

Original Research

Integrative Analysis of BMI and Gene Expression Reveals Molecular Interactions Underlying Cancer Progression

Jie-Huei Wang^{1,*}, Hui-Chen Lu¹, Zih-Han Wu¹, Tzu-Chi Chang²

Academic Editor: Chen Li

Submitted: 9 June 2025 Revised: 24 July 2025 Accepted: 30 July 2025 Published: 25 August 2025

Abstract

Background: Obesity is a chronic condition linked to health issues such as diabetes, heart disease, and increased cancer risk. High body mass index (BMI) is associated with cancers such as breast and colorectal cancer due to hormone imbalances and inflammation from excess fat, whereas a low BMI can raise cancer risk by weakening the immune system. Maintaining a normal BMI improves cancer treatment outcomes, but in some cases, higher BMI might offer protective effects—a phenomenon known as the "obesity paradox". This study explores how BMI affects gene expression in cancer, using data from The Cancer Genome Atlas (TCGA), aiming to uncover links between BMI and cancer progression while identifying potential treatment targets. Methods: To analyze the data, a two-stage method using overlapping group screening (OGS) was applied. First, gene groups were identified with the "grpregOverlap" R package. Then, their interactions were tested using the sequence kernel association test. Significant gene-gene interactions were selected based on statistical measures. In the second stage, predictive models were built using regularized regression techniques such as ridge regression, lasso, and adaptive lasso, with generalized ridge regression used to improve accuracy and stability in handling high-dimensional data. Results: The proposed OGS-based method was tested on simulated and real-world datasets. Results showed that combining OGS with generalized ridge regression and adaptive lasso (OGS_G.ridge_ALasso) gave the best prediction performance, with lower error rates and greater stability compared to other models like support vector regression, k-nearest neighbors, and random forests. In practical applications, gene expression and BMI data from TCGA patients (including bladder, cervical, esophageal and liver cancers) were integrated to identify key genes and interactions related to BMI. Conclusions: Through evaluations on both simulated synthetic datasets and real-world datasets, we demonstrated the effectiveness of the proposed method in terms of predictive accuracy. Additionally, we identified BMI-associated genes and gene-gene interaction biomarkers across different cancer types and presented the corresponding network structures. Based on the key genes and gene interactions identified, we further explored how BMI influences cancer development and prognosis, providing deeper insights into the biological mechanisms underlying these associations.

Keywords: body mass index; gene-gene interaction; overlapping group screening; precision medicine; regularized linear regression; TCGA

1. Introduction

According to the World Health Organization (WHO) in its report Obesity and Overweight, obesity is a chronic and multifaceted condition characterized by excessive fat accumulation that can negatively affect health. It increases the risk of developing conditions such as type 2 diabetes, heart disease and certain cancers. Obesity also impacts bone health, reproductive function, and can reduce quality of life by affecting sleep and physical activity levels [1]. The link between Body Mass Index (BMI) and cancer risk is a critical concern in the field of health. BMI, a metric calculated from a person's height and weight, is commonly used to assess whether an individual is underweight, overweight, or at a healthy weight. The formula for calculating BMI is: BMI = weight (kg) / height (m) 2 . Both high and low BMI are associated with an increased risk of developing cancer.

A high BMI (overweight or obesity) increases the risk of several cancers including breast, colorectal, endometrial,

esophageal and kidney cancers [2–4]. Excess fat alters hormone levels, such as androgens, estrogens and progesterone that can promote cancer growth [5]. It is also linked to insulin resistance and elevated insulin levels, further increasing cancer risk. Obesity triggers chronic inflammation and immune response changes that support cancer cell growth [6]. Conversely, low BMI (underweight) can increase cancer risk due to malnutrition and weakened immunity, making the body more susceptible to cancer while also being associated with digestive system cancers such as oral and gastric cancers [7]. Maintaining a healthy BMI (18.5–24.9) through a balanced diet and moderate exercise can therefore help reduce cancer risk.

BMI significantly affects the prognosis of cancer patients. Huang *et al.* [8] showed that a high BMI (obesity) is linked to poorer outcomes, with obese patients facing higher risks of complications, treatment failure and cancer recurrence, especially in breast and colorectal cancers. Obese patients also have higher mortality risks in can-

¹Department of Mathematics, National Chung Cheng University, 621301 Chiayi, Taiwan

²Institute of Statistics, National University of Kaohsiung, 811 Kaohsiung, Taiwan

^{*}Correspondence: jhwang@ccu.edu.tw (Jie-Huei Wang)

cers like uterine, colorectal, ovarian and liver cancers [7]. In contrast, underweight patients may experience malnutrition, weakened immunity, poor treatment tolerance and longer recovery, leading to shorter survival [9]. Maintaining a normal BMI (18.5–24.9) improves prognosis, with better treatment outcomes, lower recurrence and longer survival, as it supports immune function, reduces metabolic issues, and enhances treatment effectiveness.

Obese breast cancer patients, especially postmenopausal women, have a higher risk of recurrence after surgery [10]. Overweight and obese prostate cancer patients are at greater risk of postoperative recurrence and have lower survival rates [11] while further reducing treatment effectiveness and inducing more severe side effects [12]. Significant weight changes, whether loss or gain, can affect prognosis, particularly during chemotherapy, and markedly, excessive weight loss (cancer cachexia) is linked to poorer survival outcomes [13]. In conclusion, both high and low BMI are associated with worse cancer prognosis, while maintaining a normal BMI improves treatment outcomes and survival.

