optimization method (such as the R optim function) can be
used to minimize it in order to obtain λ̂ (∆). In sparse and

high-dimensional models, the histogram of β̂
0

j

SD(β̂
0
)
, j =

1, · · · , p, can be approximated as a standard normal dis-
tribution, so a search range of ∆ ∈ [0, 3] is enough.
Since V

(
λ̂ (∆) ,∆

)
is discontinuous with respect to ∆,

it is recommended to use grid search, defined as D ={
0, 3

100 , · · · ,
300
100

}
.

Finally, the generalized ridge regression estimator is
defined as

β̂
(
λ̂, ∆̂

)
= (X

′
X + λ̂W

(
∆̂
)
)
−1

X
′
y.

In addition, σ̂2 =
∥y−Xβ̂(λ̂,∆̂)∥2

v , where

v = Tr{(In −A
(
λ̂, ∆̂

)
}
2

, A
(
λ̂, ∆̂

)
=

X{X
′
X + λ̂Ŵ

(
∆̂
)
}
−1

X
′

Generalized ridge regression can be implemented us-
ing the R package “g.ridge”. Emura et al. [39] showed
through simulations and real data that it outperforms tra-
ditional ridge regression. They recommend standardizing
predictors and excluding an intercept term; thus, the re-
sponse variable Y should be centered by subtracting its
mean. This study uses estimates from generalized ridge re-
gression as initial weights for Adaptive Lasso, aiming to
enhance prediction performance.

2.6 The Alternative Classification Methods
In our machine learning (ML) pipeline, we begin by

utilizing the OGS method to pinpoint key gene biomarkers
and interaction signals that will serve as features for down-
stream predictive modeling.

To construct regression-based prediction models, we
explore several algorithms. For support vector regression
(SVR), we adopt a radial basis function kernel. Hyperpa-
rameter tuning is performed for the “Cost” parameter across
a wide logarithmic scale: 10−2, 10−1, 1, 101, …, 105,
including 0, and for the “Epsilon” parameter across val-
ues from 0.0 to 1.0 in 0.1 increments. This grid search
and model evaluation are carried out using the tune func-
tion from the “e1071” R package, which performs cross-
validation to identify the optimal SVR configuration. For
the k-nearest neighbors (KNN) algorithm, we employ a
rectangular kernel and use the kknn function from the
“kknn” package. The number of neighbors is tuned within a
range of 1 to 50 through cross-validation, seeking the value
that yields the best predictive accuracy. Within the Random
Forest (RF)modeling framework, two key hyperparameters
are optimized: the number of trees, evaluated across val-
ues from 1 to 500, and the number of features considered
at each split, explored over a range from 1 to d/3, where d
denotes the number of features [40]. This tuning process
is implemented using the randomForest and tuneRF func-
tions from the “randomForest” R package, again relying on
cross-validation to determine the configuration that offers
the best generalization performance.

3. Results
In the following simulations, we evaluate the pre-

dictive performance of the proposed OGS method com-
bined with regularized regression or machine learningmod-
els, and compare it to Oracle, sure independence screen-
ing (SIS) Lasso and Ordinary Lasso methods. The Oracle
method uses the true underlying model, which is known
in simulations but not in real-world cases. SIS Lasso first
ranks genes and gene-gene (G-G) interactions using uni-
variate regression, selects the top n / (2 * log (n)) predictors,
and applies lasso regression to build the final model. Ordi-
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Fig. 6. The gene network structure for the varying gene group-size data.

nary Lasso directly applies lasso regression to all genes and
G-G interactions without preselection.

3.1 Evaluation on Simulated Genomic Datasets With
Overlapping Gene Structures

To demonstrate the effectiveness of the proposed
OGS-based feature selection combined with regularized
linear regression, we perform a comprehensive numerical
study. This analysis not only highlights the behavior of our
approach under controlled conditions but also benchmarks
its predictive accuracy against a set of well-established ma-
chine learning algorithms. A synthetic dataset comprising
300 simulated observations is employed for training pur-
poses. Each individual response is generated from an un-

derlying linear regression framework, ensuring a structured
ground truth for model comparison,

yi = x
′

iβ + w
′

iθ + ε, i = 1,…, 300

with the covariates x are distributed uniformly between (–
3,3) and w denotes the two-way interaction covariates. To
evaluate the predictive performance of the models, we gen-
erate an independent test dataset consisting of 100 samples.
These samples are drawn from the same underlying distri-
bution as the training data but are not used during model
training, ensuring an unbiased assessment of generalization
accuracy.

10

https://www.imrpress.com


Fig. 7. The gene network structure for the equal gene group-size data.

The simulation considers both gene group size and
overlapping structure, as illustrated in Fig. 6. For example,
groups 10 and 11 each contain 15 genes, sharing 5 genes
and totaling 25 unique ones. In total, the study includes
462 genes and 594 group-specific gene effects. Groups 1,
7, 13 and 19 are set to have significant effects, with constant
values of 2.25, 2.25, 1.5 and –1.5 respectively. In group
13, key gene-gene interactions (G78–G90, G80–G88, G82–
G86) have coefficients of 4, 6 and 4. For groups 13 and 7,
interactions (G23–G81, G24–G83, G25–G85) have coeffi-
cients 4, 6 and 4.8. The simulation includes 106,953 major
gene and G-G interaction pairs.

We conducted the simulation 200 times to obtain nu-
merical results. As shown in Table 3, the OGS method
with ridge, lasso and adaptive lasso penalties consistently
outperformed other methods, including standard ML tech-

niques. Notably, OGS_G.ridge_ALasso achieved the best
SMAPE performance, averaging 96.4460%with a standard
deviation of 13.1026%, indicating both low prediction er-
ror and high stability. This highlights its strong advantage
in high-dimensional prediction tasks.

Compared to other ML methods like OGS_RF,
OGS_SVR and OGS_KNN, OGS_G.ridge_ALasso shows
significantly higher accuracy. OGS_KNN (SMAPE:
159.9890%) and OGS_SVR (SMAPE: 139.3309%) have
large fluctuations, indicating poor stability and adapt-
ability. Even against the relatively strong OGS_Lasso,
OGS_G.ridge_ALasso performs better acrossmultiple met-
rics, including SMAPE, Min-Max Accuracy, MAE and
MDAE, demonstrating more balanced predictive perfor-
mance.
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Table 3. The average (standard deviation) of prediction accuracy from 200 simulation analyses under gene structure I.
Method MinMax Accuracy MAPE (%) SMAPE (%) RMSE MASE MAE MDAE