While obesity is traditionally seen as a carcinogen, it may have a protective effect in certain stages and types of cancer by enhancing antitumor immunotherapy. This challenges the view that obesity increases cancer mortality risk, known as the "Obesity Paradox". The paradox suggests that overweight and Class 1 obese (BMI = 25-34.9) cancer patients may have a better prognosis than lean individuals, though this is not true for all patients or cancer types [14]. Studies like Tu et al. [15] found that although overweight or obesity increases the risk of developing cancer, among patients already diagnosed with cancer, having a slightly higher body weight around the time of diagnosis is associated with lower risk of death and longer survival, and this finding applies to most cancer types. Petrelli et al. [16] found that obese patients with cancers like renal cell carcinoma, lung cancer and melanoma may better tolerate chemotherapy and experience lower mortality rates.

Alifano et al. [17] studied the impact of preoperative BMI on survival in non-small cell lung cancer (NSCLC) patients undergoing lung resection, and determined that underweight patients had lower survival rates, while overweight and obese patients had better outcomes. For obese patients, a higher BMI was associated with improved survival, even after adjusting for various factors. In breast cancer, Modi et al. [18] found that a higher BMI worsened survival in early breast cancer (EBC) but improved survival in advanced breast cancer (ABC). In colorectal cancer, some studies linked obesity to a higher risk of death, while others showed that obese patients had longer survival and better treatment tolerance [19]. In summary, while obesity is generally associated with increased health risks, in certain cancer patients, a higher BMI may be linked to lower mortality, potentially due to factors like treatment tolerance, biological mechanisms, hormone levels and cancer subtypes.

This study used The Cancer Genome Atlas (TCGA) data to explore the relationship between BMI and gene expression. BMI, as an indicator of body fat, can influence various aspects of a cancer patient's physiological condition, nutritional status and immune system. Abnormal BMI (either high or low) is often associated with biological changes that may affect gene expression, metabolic pathways, immune responses and more. By analyzing TCGA data, we can investigate the correlation between BMI and specific genes or gene clusters related to metabolism, inflammation, hormone regulation or cell proliferation, providing insights into how BMI impacts cancer development and prognosis. Additionally, genes interact to regulate processes like cell growth, death and migration, and studying such interactions between BMI-related genes can offer a more comprehensive understanding of how BMI influences cancer biology. For example, certain genes may collaborate in high BMI patients to drive cancer progression or influence treatment response. This research could uncover molecular mechanisms linking BMI to cancer and identify new targets or biomarkers to better understand how BMI affects cancer onset and prognosis.

The BMI Characteristics of TCGA Cancer Samples

We analyzed data from 1825 patients across seven TCGA cancer types to explore BMI-associated molecular characteristics with details shown in Table 1. Due to the small number of underweight cases (BMI <18.5), patients were grouped based on Hu et~al.~ [20] into normal weight (BMI <25), overweight (25 \leq BMI < 30) and obese (BMI \geq 30). The study focused on BMI characteristics analysis for bladder urothelial carcinoma (BLCA), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), colon adenocarcinoma (COAD), colorectal adenocarcinoma (COADREAD), esophageal carcinoma (ESCA), kidney renal papillary cell carcinoma (KIRP) and liver hepatocellular carcinoma (LIHC).

As shown in Fig. 1, over 60% of patients in most cancer types had a BMI >25, except for ESCA and LIHC. The low obesity rate in ESCA could result from symptoms like difficulty or pain when swallowing, vomiting after meals, and weight loss; similarly, LIHC patients often suffer from appetite loss and rapid weight loss, leading to more normal-weight individuals and fewer with obesity.

Fig. 2 (top) shows the distribution of overweight and obese patients across cancer types, totaling 1093 individuals. BLCA had the highest number (209 patients, 19.1%), while ESCA had the lowest (78 patients, 7.1%), consistent with the previously noted lower BMI trend in ESCA. Patients were also grouped by sex: 750 females and 1075 males. As shown in Fig. 2 (middle), BLCA was the most common cancer type among overweight and obese males. Based on these findings, we further examined BMI-related gene expressions in BLCA and CESC. In Fig. 2 (bottom), CESC had the highest proportion among overweight and

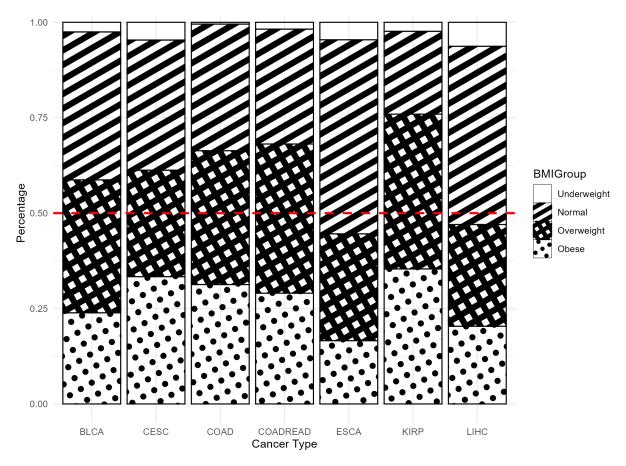


Fig. 1. Proportion of four BMI groups across different cancer types. BMI, Body Mass Index.

Table 1. BMI information of all cancer patients.

Cancer Type	Number of Patients	Underweight (BMI <18.5)	Normal (BMI 18.5–25)	Overweight (BMI 25-30)	Obese (BMI ≥30)
BLCA	356	9	138	124	85
CESC	258	12	88	72	86
COAD	211	1	70	74	66
COADREAD	279	5	84	109	81
ESCA	175	8	89	49	29
KIRP	212	5	46	86	75
LIHC	334	21	156	89	68

BMI, Body Mass Index; BLCA, bladder urothelial carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; COAD, colon adenocarcinoma; COADREAD, colorectal adenocarcinoma; ESCA, esophageal carcinoma; KIRP, kidney renal papillary cell carcinoma; LIHC, liver hepatocellular carcinoma.

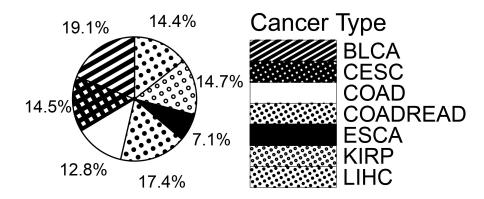
obese females. This supports findings by Clarke *et al.* [21], which suggest that overweight and obese women face a higher risk of CESC, potentially due to under-diagnosis of precancerous lesions.

Fig. 3 shows the BMI distribution for male and female patients across various cancer types. The boxplot highlights the median BMI, interquartile range (IQR) and outliers. Generally, the median BMI is similar for both genders, except in BLCA and KIRP, where males have slightly higher BMIs. In COAD, COADREAD and ESCA, females have a slightly higher median BMI. Additionally, CESC shows greater BMI variability, suggesting more significant differences among patients.

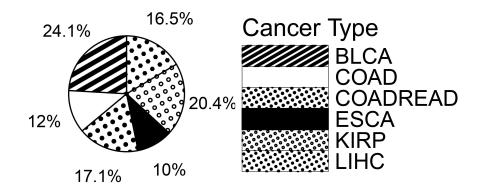
Fig. 4 displays the two-year and five-year survival rates for patients across different cancer types. Except for ESCA and LIHC, which have lower obesity rates, other cancer types with higher obesity proportions have a two-year survival rate above 35%, some exceeding 55% (e.g., KIRP), while five-year survival rate differences are less pronounced. Fig. 5 shows Kaplan-Meier survival curves for each BMI category (normal, overweight, obese), with a log-rank test *p*-value of 0.001, indicating a significant survival difference between the groups where overweight and obese groups have higher survival rates than the normal group.

We conducted a Cox regression analysis using the three BMI categories (normal, overweight and obese) as a

The percentages of overweight and obese patients across different cancer types



Cancer Type Distribution Among Overweight and Obese Male Patients



Cancer Type Distribution Among Overweight and Obese Female Patients

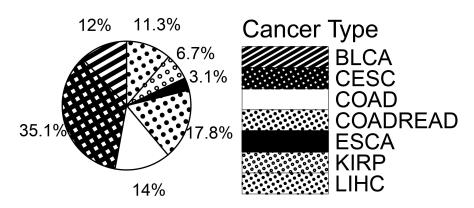


Fig. 2. Percentage of overweight and obese patients by cancer type and gender.

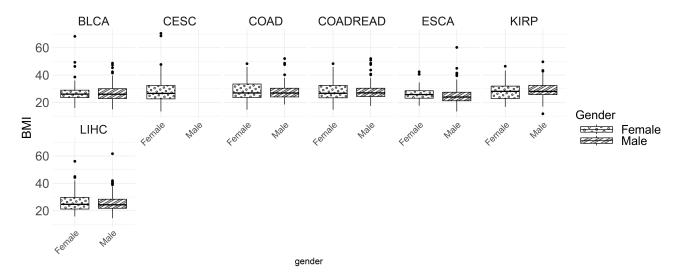


Fig. 3. BMI distribution by gender and cancer type.

Table 2. Cox model results adjusted for age and gender with BMI categories.

	Table 2. Cox model results adjusted for age and gender with Divir categories.								
Cancer Type	Number of Patients	Censoring rate	Coef (p-value) of BMI_overweight	Coef (p-value) of BMI_obesity					
All DATA	1825	0.7200	-0.2307 (0.0223)	-0.4190 (0.0003)					
BLCA	356	0.5787	0.2539 (0.1760)	-0.0461 (0.8341)					
CESC	258	0.7984	-0.5499 (0.1429)	-0.3802 (0.2326)					
COAD	211	0.8009	-0.0657 (0.8402)	-1.3015 (0.0182)					
COADREAD	279	0.8029	-0.0869 (0.7681)	-0.7899 (0.0567)					
ESCA	175	0.6000	-0.0514 (0.8601)	0.2367 (0.4470)					
KIRP	212	0.8585	0.0251 (0.9580)	-0.2200 (0.6640)					
LIHC	334	0.6647	-0.3190 (0.1730)	-0.2047 (0.4090)					

categorical variable, adjusting for age and gender. Table 2 shows the coefficient estimates, *p*-values and hazard ratios for BMI (overweight) and BMI (obesity) across seven cancer types with results indicating that, except for BLCA and ESCA, the coefficient estimates for BMI (overweight) and BMI (obesity) were mostly negative, suggesting a lower risk of death with higher BMI. Specifically, negative and statistically significant coefficients for BMI (obesity) were seen in COAD, COADREAD and the combined data, while the coefficient for BMI (overweight) was also negative and significant for the combined data.