Oracle 1.0686 (0.7929) 53.4438 (102.1502) 22.0822 (3.9587) 3.5935 (0.2577) 0.0584 (0.0070) 2.8536 (0.2212) 2.3782 (0.2798)
SIS_Lasso 2.0543 (10.7865) 297.4343 (975.8890) 124.8943 (7.1654) 36.1921 (2.6755) 0.5898 (0.0505) 28.9182 (2.1914) 24.5015 (2.7976)
Ordinary_Lasso 74.5814 (1037.1391) 209.2237 (210.6191) 107.6245 (7.0998) 29.8888 (2.4651) 0.4877 (0.0449) 23.9117 (1.9552) 20.2449 (2.2624)
OGS_Ridge –1.2573 (55.1990) 251.0337 (499.1449) 139.1917 (7.7979) 39.8240 (3.2943) 0.6458 (0.0497) 31.7181 (2.7719) 26.7102 (3.2483)
OGS_Lasso –0.0528 (9.5304) 246.4983 (244.9423) 98.7028 (12.9678) 27.7523 (4.1344) 0.4535 (0.0730) 22.2170 (3.3410) 18.9009 (3.0896)
OGS_ALasso 1.3383 (6.1393) 286.5519 (617.4884) 100.2347 (11.4929) 29.0729 (4.6024) 0.4748 (0.0796) 23.2607 (3.6681) 19.8310 (3.4925)
OGS_G.ridge –0.4462 (9.7117) 311.3224 (526.7253) 121.4321 (13.3355) 36.8617 (5.1348) 0.5973 (0.0856) 29.3041 (4.1555) 24.7078 (4.3394)
OGS_G.ridge_ALasso 0.7357 (2.5986) 244.8488 (198.9061) 96.4460 (13.1026) 27.5813 (5.2893) 0.4507 (0.0914) 22.0708 (4.2530) 18.7724 (3.9844)
OGS_SVR –2.2300 (48.6514) 164.9359 (255.0762) 139.3309 (12.5035) 37.2596 (3.6611) 0.6008 (0.0537) 29.5154 (2.9300) 24.5860 (3.0880)
OGS_RF 0.6033 (9.7192) 299.7391 (1442.5547) 129.8464 (8.2173) 37.0854 (2.9283) 0.6019 (0.0482) 29.5477 (2.4636) 24.9841 (2.8997)
OGS_KNN 21.5828 (253.5380) 202.8519 (538.8489) 159.9890 (10.0371) 42.7823 (3.1866) 0.6945 (0.0490) 34.1005 (2.6264) 28.7858 (3.2589)
MAPE, mean absolute percentage error; SMAPE, symmetric mean absolute percentage error; RMSE, root mean squared error; MASE, mean absolute scaled error; MAE, mean absolute
error; MDAE,median absolute error; SIS, sure independence screening; OGS, overlapping group screening; SVR, support vector regression; RF, RandomForest; KNN, k-nearest neighbors.

Table 4. The average (standard deviation) of prediction accuracy from 200 simulation analyses under Gene Structure II.
Method MinMax Accuracy MAPE (%) SMAPE (%) RMSE MASE MAE MDAE

Oracle 1.1878 (2.6650) 64.1145 (262.2200) 20.3052 (3.6218) 3.6105 (0.2804) 0.0530 (0.0062) 2.8617 (0.2415) 2.3847 (0.3062)
SIS_Lasso 1.5922 (16.2790) 325.4094 (698.8159) 133.8282 (8.1499) 42.9855 (3.1250) 0.6353 (0.0469) 34.4168 (2.6477) 29.0987 (3.4569)
Ordinary_Lasso –0.2268 (40.7950) 258.2261 (649.2819) 122.9424 (8.4288) 37.7662 (2.8756) 0.5580 (0.0428) 30.2318 (2.4826) 25.6980 (2.9641)
OGS_Ridge 2.4615 (35.0658) 299.4902 (855.1537) 142.4277 (8.0232) 44.8423 (3.2134) 0.6610 (0.0478) 35.8121 (2.7630) 30.2960 (3.7008)
OGS_Lasso 0.3925 (11.9970) 371.0417 (963.1335) 120.0683 (16.1679) 38.3600 (4.9675) 0.5683 (0.0821) 30.7230 (4.0444) 26.1716 (4.1695)
OGS_ALasso 0.3897 (16.5750) 456.8200 (1075.6511) 118.0533 (12.8660) 40.4871 (6.2626) 0.5995 (0.1025) 32.3873 (5.0111) 27.5544 (4.6994)
OGS_G.ridge –3.1482 (77.8741) 502.7925 (1899.9081) 128.0602 (10.9844) 44.2214 (4.2306) 0.6526 (0.0729) 35.3018 (3.5517) 29.8727 (4.0881)
OGS_G.ridge_ALasso 2.1295 (22.2190) 518.4625 (2103.3653) 114.8411 (13.7029) 39.2424 (6.7836) 0.5824 (0.1121) 31.4421 (5.4566) 26.6852 (4.9976)
OGS_SVR –0.4871 (28.2289) 190.9094 (549.3813) 137.7514 (17.4938) 40.2370 (4.8160) 0.5911 (0.0704) 32.0259 (4.0320) 26.8084 (4.3726)
OGS_RF 3.5606 (50.9942) 251.7642 (637.7145) 140.2724 (10.7404) 43.2332 (3.1884) 0.6378 (0.0452) 34.5680 (2.7642) 29.4925 (3.4944)
OGS_KNN –7.1837 (101.0930) 283.6388 (1342.6511) 157.5052 (11.5435) 46.4494 (3.4574) 0.6850 (0.0468) 37.1275 (2.9458) 31.4680 (3.5750)
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While both OGS_G.ridge and OGS_Ridge are based
on ridge regression, OGS_G.ridge uses a generalized
version that adjusts penalty strength based on variable
characteristics, offering more flexibility. It achieves
nearly 18% lower SMAPE than OGS_Ridge. Despite
a slightly higher standard deviation, its improved accu-
racy suggests that generalized ridge better captures com-
plex data relationships. Comparing OGS_ALasso with
OGS_G.ridge_ALasso shows further improvement when
generalized ridge is introduced. Both use adaptive lasso
for variable selection, but OGS_G.ridge_ALasso applies
variable-specific penalties, aiding in retaining key informa-
tion. Though the SMAPE improvement is about 3.8%, it
remains meaningful in complex high-dimensional data.

In conclusion, OGS_G.ridge_ALasso shows clear ad-
vantages over traditional ridge, adaptive lasso and otherML
methods, offering low error and high stability. It is espe-
cially effective for high-dimensional structured problems
like genetic data, highlighting both theoretical progress and
practical potential.

We also examine an alternative gene network with 24
groups, each containing 23 genes, detailed in Fig. 7. This
setup includes 504 genes and 552 group-specific gene ef-
fects. Groups 1, 7, 13 and 19 have significant effects,
with underlying values of 2.25, 2.25, 1.5 and –1.5 respec-
tively. In group 13, key gene-gene interactions (G253–
G265, G255–G263, G257–G261) have coefficients 4, 6 and
4. For groups 13 and 7, interactions (G128–G266, G130–
G268, G132–G270) have coefficients 4, 6 and 4.8. The sim-
ulation includes 127,260 major gene and interaction pairs.