In summary, this study analyzed 1825 patients from seven TCGA cancer types to investigate the relationship between BMI, cancer characteristics and prognosis. Most patients were overweight or obese except for those with ESCA and LIHC, likely due to weight loss related to disease symptoms. Among high-BMI patients, bladder cancer (BLCA) was most common in males, and cervical cancer (CESC) in females. Higher BMI was generally associated with better two-year survival rates. Kaplan-Meier and Cox regression analyses indicated that, except for BLCA and ESCA, higher BMI was linked to a lower risk of death in most cancer types.

Although the Kaplan–Meier curves indicate that overweight and obese patients had significantly better survival rates (p = 0.001), the Cox regression results varied across cancer types. The non-significant findings in BLCA and ESCA might be due to limited sample sizes (particularly in ESCA), tumor heterogeneity, or the lack of clinical information such as treatment details and comorbidities in the TCGA dataset. It is also important to note that the Kaplan–Meier analysis reflects unadjusted survival differences, while the Cox model adjusts for variables such as age and gender, so such adjustment might dilute the effect of BMI, especially in cancer types where these covariates have a strong impact on prognosis. Caution should therefore be exercised when interpreting the relationship between BMI and survival.

2. Materials and Methods

2.1 Data Structure and the Multiple Pathways

We conducted a study with n subjects, each with genetic data represented by a vector of p genes $\mathbf{x}_i = (\mathbf{x}_{i1}, \dots, \mathbf{x}_{ip})'$, the interactions between genes are represented by $\mathbf{w}_i = (\mathbf{x}_{i1}\mathbf{x}_{i2}, \dots, \mathbf{x}_{i1}\mathbf{x}_{ip}, \mathbf{x}_{i2}\mathbf{x}_{i3}, \dots, \mathbf{x}_{ip-1}\mathbf{x}_{ip})'$, based on a specific genotyping encoding. The number of genes might exceed the sample size, and high-dimensional statistics literature, such as Jacob *et al.* [22] provides theoretical guidance on the relationship between p and n. Genes are grouped into G potentially overlapping pathways, where

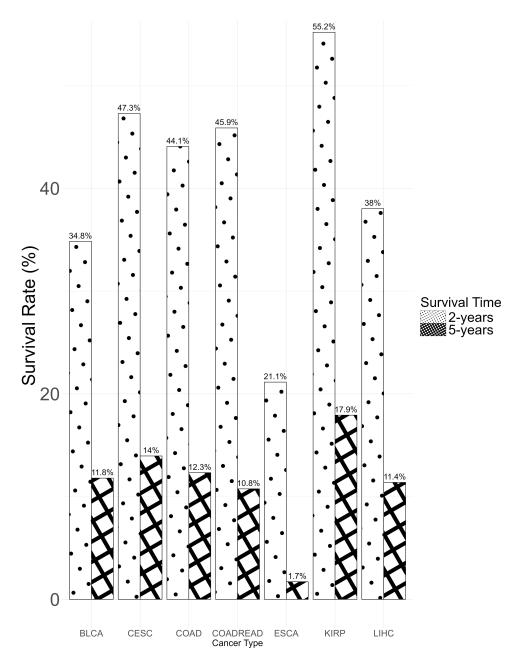


Fig. 4. Two-year and five-year survival rates by cancer type.

a gene could belong to multiple pathways, reflecting their hierarchical structure—common in gene expression data. The study aimed to identify genes and interactions associated with BMI phenotype using this natural structure. Pathway data are available from the human molecular signature database (MSigDB): http://www.broadinstitute.org/g sea/msigdb.

TCGA transcriptomic data were obtained using the R package "UCSCXenaTools" [23], while genomic data for TCGA BLCA, LIHC, ESCA and CESC used in this study were available from the TCGA Hub on the UCSC Xena platform (https://tcga.xenahubs.net). For example, the TCGA BLCA dataset comprised 365 patients with recorded height and weight measurements, along with gene

expression profiles covering 20,501 genes per individual. BMI was derived from the height and weight data.

2.2 Regression Model Performance Metrics

To compare the performance of regression models, the study used several performance metrics from the R package "Metrics" such as Min-Max Accuracy, mean absolute percentage error (MAPE), symmetric mean absolute percentage error (SMAPE), root mean squared error (RMSE), mean absolute scaled error (MASE), mean absolute error (MAE) and median absolute error (MDAE). The definitions are as follows:

$$Min - Max \ Accuracy = 1 - \frac{\sum |y_i - \widehat{y}_i|}{max(y) - min(y)};$$

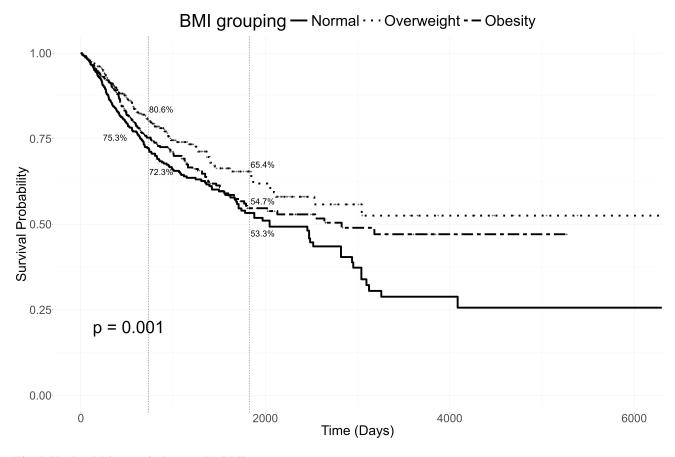


Fig. 5. Kaplan-Meier survival curves by BMI group.

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} |\frac{y_i - \hat{y}_i}{y_i}| \times 100\%;$$

$$SMAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{|y_i - \hat{y}_i|}{(|y_i| + |\hat{y}_i|)/2} \times 100\%;$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2};$$

$$MASE = \frac{\frac{1}{n} \sum_{i=1}^{n} |y_i - \widehat{y}_i|}{\frac{1}{m} \sum_{j=1}^{m} |y_j - y_{j-1}|};$$

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \widehat{y}_i|;$$

$$MDAE = median(|y_1 - \hat{y}_1|, |y_2 - \hat{y}_2|, \dots, |y_n - \hat{y}_n|).$$

Among these metrics, only Min-Max Accuracy favors values close to 1, indicating better model performance; for all others, so smaller values imply fewer errors and better predictions. Each metric suits different contexts: RMSE

emphasizes larger errors and is suitable when extreme errors matter, while MAE provides a general average error size. MDAE, based on the median, is more robust to outliers and useful when extreme values exist. MASE is common in time series analysis, allowing comparison across different scales. MAPE and SMAPE express errors as percentages; however, MAPE can become unstable when actual values near zero, while SMAPE mitigates this through symmetric treatment. Studies [24] highlight MAPE's bias toward low predictions, making it less reliable in some cases. SMAPE, introduced to address MAPE's limitations, is gaining popularity due to its balanced error expression [25,26]. Thus, this study focuses on SMAPE results. In summary, selecting the right metric based on data traits is crucial for meaningful model evaluation.

2.3 The Overlapping Group Screening Approach for Ouantitative Trait

This study applied overlapping group screening (OGS) to identify gene and interaction biomarkers related to quantitative phenotypes. OGS has been widely used in genomics, addressing outcomes such as censored survival time [27], binary tissue classification [28] and multinomial cancer subtype classification [29]. The method uses a two-stage group screening to detect both main and interaction effects. Since gene pathways can overlap, the latent effect

model by Jacob *et al.* [22] is adopted to handle shared genes across groups. All transcriptomic data must be standardized before applying OGS. The procedure of the OGS method for linear regression models $y_i = \mathbf{x}_i'\boldsymbol{\beta} + \mathbf{w}_i'\boldsymbol{\theta} + \varepsilon_i, i = 1, \dots, n$. is as follows.

Step 1: To identify biologically relevant gene sets (i.e., pathways), we began by applying the overlapping group binary logistic regression framework, implemented via the R package "grpregOverlap" [30]. This approach enables simultaneous feature selection while accommodating gene membership in multiple functional groups.

Step 2: Building on the strategy proposed by Wang and Chen [27], we generated sets of gene-gene (G-G) interaction pairs, which fall into three categories: interactions occurring within a single candidate pathway, interactions spanning two distinct candidate pathways identified in Step 1, and interactions linking one selected pathway with a previously uncharacterized pathway. For each group of G-G interactions, we evaluated its association with the quantitative trait using the Sequence Kernel Association Test (SKAT) [31]. This test yields a group-level p-value by aggregating the effects of individual interactions through a weighted sum of chi-square distributions. The p-values are derived using the Davies method [32], implemented in the "CompQuadForm" R package [33]. A lower p-value signifies stronger evidence for association and thus higher relevance in downstream analysis. Interaction groups are retained for model development if their p-values fall below a predetermined threshold.

Step 3: Finally, incorporating the selected pathways and interaction groups, we constructed a predictive model for BMI based on microarray data. This is achieved through regularized linear regression methods, including ridge regression, lasso [34] and adaptive lasso [35], as implemented in the "glmnet" R package [36]. We also provided a detailed description of the OGS method, including its mathematical formulation, underlying assumptions (such as group sparsity and gene overlap), and the associated optimization procedure, with full details presented in the **Supplementary Material**.

2.4 Regularized Linear Regression

Regularized regression controls model complexity by adding a penalty term to the objective function, aiming to prevent overfitting, improve generalization, and identify key variables in high-dimensional data. It extends ordinary least squares (OLS) by penalizing both large and small regression coefficients to reduce overfitting and model complexity. Common methods include ridge (L2), lasso (L1) and adaptive lasso. Adaptive lasso builds on ridge estimates to reduce multi-collinearity, then uses their absolute values in a weighted lasso penalty, increasing the chance of shrinking unimportant coefficients to zero and selecting the most relevant features.

According to the study by Hoerl and Kennard [37], the objective function of the ridge regularized linear regression model is as follows:

$$\widehat{\boldsymbol{\eta}} = argmin_{\boldsymbol{\eta}} \left\{ \sum_{i=1}^{n} (y_i - \boldsymbol{u}_i \boldsymbol{\eta})^2 + \lambda \sum_{j=1}^{d} \eta_j^2 \right\}.$$

The vector \boldsymbol{u} represents the genes and gene interaction terms selected using the OGS method, while $\lambda \sum_{j=1}^d \eta_j^2$ is the penalty term, which corresponds to the sum of the squared coefficients of the variables considered in the candidate model.

According to the study by Tibshirani [34], the objective function of the linear regression model with lasso (least absolute shrinkage and selection operator) is as follows:

$$\widehat{\boldsymbol{\eta}} = argmin_{\boldsymbol{\eta}} \left\{ \sum_{i=1}^{n} (y_i - \boldsymbol{u}_i \boldsymbol{\eta})^2 + \lambda \sum_{j=1}^{d} |\eta_j| \right\}.$$

The vector \boldsymbol{u} represents the genes and gene interaction terms selected using the OGS method, while $\lambda \sum_{j=1}^d \left| \eta_j \right|$ is the penalty term, which corresponds to the sum of the absolute values of the coefficients of the variables considered in the candidate model.