According to Table 4, OGS_G.ridge_ALasso
achieved the best predictive performance among all mod-
els, with an average SMAPE of 114.8411% and a standard
deviation of 13.7029%, indicating both low error and
high stability—making it well-suited for high-dimensional
structured data. In contrast, most machine learning meth-
ods showed higher SMAPE values, likely due to overfitting
or difficulty capturing the underlying data structure.

Compared to OGS_Lasso, OGS_G.ridge_ALasso im-
proved SMAPE by about 5% and outperformed in other
metrics, showing greater stability and predictive power.
The addition of adaptive lasso to OGS_G.ridge further
enhanced accuracy, significantly reducing SMAPE. This
highlights the substantial performance gain achieved by
combining the two techniques. OGS_Ridge, which lacks
flexible variable selection, had relatively poorer perfor-
mance. Similarly, OGS_G.ridge_ALasso outperformed
OGS_ALasso (SMAPE = 118.0533%), highlighting the
benefit of incorporating generalized ridge.

To further evaluate the robustness of the proposed
method, we conducted an additional simulation study for
sensitivity analysis. This analysis incorporated two differ-
ent gene group structures (high-overlap and low-overlap
scenarios) and simulated varying effect sizes by reducing
the magnitude of the true biomarker coefficients (original

coefficients divided by 2). Our results (Supplementary
Tables 2,3) show that OGS_G.ridge_ALasso accurately
identifies the relevant gene groups under these condi-
tions, demonstrating strong robustness to varying signal
strengths.

In summary, OGS_G.ridge_ALasso stands out in both
accuracy and stability across metrics. It is particularly well-
suited for high-dimensional and structurally complex pre-
diction tasks, such as those involving genomic data, and
holds significant practical value for real-world applications.

3.2 Real Data Application: TCGA CESC Data
Given the potential contamination and batch effects

in TCGA transcriptomic data, we performed data normal-
ization during the preprocessing stage to minimize the im-
pact of technical variability. Furthermore, to account for
the possible presence of outliers, we employed the non-
parametric Kendall’s tau correlation coefficient to identify
the top 1000 genes significantly associated with BMI for
subsequent analyses as this method is less sensitive to out-
liers, thereby enhancing the overall robustness of the anal-
ysis.

Our TCGA CESC dataset includes 258 subjects: 100
with BMI< 25, 72 with 25<BMI< 30 and 86with BMI>
30. Given the likely limited pool of BMI-associated genes,
we first streamline the gene set using Kendall’s tau correla-
tion, selecting the top 1000 genes with the highest absolute
correlations. Among these, 581 genes are mapped to 617
pathways based on the Gene Ontology Cellular Component
(GO-CC) database. The remaining 419 unmapped genes
are either excluded or grouped separately within the OGS
framework. This results in 169,071 or 500,500 main gene
and gene-gene interaction effects.

We used a validation set approach, randomly split-
ting the dataset into 80% training (206 samples) and 20%
testing (52 samples), and repeated this process 30 times
after excluding 419 unmapped genes. Table 5 summa-
rizes the average prediction results for BMI. We also evalu-
ated two additional GO pathway databases: Biological Pro-
cess (GO-BP) and Molecular Function (GO-MF) with re-
sults in Supplementary Tables 4,5. Across all databases,
OGS_G.ridge_ALasso outperformed other methods, in-
cluding standard machine learning models, particularly in
terms of SMAPE, while also showing strong results in other
metrics.

Next, based on the GO-CC pathway database, we ap-
ply our proposed method to the entire TCGA CESC dataset
for model selection and parameter estimation. The method
identifies 11 genes and 60 gene-gene interaction biomark-
ers, with corresponding network structure shown in Fig. 8
and and the top 10 highest and bottom 10 lowest biomarker
coefficient values in shown in Table 6. Supplementary Ta-
ble 6 presents all the selected biomarkers and their corre-
sponding coefficients. In summary, we have incorporated
node sizes and edge weight elements into the network figu-
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Table 5. Using the GO_CC gene set database, the TCGA CESC dataset was randomly split 30 times into training/testing sets at an 80:20 ratio.
MinMax Accuracy MAPE (%) SMAPE (%) RMSE MASE MAE MDAE

SIS_Lasso 0.8958 (2.9121) 312.5154 (163.7632) 148.5368 (9.3349) 1.0794 (0.1569) 0.8367 (0.1119) 0.8275 (0.0903) 0.6896 (0.1008)
Ordinary_Lasso 7.2680 (49.3375) 107.2105 (8.3599) 185.2941 (8.9152) 0.9095 (0.1420) 0.7270 (0.0702) 0.7215 (0.0729) 0.6427 (0.0902)
OGS_Ridge 1.5766 (4.2834) 290.0074 (161.4077) 140.2715 (10.2328) 0.9688 (0.1473) 0.7488 (0.0860) 0.7420 (0.0788) 0.6151 (0.0933)
OGS_Lasso 0.4340 (4.8077) 326.0319 (196.3179) 138.4399 (10.0905) 1.0091 (0.1454) 0.7796 (0.0929) 0.7717 (0.0755) 0.6446 (0.0692)
OGS_ALasso 0.0650 (5.3114) 327.7718 (202.5703) 138.0082 (10.0865) 1.0106 (0.1478) 0.7795 (0.0962) 0.7713 (0.0768) 0.6365 (0.0767)
OGS_G.ridge 1.8217 (6.2966) 291.1387 (164.8034) 140.6525 (10.0384) 0.9715 (0.1476) 0.7516 (0.0866) 0.7452 (0.0822) 0.6079 (0.0888)
OGS_G.ridge_ALasso 3.2068 (15.9334) 329.9966 (208.0807) 138.2342 (9.9804) 1.0133 (0.1522) 0.7810 (0.0965) 0.7729 (0.0789) 0.6429 (0.0750)
OGS_SVR 1.2924 (3.4622) 278.4534 (138.8284) 142.9585 (9.0704) 0.9415 (0.1428) 0.7349 (0.0702) 0.7299 (0.0792) 0.6125 (0.0921)
OGS_RF –4.0286 (25.6163) 250.5968 (111.9902) 144.7685 (9.8766) 0.9288 (0.1457) 0.7292 (0.0714) 0.7248 (0.0866) 0.6141 (0.0931)
OGS_KNN –9.9220 (52.9677) 267.7436 (129.7886) 144.7497 (8.8615) 0.9379 (0.1416) 0.7343 (0.0715) 0.7293 (0.0808) 0.6136 (0.0926)
The table reports the mean (standard deviation) of the test prediction performance for various prediction methods.
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Table 6. The top 10 and bottom 10 biomarkers with the highest and lowest coefficients, respectively, among the candidate genes
and gene-gene interactions selected using the OGS_G.ridge_ALasso method.

CESC (71 ACTIVE) BLCA (42 ACTIVE) LIHC (148 ACTIVE) ESCA (71 ACTIVE)

ID Coefficient ID Coefficient ID Coefficient ID Coefficient

Top 10 biomarkers

SLC17A8-UXT 0.1643 C8A 0.1287 FUT5-GPR174 0.1549 C15ORF48 0.1944
EZH1-STAU1 0.1433 C1QL2 0.1271 FUT5-KCNB1 0.1439 CATSPERB-IQCE 0.1674
PABPN1 0.1344 LMOD2 0.1186 PIGR 0.1389 ACE-DYNC1I1 0.1605
CDC42BPB-PSME4 0.1241 GYPB 0.0975 FUT5-PIGR 0.1190 IQCA1-SMO 0.1443
UXT 0.1044 MIOS 0.0850 FUT5-ZAP70 0.1189 CALM3-SLC6A7 0.1416
ADAM11-TDRD6 0.095 ATP6V1B1 0.0766 OPN4 0.1163 SLC26A3-SLC3A2 0.1353
EZH1 0.094 ZFYVE1 0.0748 ITGAX-SLC24A4 0.1117 CALM3-LGALS3 0.1347
EZH1-SPEF2 0.0929 HPR-LMOD2 0.0623 FUT5-RABEPK 0.1031 ITPKA 0.1207
DPF3 0.0913 LILRA4 0.0618 PPP3R2 0.0983 CALM3-KIAA1614 0.1115
TDRD6 0.0867 INTS10-LMOD2 0.0589 FPR2-FUT5 0.0976 AQP2-ATP8A1 0.1091

Bottom 10 biomarkers

CRK-TMOD4 –0.1473 DNAI2 –0.1826 CAT-FUT5 –0.1342 KIF9-SLC26A3 –0.1892
PLG-TAF1A –0.1097 EXOC7-HDAC1 –0.1439 FPR2-SLC24A4 –0.1278 ACE-CYS1 –0.1372
DEFA1B –0.1052 PPP1R3A –0.1414 HYAL3 –0.1263 CYS1-TTLL6 –0.1347
DTNBP1-UNC45B –0.1020 LMOD2-TRIOBP –0.1217 PLEC –0.1210 KIF3C-SLC26A3 –0.1287
DCTN1-FANCL –0.1005 LMOD2-OGDH –0.0917 HDAC6-PPP3R2 –0.1156 FXR1 –0.1141
SEC31B-WNT1 –0.0919 TRAPPC2 –0.0863 DCLRE1C –0.1113 CYS1-HYDIN –0.1003
ART1-EZH1 –0.0913 HDAC1 –0.0845 CHRAC1-FUT5 –0.1093 KIF9-TTLL6 –0.0943
PSMD2-UNC45B –0.0774 LMOD2-MAFG –0.0771 FUT5-UGT3A1 –0.1087 DYNLRB2-RSPH1 –0.0834
SLC17A8-TAF1A –0.0664 NME7 –0.0745 B4GALT2-PCSK6 –0.1004 MCM5 –0.0738
MFN1-UNC45B –0.0642 LMOD2-YAP1 –0.0656 FUT5-OS9 –0.0996 CALM3-CD44 –0.0609

res. Larger nodes represent genes with greater importance.
Additionally, the color of each node indicates the direction
of effect: red represents a positive effect, while yellow rep-
resents a negative effect.

Some of the selected biomarkers have been confirmed
to have biological significance in existing literature. For
example, Li et al. [41] indicated thatWNT1 is a target gene
of miR-34a, and the decreased expression of miR-34a (sup-
pressed by HPV E6/E7) leads to an increase in WNT1 ex-
pression. In CESC, WNT1 promotes cell proliferation, in-
vasion, and the conversion of “E-cadherin to P-cadherin”
by activating the WNT/β-catenin signaling pathway, fur-
ther driving cancer progression. Therefore, WNT1 plays a
carcinogenic role in CESC. Additionally, Park [42] high-
lighted the association between the CRK gene and CESC.
The CRK gene belongs to the Crk family and encodes an
adaptor protein with SH2 and SH3 domains, involved in
various cellular processes, such as cell proliferation, migra-
tion and survival. Studies have shown that CRK is upregu-
lated in several human cancers, including cervical cancer.

3.3 Real Data Application: TCGA BLCA Data
Our TCGA BLCA dataset includes 356 subjects: 147

with BMI <25, 124 with 25 < BMI < 30 and 85 with
BMI>30. Given the likely limited pool of BMI-associated
genes, we first streamline the gene set using Kendall’s tau
correlation, selecting the top 1000 genes with the high-

est absolute correlations. Among these, 620 genes are
mapped to 586 pathways based on the GO-CC database.
The remaining 380 unmapped genes are either excluded or
grouped separately within the OGS framework. This results
in 192,510 or 500,500 main gene and gene-gene interaction
effects.

We used a validation set approach, randomly splitting
the dataset into 80% training (284 samples) and 20% test-
ing (72 samples), and repeated this process 30 times af-
ter excluding 380 unmapped genes. Table 7 summarizes
the average prediction results for BMI. We also evaluated
two additional GO pathway databases: GO-BP and GO-
MF with results in Supplementary Tables 7,8. Across
all databases, OGS_G.ridge_ALasso outperformed other
methods, including standard machine learning models, par-
ticularly in terms of SMAPE, while also showing strong re-
sults in other metrics.

Next, based on the GO-CC pathway database, we ap-
ply our proposed method to the entire TCGABLCA dataset
for model selection and parameter estimation. The method
identifies 23 genes and 19 gene-gene interaction biomark-
ers, with corresponding network structure shown in Fig. 9
with the top 10 highest and bottom 10 lowest biomarker co-
efficient values shown in Table 6. Supplementary Table 9
presents all the selected biomarkers and their corresponding
coefficients.
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Fig. 8. The Network structure of the selected G-G interaction by the proposed OGS_G.ridge_ALasso method in CESC.

The HUS1 gene has been confirmed to have biolog-
ical significance in the literature [43]. HUS1 is a pro-
tein involved in DNA repair, and its expression is elevated
in BLCA. Studies indicate that inhibiting HUS1 enhances
chemotherapy efficacy in cisplatin-sensitive cancer cells,
but has no significant effect in resistant cells. Additionally,
high expression of HUS1 is associated with poor progno-
sis in patients, suggesting that HUS1 might be a key factor
influencing responses to platinum-based chemotherapy and
could potentially serve as a therapeutic target.