Adaptive lasso is an improved regularization method of lasso, primarily aimed at overcoming the issue of selection inconsistency in lasso and enhancing the accuracy of variable selection. The core idea is to introduce weights into the penalty term of lasso, adjusting the penalty based on the importance of the variables. According to Zou [35], the objective function of adaptive lasso is as follows:

$$\widehat{\boldsymbol{\eta}} = argmin_{\eta} \left(\sum_{i=1}^{n} (y_i - \boldsymbol{u}_i \boldsymbol{\eta})^2 + \lambda \sum_{j=1}^{d} w_j |\eta_j| \right).$$

The vector \boldsymbol{u} represents the genes and gene interaction terms selected using the OGS method, and $w_j = \frac{1}{|\hat{\beta}_j^*|\gamma}$ (where, in cases with more parameters than samples, it is recommended to use the OLS estimated coefficients; otherwise, the ridge method's estimated coefficients are suggested as the initial estimates for the weights). The parameter $\gamma>0$ controls the degree of weight decay, and λ is the regularization parameter. This design allows adaptive lasso to apply smaller penalties to variables with larger coefficients and larger penalties to those with smaller coefficients, thus enhancing the consistency of variable selection when identifying important variables. The advantages and disadvantages of the three regularization functions are summarized in Supplementary Table 1.

2.5 Generalized Ridge Regression

In high-dimensional data (where p > n), traditional linear regression is not suitable for processing such data, so ridge regression is typically used for these types of data. Traditional ridge regression uniformly shrinks all regres-

sion coefficients towards zero, which might not be the best strategy when dealing with high-dimensional and sparse data. However, generalized ridge regression is a regression method designed for high-dimensional data and sparse models [38] where the goal is to extend uniform shrinkage in high-dimensional scenarios to non-uniform shrinkage, replacing the identity matrix I_n in ridge regression with a diagonal matrix $W(\Delta)$, and it proposes

$$\widehat{\boldsymbol{\beta}}(\lambda, \Delta) = \left\{ \boldsymbol{X}' \boldsymbol{X} + \lambda \widehat{\boldsymbol{W}}(\Delta) \right\}^{-1} \boldsymbol{X}' \boldsymbol{y},$$

where $\lambda>0$ is the shrinkage parameter, and $\Delta\geq0$ is the threshold parameter. The diagonal elements of the main diagonal matrix $\widehat{\boldsymbol{W}}(\Delta)$ are suggested to take larger values for β components that are close to zero, forming

$$\widehat{\boldsymbol{W}}(\Delta) = diag\{w_1(\Delta), \cdots, w_p(\Delta)\},\$$

where

$$\widehat{w_{J}}\left(\Delta\right) = \left\{ \begin{array}{l} \frac{1}{2}, & \frac{\widehat{\beta}_{j}^{0}}{SD(\widehat{\boldsymbol{\beta}}^{0})} \geq \Delta \\ 1, & \frac{\widehat{\beta}_{j}^{0}}{SD(\widehat{\boldsymbol{\beta}}^{0})} < \Delta \end{array} \right\}, j = 1, \cdots, p;$$

$$SD\left(\widehat{\boldsymbol{\beta}}^{0}\right) = \left\{\sum\nolimits_{j=1}^{p} \left(\widehat{\boldsymbol{\beta}}_{j}^{0} - \frac{1}{p}\sum\nolimits_{j=1}^{p} \widehat{\boldsymbol{\beta}}_{j}^{0}\right)^{2}/(p-1)\right\}^{1/2};$$

$$\widehat{\boldsymbol{\beta}}^{0} = (\widehat{\beta}_{1}^{0}, \cdots, \widehat{\beta}_{p}^{0})', \ \widehat{\beta}_{j}^{0} = X_{j}' \boldsymbol{y} / \boldsymbol{X}_{j}' \boldsymbol{X}_{j}.$$

The optimal (λ, Δ) is estimated through the modified generalized cross-validation function, which is defined as:

$$V(\lambda, \Delta) = \frac{\frac{1}{n} \| \{I_n - A(\lambda, \Delta)\} \mathbf{y} \|^2}{\left[\frac{1}{n} Tr \{I_n - A(\lambda, \Delta)\}\right]^2},$$

where $A(\lambda,\Delta) = \boldsymbol{X} \Big\{ \boldsymbol{X}' \boldsymbol{X} + \lambda \widehat{\boldsymbol{W}}(\Delta) \Big\}^{-1} \boldsymbol{X}'$. Then, $(\widehat{\lambda},\widehat{\Delta})$ are defined as $(\widehat{\lambda},\widehat{\Delta}) = \arg\min_{\lambda \geq 0,\Delta \geq 0} V(\lambda,\Delta)$. Given $\Delta,V(\lambda,\Delta)$ is continuous with respect to λ , and any optimization method (such as the R optim function) can be used to minimize it in order to obtain $\widehat{\lambda}(\Delta)$. In sparse and high-dimensional models, the histogram of $\frac{\widehat{\beta}_j^0}{SD(\widehat{\beta}^0)},j=1,\cdots,p$, can be approximated as a standard normal distribution, so a search range of $\Delta\in[0,3]$ is enough. Since $V(\widehat{\lambda}(\Delta),\Delta)$ is discontinuous with respect to Δ , it is recommended to use grid search, defined as $D=\{0,\frac{3}{100},\cdots,\frac{300}{100}\}$.