3.4 Real Data Application: TCGA LIHC Data

Our TCGA LIHC dataset includes 334 subjects: 177
with BMI <25, 89 with 25 < BMI < 30 and 68 with

BMI>30. Given the likely limited pool of BMI-associated
genes, we first streamline the gene set using Kendall’s tau
correlation, selecting the top 1000 genes with the high-
est absolute correlations. Among these, 634 genes are
mapped to 557 pathways based on the GO-CC database.
The remaining 366 unmapped genes are either excluded or
grouped separately within the OGS framework. This results
in 201,295 or 500,500 main gene and gene-gene interaction
effects.

We used a validation set approach, randomly splitting
the dataset into 80% training (267 samples) and 20% test-
ing (67 samples), and repeated this process 30 times af-
ter excluding 366 unmapped genes. Table 8 summarizes
the average prediction results for BMI. We also evaluated
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Fig. 9. The Network structure of the selected G-G interaction by the proposed OGS_G.ridge_ALasso method in BLCA.

two additional GO pathway databases: GO-BP and GO-
MF with results in Supplementary Tables 10,11. Across
all databases, OGS_G.ridge_ALasso outperformed other
methods, including standard machine learning models, par-
ticularly in terms of SMAPE, while also showing strong re-
sults in other metrics.

Next, based on the GO-CC pathway database, we ap-
ply our proposed method to the entire TCGA LIHC dataset
for model selection and parameter estimation. The method
identifies 16 genes and 132 gene-gene interaction biomark-
ers, with corresponding network structure shown in Fig. 10
with the top 10 highest and bottom 10 lowest biomarker
coefficient values shown in Table 6. Supplementary Ta-
ble 12 presents all the selected biomarkers and their corre-
sponding coefficients.

Among the selected biomarkers, some have already
been confirmed in existing literature to hold biological sig-
nificance. A study byChen et al. [44] found that the expres-
sion of CAT was significantly downregulated in advanced
LIHC tissues, and that high CAT expression was associated

with better survival outcomes. Furthermore, when CAT ex-
pression is low,MET inhibitors such as SU11274may serve
as effective treatment options for LIHC with low CAT ex-
pression. This suggests that CAT might play an important
role in LIHC and is closely related to tumor progression
and prognosis. Wang et al. [45] reported that ZFP36 is
a gene associated with ferritinophagy and exhibits abnor-
mal expression in immune cells in LIHC with their results
indicating that ZFP36 could be closely involved with the
functions of monocytes andmacrophages, andmight partic-
ipate in immune regulation and tumor progression. ZFP36
shows potential as a target for liver cancer research or ther-
apy. Zhao et al. [46] identified B4GALT2 as a gene related
to amino acidmetabolism, which has been incorporated into
a prognostic risk model for LIHC patients, and as its high
expression is associated with poorer survival outcomes and
could be involved in immune regulation and metabolic re-
programming in tumors, it has the potential to serve as a
biomarker for liver cancer treatment and prognosis assess-
ment.
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Fig. 10. The Network structure of the selected G-G interaction by the proposed OGS_G.ridge_ALasso method in LIHC.

3.5 Real Data Application: TCGA ESCA Data

Our TCGA ESCA dataset includes 175 subjects: 97
with BMI <25, 49 with 25 < BMI < 30 and 29 with
BMI>30. Given the likely limited pool of BMI-associated
genes, we first streamline the gene set using Kendall’s tau
correlation, selecting the top 1000 genes with the high-
est absolute correlations. Among these, 642 genes are
mapped to 532 pathways based on the GO-CC database.
The remaining 358 unmapped genes are either excluded or
grouped separately within the OGS framework. This results
in 206,403 or 500,500 main gene and gene-gene interaction
effects.

We used a validation set approach, randomly splitting
the dataset into 80% training (140 samples) and 20% test-
ing (35 samples), and repeated this process 30 times af-
ter excluding 358 unmapped genes. Table 9 summarizes

the average prediction results for BMI. We also evaluated
two additional GO pathway databases: GO-BP andGO-MF
with results in Supplementary Tables 13,14. Across all
databases, Our proposed method (OGS_G.ridge_ALasso),
while slightly outperformed by OGS_KNN in terms of the
SMAPE (%) evaluation metric, still demonstrates better
predictive performance compared to the other methods.

Next, based on the GO-CC pathway database, we ap-
ply our proposed method to the entire TCGA ESCA dataset
for model selection and parameter estimation. The method
identifies 8 genes and 63 gene-gene interaction biomark-
ers, with corresponding network structure shown in Fig. 11
with the top 10 highest and bottom 10 lowest biomarker
coefficient values are shown in Table 6. Supplementary
Table 15 presents all the selected biomarkers and their cor-
responding coefficients.
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Fig. 11. The Network structure of the selected G-G interaction by the proposed OGS_G.ridge_ALasso method in ESCA.

The ACE gene has been shown to have biological sig-
nificance in the literature [47]. The study demonstrated
that, among patients with esophageal cancer, those with
the ACE gene D/D genotype were more likely to develop
postoperative pulmonary complications, with a risk more
than three times higher than that of patients with the I/I or
I/D genotypes. In addition, serum ACE levels were pos-
itively correlated with the presence of the ACE D allele;
the higher the ACE level, the greater the risk of postopera-
tive pulmonary complications. This suggests that the inser-
tion/deletion polymorphism of the ACE gene may could an
important role in susceptibility to postoperative pulmonary
injury in patients with esophageal cancer.

3.6 BMI-Stratified Survival Analysis Reveals
Gene-Specific Prognostic Associations

In this study, patients with various cancer types are
stratified into three groups based on their BMI: normal,
overweight and obese. Within each BMI subgroup, a Cox
proportional hazards model is applied to assess the associ-
ation between the expression level of individual genes and
overall survival with eachmodel including only one gene as
the primary explanatory variable, and age and gender being
incorporated as covariates to adjust for potential confound-
ing effects. A stratified analytical approach is employed
to evaluate whether BMI classification modulates the prog-
nostic impact of gene expression on survival outcomes and
to identify gene signatures with significant prognostic rele-
vance within specific BMI categories. Gene selection is
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Table 7. Using the GO_CC gene set database, the TCGA BLCA dataset was randomly split 30 times into training/testing sets at an 80:20 ratio.
MinMax Accuracy MAPE (%) SMAPE (%) RMSE MASE MAE MDAE