Finally, the generalized ridge regression estimator is defined as

$$\widehat{\boldsymbol{\beta}}\left(\widehat{\lambda},\widehat{\Delta}\right) = (\boldsymbol{X}'\boldsymbol{X} + \widehat{\lambda}\boldsymbol{W}\left(\widehat{\Delta}\right))^{-1}\boldsymbol{X}'\boldsymbol{y}.$$

$$\begin{array}{lll} \text{In} & \text{addition,} & \widehat{\sigma}^2 & = & \frac{\left\| \boldsymbol{y} - \boldsymbol{X} \widehat{\boldsymbol{\beta}} \left(\widehat{\boldsymbol{\lambda}}, \widehat{\boldsymbol{\Delta}} \right) \right\|^2}{v}, & \text{where} \\ v & = & Tr\{ \left(I_n - A\left(\widehat{\boldsymbol{\lambda}}, \widehat{\boldsymbol{\Delta}} \right) \right\}^2, A\left(\widehat{\boldsymbol{\lambda}}, \widehat{\boldsymbol{\Delta}} \right) & = & \\ \boldsymbol{X}\{\boldsymbol{X}'\boldsymbol{X} + \widehat{\boldsymbol{\lambda}} \widehat{\boldsymbol{W}} \left(\widehat{\boldsymbol{\Delta}} \right) \right\}^{-1} \boldsymbol{X}' & \end{array}$$

Generalized ridge regression can be implemented using the R package "g.ridge". Emura *et al.* [39] showed through simulations and real data that it outperforms traditional ridge regression. They recommend standardizing predictors and excluding an intercept term; thus, the response variable Y should be centered by subtracting its mean. This study uses estimates from generalized ridge regression as initial weights for Adaptive Lasso, aiming to enhance prediction performance.

2.6 The Alternative Classification Methods

In our machine learning (ML) pipeline, we begin by utilizing the OGS method to pinpoint key gene biomarkers and interaction signals that will serve as features for downstream predictive modeling.

To construct regression-based prediction models, we explore several algorithms. For support vector regression (SVR), we adopt a radial basis function kernel. Hyperparameter tuning is performed for the "Cost" parameter across a wide logarithmic scale: 10^{-2} , 10^{-1} , 1, 10^{1} , ..., 10^{5} , including 0, and for the "Epsilon" parameter across values from 0.0 to 1.0 in 0.1 increments. This grid search and model evaluation are carried out using the tune function from the "e1071" R package, which performs crossvalidation to identify the optimal SVR configuration. For the k-nearest neighbors (KNN) algorithm, we employ a rectangular kernel and use the kknn function from the "kknn" package. The number of neighbors is tuned within a range of 1 to 50 through cross-validation, seeking the value that yields the best predictive accuracy. Within the Random Forest (RF) modeling framework, two key hyperparameters are optimized: the number of trees, evaluated across values from 1 to 500, and the number of features considered at each split, explored over a range from 1 to d/3, where d denotes the number of features [40]. This tuning process is implemented using the randomForest and tuneRF functions from the "randomForest" R package, again relying on cross-validation to determine the configuration that offers the best generalization performance.

3. Results

In the following simulations, we evaluate the predictive performance of the proposed OGS method combined with regularized regression or machine learning models, and compare it to Oracle, sure independence screening (SIS) Lasso and Ordinary Lasso methods. The Oracle method uses the true underlying model, which is known in simulations but not in real-world cases. SIS Lasso first ranks genes and gene-gene (G-G) interactions using univariate regression, selects the top n / $(2 * \log (n))$ predictors, and applies lasso regression to build the final model. Ordi-

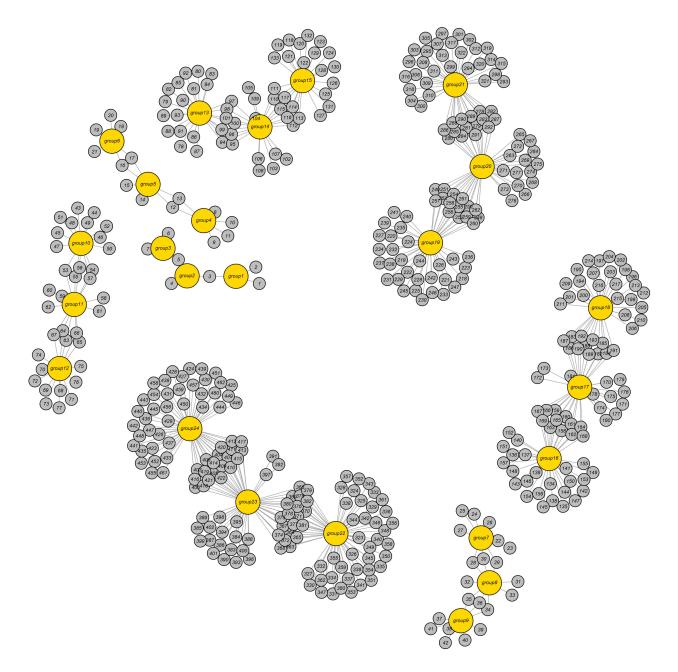


Fig. 6. The gene network structure for the varying gene group-size data.

nary Lasso directly applies lasso regression to all genes and G-G interactions without preselection.