SIS_Lasso 6.2230 (20.4867) 153.1523 (50.3734) 159.6510 (7.2171) 0.9784 (0.1658) 0.7713 (0.0589) 0.7357 (0.0815) 0.6031 (0.0909)
Ordinary_Lasso –28.3685 (87.3431) 106.9705 (9.2948) 182.0108 (12.8869) 0.9494 (0.1656) 0.7526 (0.0529) 0.7179 (0.0780) 0.5748 (0.0583)
OGS_Ridge –0.9903 (8.9542) 168.7948 (46.0440) 151.4469 (13.4424) 0.9629 (0.1597) 0.7568 (0.0633) 0.7211 (0.0750) 0.5750 (0.0800)
OGS_Lasso –0.3793 (5.0655) 210.1537 (79.8495) 144.6220 (13.9201) 0.9877 (0.1588) 0.7773 (0.0752) 0.7393 (0.0714) 0.6166 (0.0908)
OGS_ALasso 11.8011 (74.5594) 248.9250 (104.9382) 139.6349 (10.3840) 1.0477 (0.1979) 0.8150 (0.1017) 0.7732 (0.0774) 0.6290 (0.0902)
OGS_G.ridge –0.1931 (4.2451) 229.5899 (84.3647) 139.8774 (11.1173) 1.0367 (0.2182) 0.7929 (0.1018) 0.7533 (0.0867) 0.6097 (0.0904)
OGS_G.ridge_ALasso –0.4559 (4.3949) 280.6450 (149.6607) 139.6553 (9.7535) 1.0764 (0.1856) 0.8329 (0.0967) 0.7913 (0.0845) 0.6418 (0.1015)
OGS_SVR 0.4392 (4.4815) 160.9705 (52.2773) 147.9144 (13.6778) 0.9469 (0.1701) 0.7366 (0.0640) 0.7025 (0.0811) 0.5654 (0.0816)
OGS_RF 4.2248 (14.5991) 156.4021 (30.3354) 156.6699 (8.4587) 0.9722 (0.1473) 0.7741 (0.0712) 0.7360 (0.0669) 0.6155 (0.0762)
OGS_KNN –0.3208 (4.8648) 171.0956 (58.5580) 153.2306 (13.2028) 0.9564 (0.1602) 0.7586 (0.0676) 0.7225 (0.0769) 0.5925 (0.0829)
The table reports the mean (standard deviation) of the test prediction performance for various prediction methods.

Table 8. Using the GO_CC gene set database, the TCGA LIHC dataset was randomly split 30 times into training/testing sets at an 80:20 ratio.
MinMax Accuracy MAPE (%) SMAPE (%) RMSE MASE MAE MDAE

SIS_Lasso –2.2580 (6.0536) 332.4607 (207.7500) 139.6710 (9.4129) 1.0110 (0.4015) 0.8912 (0.1631) 0.6283 (0.0866) 0.4656 (0.0606)
Ordinary_Lasso –5.0734 (17.9602) 308.1448 (220.9625) 150.2410 (21.8989) 0.9754 (0.4296) 0.8445 (0.1218) 0.5992 (0.0881) 0.4467 (0.0603)
OGS_Ridge 10.9704 (59.6618) 330.3707 (252.2040) 140.4011 (14.6550) 1.0014 (0.3908) 0.8703 (0.1600) 0.6125 (0.0772) 0.4506 (0.0534)
OGS_Lasso 1.2601 (12.1217) 385.5694 (322.1085) 136.4481 (19.2138) 1.0496 (0.3702) 0.9144 (0.1894) 0.6409 (0.0809) 0.4601 (0.0770)
OGS_ALasso –3.0848 (12.5386) 453.0267 (331.5226) 131.5387 (9.0808) 1.0687 (0.3576) 0.9497 (0.2076) 0.6619 (0.0668) 0.4751 (0.0544)
OGS_G.ridge –7.7167 (27.3397) 421.3698 (286.6483) 131.7760 (8.6800) 1.0424 (0.3687) 0.9173 (0.1974) 0.6414 (0.0751) 0.4741 (0.0712)
OGS_G.ridge_ALasso –2.0931 (5.4303) 494.6527 (355.0585) 132.5872 (9.1075) 1.1132 (0.3379) 1.0051 (0.2554) 0.6951 (0.0692) 0.5223 (0.0888)
OGS_SVR –1.2808 (11.1659) 270.0525 (202.1000) 136.0872 (16.8650) 0.9203 (0.4336) 0.7729 (0.1013) 0.5512 (0.0950) 0.4034 (0.0674)
OGS_RF 1.0304 (4.3231) 300.3950 (188.4677) 142.1591 (10.3168) 1.1064 (0.4338) 0.9349 (0.2765) 0.6477 (0.1109) 0.4667 (0.0652)
OGS_KNN 0.9596 (6.5329) 205.5634 (154.2807) 156.1949 (18.8047) 0.9444 (0.4359) 0.8122 (0.1059) 0.5771 (0.0845) 0.4444 (0.0575)
The table reports the mean (standard deviation) of the test prediction performance for various prediction methods.
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Table 9. Using the GO_CC gene set database, the TCGA ESCA dataset was randomly split 30 times into training/testing sets at an 80:20 ratio.
MinMax Accuracy MAPE (%) SMAPE (%) RMSE MASE MAE MDAE

SIS_Lasso 2.7686 (4.0457) 258.6933 (132.1144) 108.7875 (11.2686) 0.9117 (0.1998) 0.7831 (0.1125) 0.6334 (0.0923) 0.4391 (0.0727)
Ordinary_Lasso 1.7824 (6.6566) 200.7705 (107.6323) 114.7371 (12.8876) 0.8606 (0.2394) 0.7174 (0.0778) 0.5876 (0.1151) 0.4106 (0.0718)
OGS_Ridge 1.1757 (1.5268) 232.8646 (122.2114) 105.6107 (14.1393) 0.8431 (0.2280) 0.7205 (0.1063) 0.5881 (0.1141) 0.4298 (0.0775)
OGS_Lasso 0.9132 (1.7178) 260.1778 (138.2418) 107.1521 (15.4873) 0.8670 (0.2226) 0.7557 (0.1442) 0.6135 (0.1221) 0.4504 (0.0898)
OGS_ALasso 1.4643 (4.8301) 265.4442 (150.5444) 107.4061 (15.3619) 0.8640 (0.2260) 0.7530 (0.1520) 0.6111 (0.1248) 0.4556 (0.1057)
OGS_G.ridge –2.5742 (22.4868) 237.4606 (127.2772) 105.9300 (14.4189) 0.8362 (0.2260) 0.7178 (0.1154) 0.5857 (0.1178) 0.4391 (0.0878)
OGS_G.ridge_ALasso 1.4586 (1.8296) 257.2740 (140.6211) 106.0141 (13.7132) 0.8572 (0.2190) 0.7408 (0.1260) 0.6017 (0.1120) 0.4454 (0.0850)
OGS_SVR 2.0123 (2.7678) 245.4466 (137.2884) 109.6309 (12.6539) 0.8647 (0.2128) 0.7419 (0.1161) 0.6021 (0.1052) 0.4436 (0.0719)
OGS_RF 1.4777 (6.2537) 250.5895 (145.5156) 106.9120 (11.5959) 0.8387 (0.2223) 0.7177 (0.1196) 0.5836 (0.1064) 0.4122 (0.0723)
OGS_KNN 2.0430 (1.5909) 246.6405 (134.6129) 101.2479 (13.7206) 0.8217 (0.2389) 0.6823 (0.0743) 0.5623 (0.1225) 0.3886 (0.0786)
The table reports the mean (standard deviation) of the test prediction performance for various prediction methods.
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Table 10. BMI-Stratified Cox Regression Results for Selected Genes Across Cancer Types.
Cancer Type BMI Class Number of Patients (events) Coef (p-value) Coef (p-value) Coef (p-value)

CESC WNT1 CRK
Normal 100 (26) –0.2515 (0.340) 0.2658 (0.248)

Overweight 72 (10) –0.4274 (0.4295) 0.6888 (0.0611)
Obese 86 (16) –0.1744 (0.467) 0.0592 (0.831)

BLCA HUS1
Normal 147 (54) –0.0550 (0.6725)

Overweight 124 (62) 0.1361 (0.3170)
Obese 85 (34) –0.0227 (0.8864)

LIHC CAT ZFP36 B4GALT2
Normal 177 (61) –0.2142 (0.0578) 0.0341 (0.769) 0.2113 (0.0979)

Overweight 89 (28) –0.7447 (0.0005) 0.0217 (0.931) 0.4846 (0.0227)
Obese 68 (23) –0.0227 (0.9282) –0.3233 (0.1300) 0.0242 (0.9189)

ESCA ACE
Normal 97 (35) 0.0074 (0.969)

Overweight 49 (19) –0.2145 (0.3558)
Obese 29 (16) 0.1242 (0.630)

based on both the analytical framework developed in this
study and relevant targets reported in the literature. The
results are summarized in Table 10.

The results show that most genes do not exhibit statis-
tically significant associations with overall survival across
different cancer types and BMI subgroups. However, in
LIHC, the expression of the CAT gene in the overweight
group is significantly negatively associated with overall
survival (coefficient = –0.7447, p = 0.0005), indicating
a potential protective prognostic role. In contrast, the
B4GALT2 gene shows a significant positive association (co-
efficient = 0.4846, p = 0.0227), suggesting it might func-
tion as a risk factor. Additionally, in CESC, the expres-
sion of theCRK gene in the overweight group demonstrates
a borderline significant positive association (p = 0.0611).
Overall, the findings indicate that specific genes are sig-
nificantly associated with survival only within certain BMI
categories, suggesting that BMI could act as a modifier of
gene-based prognostic effects and warrants further investi-
gation into the underlying biological mechanisms.

We perform Kaplan-Meier survival analyses within
each BMI subgroup, using the median gene expression as
a cutoff. Several genes show significant or borderline as-
sociations with overall survival in specific BMI categories
(Supplementary Figs. 1–7). WNT1 is significantly asso-
ciated with survival in the normal BMI group (p = 0.0036),
while CAT shows protective associations in both the nor-
mal (p = 0.0028) and overweight (p = 0.0087) groups.
B4GALT2 is linked to worse survival in the normal group
(p = 0.037), and CRK shows a borderline association in the
overweight group (p = 0.059). HUS1 (p = 0.1) and ZFP36
(p = 0.1) also display borderline significance in the normal
and obese groups. These results suggest that BMI could
modify the prognostic impact of gene expression.

3.7 Gene Set Analysis Identifies BMI-Related Pathways in
Various Cancer Types Using MGSA

To better interpret the biological significance of gene
expression data, we analyzed not only individual genes
but also gene sets with functional or regulatory relevance.
Model-based Gene Set Analysis (MGSA) is a Bayesian ap-
proach that reveals expression patterns and functional rela-
tionships among gene sets within biological systems [48].
MGSA integrates pathway information and statistical mod-
eling to evaluate gene set changes under different condi-
tions, helping to understand their impact on diseases or
physiological states. This method is implemented in the R
package “mgsa” and incorporates Gene Ontology data [49].
In this study, we identified important genes using our pro-
posed method, OGS_G.ridge_ALasso, and annotate them
based on gene sets from the MSigDB database, including
collections such as c2.cp.biocarta, c2.cp.kegg, c5.GOBP,
c5.GOCC and c5.GOMF.

Using MGSA, we identified multiple biolog-
ically relevant pathways significantly associated
with BMI across different cancers. In BLCA,
GOBP_INTRACILIARY_TRANSPORT_INVOLVED_IN
_CILIUM_ASSEMBLY, related to cilium assembly and
intraciliary transport, links to BMI, highlighting processes
crucial for cell polarity and signal transduction. In ESCA,
KEGG_MEDICUS_REFERENCE_AVP_V2R_PKA_SIG
NALING_PATHWAY, involving antidiuretic hor-
mone signaling via the V2 receptor and PKA acti-
vation, associates with BMI, implicating metabolism
and intracellular signaling regulation. In CESC,
GOBP_REGULATION_OF_NEUROMUSCULAR_JUN
CTION_DEVELOPMENT, which regulates
neuromuscular junction formation and func-
tion, correlates with BMI. Finally, in LIHC,
GOBP_NEGATIVE_REGULATION_OF_HYDROGEN_
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PEROXIDE_METABOLIC_PROCESS, involved in
negative regulation of hydrogen peroxide metabolism and
oxidative stress response, shows significant association
with BMI. These findings support the biological relevance
of the identified biomarkers and provide insight into
the pathways through which BMI may influence cancer
biology.

4. Discussion
4.1 Potential Improvements to the OGS Method

Identifying susceptibility genes and variants for com-
plex diseases is challenging due to the often unknown un-
derlying disease mechanisms. The OGS method, which in-
corporates the SKAT to screen for gene-gene interactions,
relies on predefined pathways to extract gene network in-
formation although such reliance might lead to informa-
tion loss while limiting the method’s scope; additionally,
while current implementations typically consider only sim-
ple two-way or multiplicative interactions, future research
should aim to develop statistical approaches capable of cap-
turing higher-order and more complex interactions.

Multivariate analysis is another widely used approach,
testing grouped variants defined by genes, pathways, or
physical locations. Common statistical methods include
burden tests, SKAT and the combined SKAT-O, each show-
ing strengths under different biological conditions [50]
Data-adaptive methods, which adjust models based on the
data structure, have attracted increasing attention. Notably,
Ueki [51] proposed a novel approach based on Yanai’s gen-
eralized coefficient of determination, which allows for the
control of type I error without requiring test-specific null
distributions. This method is computationally efficient and
broadly applicable to models such as lasso, ridge and elastic
net, enabling both variant selection and feature filtering. In
summary, future efforts should focus on developing more
flexible, accurate and interpretable methods to improve the
detection of relevant variants in genome-wide studies.

4.2 Leveraging TCGA for Multi-Omics Insights into BMI
and Cancer

TCGA provides a rich and comprehensive resource
for exploring the relationship between BMI and cancer.
With its extensive genomic and clinical datasets span-
ning numerous cancer types, TCGA enables multi-omics
analyses—integrating gene expression, somatic mutations,
DNA methylation and copy number variations. This multi-
layered approach allows for a deeper understanding of how
BMI could influence cancer biology at the molecular level
[52], while its pan-cancer structure facilitates cross-tumor
comparisons, helping to uncover both shared and cancer-
specific BMI-related molecular features.

We agree that validating BMI-associated gene signa-
tures in independent cohorts is a crucial step to enhance the
generalizability of our findings. We have reviewed multi-
ple external datasets from sources such as Gene Expression

Omnibus (GEO) and International Cancer Genome Con-
sortium (ICGC) and confirmed that some do include BMI-
related annotations [53,54]. Although external validation
was not performed in the current study, we fully recog-
nize its importance in establishing the broader applicabil-
ity of our results. Future studies should consider validat-
ing the gene signatures identified here using independent
datasets with BMI information, although owing to consid-
erable heterogeneity in data generation platforms and clin-
ical variable definitions, incorporating such datasets would
require extensive data harmonization and standardization
efforts, introducing complexity beyond the scope of this
study. In light of these challenges, we focused on lever-
aging the pan-cancer framework of TCGA to assess the in-
ternal consistency and robustness of BMI-associated gene
signatures across multiple cancer types. These results pro-
vide preliminary support for the validity of our findings.

4.3 Limitations of Western BMI Standards and the Need
for Population-Specific Cutoffs

In our current simulated and real data analysis, BMI
was treated as a continuous variable rather than categorized
into discrete groups. This modeling approach allowed us
to avoid arbitrary threshold effects and better capture dose-
dependent associations between BMI and clinical or molec-
ular outcomes. As such, the issue of cutoff definition (e.g.,
WHO vs. Asian-specific thresholds) did not directly affect
our core statistical framework; nonetheless, we fully ac-
knowledge the importance of population-specific BMI clas-
sification when translating findings into clinical practice.

The widely used BMI classification system—defining
18.5–24.9 as normal, 25+ as overweight and 30+ as obese—
is based predominantly on data from Western populations,
although research on individuals of Asian descent often ex-
hibit higher body fat percentages at the same BMI levels
along with increased susceptibility to chronic conditions
such as cancer, type 2 diabetes, hypertension and cardiovas-
cular disease. Consequently, applyingWestern BMI thresh-
olds to Asian populations might lead to underestimation of
health risks.

To address this disparity, region-specific resources
such as the Taiwan Biobank and Taiwan’s National
Health Insurance Research Database offer valuable Asian
population-based insights. These have informed proposals
to lower the overweight and obesity thresholds to 23 and
27 for Asian populations respectively, in the endeavor to
enhance disease risk prediction and improve public health
strategies. Looking ahead, the integration of genetic, di-
etary and environmental factors holds promise for advanc-
ing more personalized and accurate health assessment mod-
els.

4.4 Addressing Confounding and Limitations in the TCGA
Dataset Related to the Obesity Paradox

Although this study utilizes TCGA data to investigate
the relationship between obesity and cancer prognosis and
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observes the so-called “obesity paradox” in certain con-
texts, where patients with higher BMI exhibit better out-
comes, these findings should be interpreted with caution.
The TCGA dataset lacks many potential confounding vari-
ables such as treatment history, comorbidities (e.g., dia-
betes) and lifestyle factors (e.g., smoking and physical ac-
tivity), whichmight lead to residual confounding and distort
the true relationship between obesity and prognosis. Fur-
thermore, BMI is measured at a single time point, limiting
the ability to capture weight changes over time and to differ-
entiate between fat and muscle mass. The retrospective na-
ture of the study design further constrains causal inference;
accordingly, future prospective cohort studies with more
comprehensive clinical data are warranted to clarify the true
causal relationship between obesity and cancer prognosis
and validate the observed “obesity paradox” phenomenon
reported in this study.

4.5 Need for Experimental Confirmation

Regarding experimental validation such as qPCR or
Western blot, we agree that such assays could further
strengthen the biological significance of our findings. How-
ever, these experiments fall beyond the current scope and
resources of this study, which is primarily computational
in nature. Although this study does not include laboratory-
based experimental validation, we conducted pathway en-
richment analysis using the MGSA method to explore
the functional relevance of the top-ranked BMI-associated
genes, with results indicating that these genes could be in-
volved in metabolic and inflammatory pathways known to
be associated with obesity and cancer progression.

4.6 Cancer-Specific vs. Pan-Cancer Perspectives

This study focuses on four cancer types: BLCA,
CESC, LIHC and ESCA, selected based on their sam-
ple sizes, BMI distributions and biological characteristics.
However, the current results are not yet placed within the
broader TCGA pan-cancer framework, which might limit
the generalizability of the findings. Notably, LIHC and
ESCA show lower obesity rates, which likely relate to their
unique disease etiologies and risk factors such as viral in-
fections, alcohol consumption or chronic hepatitis thereby
possibly weakening the association between BMI and can-
cer outcomes; additionally, the interactions between BMI
and gene expression vary across cancer types, suggesting
that the prognostic impact of BMI could be cancer-type spe-
cific. Future research should expand analysis to additional
cancer types to more comprehensively assess the universal-
ity and biological relevance of BMI-associated gene signa-
tures.

5. Conclusions
This study highlights the critical role of BMI in cancer

development and prognosis, using TCGA data for in-depth
analysis. Both high and low BMI levels were found to be

linked to increased cancer risk, where obesity plays a role
through hormonal imbalance, inflammation and immune
dysfunction, while at the same time, underweight individ-
uals might suffer from malnutrition and reduced treatment
tolerance. BMI also affects treatment outcomes: obese pa-
tients often face higher complication risks, while under-
weight individuals might recover less effectively. Interest-
ingly, the “obesity paradox” suggests that in some cancers,
higher BMI can be linked to better survival, underscoring
the complex, context-dependent nature of the BMI–cancer
relationship.

Using the OGS method combined with regularized re-
gression, particularly the OGS_G.ridge_ALasso model, we
identified BMI-related genes and interactions from high-
dimensional genetic data. This model performed best in
accuracy and consistency, particularly in settings with over-
lapping genetic signals. By applying it to TCGA data, we
uncovered meaningful molecular links between BMI and
cancer, supporting the importance of maintaining a healthy
BMI and offering a framework for exploring gene networks
and biomarkers that can inform personalized cancer care.
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