3.1 Evaluation on Simulated Genomic Datasets With Overlapping Gene Structures

To demonstrate the effectiveness of the proposed OGS-based feature selection combined with regularized linear regression, we perform a comprehensive numerical study. This analysis not only highlights the behavior of our approach under controlled conditions but also benchmarks its predictive accuracy against a set of well-established machine learning algorithms. A synthetic dataset comprising 300 simulated observations is employed for training purposes. Each individual response is generated from an un-

derlying linear regression framework, ensuring a structured ground truth for model comparison,

$$y_i = \mathbf{x}_i' \boldsymbol{\beta} + \mathbf{w}_i' \boldsymbol{\theta} + \varepsilon, \ i = 1, ..., 300$$

with the covariates \mathbf{x} are distributed uniformly between (–3,3) and \mathbf{w} denotes the two-way interaction covariates. To evaluate the predictive performance of the models, we generate an independent test dataset consisting of 100 samples. These samples are drawn from the same underlying distribution as the training data but are not used during model training, ensuring an unbiased assessment of generalization accuracy.

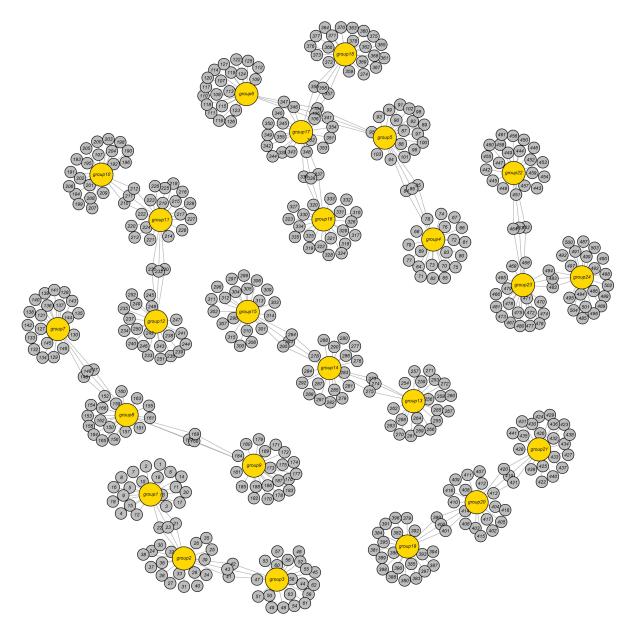


Fig. 7. The gene network structure for the equal gene group-size data.

The simulation considers both gene group size and overlapping structure, as illustrated in Fig. 6. For example, groups 10 and 11 each contain 15 genes, sharing 5 genes and totaling 25 unique ones. In total, the study includes 462 genes and 594 group-specific gene effects. Groups 1, 7, 13 and 19 are set to have significant effects, with constant values of 2.25, 2.25, 1.5 and –1.5 respectively. In group 13, key gene-gene interactions (G78–G90, G80–G88, G82–G86) have coefficients of 4, 6 and 4. For groups 13 and 7, interactions (G23–G81, G24–G83, G25–G85) have coefficients 4, 6 and 4.8. The simulation includes 106,953 major gene and G-G interaction pairs.

We conducted the simulation 200 times to obtain numerical results. As shown in Table 3, the OGS method with ridge, lasso and adaptive lasso penalties consistently outperformed other methods, including standard ML tech-

niques. Notably, OGS_G.ridge_ALasso achieved the best SMAPE performance, averaging 96.4460% with a standard deviation of 13.1026%, indicating both low prediction error and high stability. This highlights its strong advantage in high-dimensional prediction tasks.

Compared to other ML methods like OGS_RF, OGS_SVR and OGS_KNN, OGS_G.ridge_ALasso shows significantly higher accuracy. OGS_KNN (SMAPE: 159.9890%) and OGS_SVR (SMAPE: 139.3309%) have large fluctuations, indicating poor stability and adaptability. Even against the relatively strong OGS_Lasso, OGS_G.ridge_ALasso performs better across multiple metrics, including SMAPE, Min-Max Accuracy, MAE and MDAE, demonstrating more balanced predictive performance.

Table 3. The average (standard deviation) of prediction accuracy from 200 simulation analyses under gene structure I.

Method	MinMax Accuracy	MAPE (%)	SMAPE (%)	RMSE	MASE	MAE	MDAE
Oracle	1.0686 (0.7929)	53.4438 (102.1502)	22.0822 (3.9587)	3.5935 (0.2577)	0.0584 (0.0070)	2.8536 (0.2212)	2.3782 (0.2798)
SIS_Lasso	2.0543 (10.7865)	297.4343 (975.8890)	124.8943 (7.1654)	36.1921 (2.6755)	0.5898 (0.0505)	28.9182 (2.1914)	24.5015 (2.7976)
Ordinary_Lasso	74.5814 (1037.1391)	209.2237 (210.6191)	107.6245 (7.0998)	29.8888 (2.4651)	0.4877 (0.0449)	23.9117 (1.9552)	20.2449 (2.2624)
OGS_Ridge	-1.2573 (55.1990)	251.0337 (499.1449)	139.1917 (7.7979)	39.8240 (3.2943)	0.6458 (0.0497)	31.7181 (2.7719)	26.7102 (3.2483)
OGS_Lasso	-0.0528 (9.5304)	246.4983 (244.9423)	98.7028 (12.9678)	27.7523 (4.1344)	0.4535 (0.0730)	22.2170 (3.3410)	18.9009 (3.0896)
OGS_ALasso	1.3383 (6.1393)	286.5519 (617.4884)	100.2347 (11.4929)	29.0729 (4.6024)	0.4748 (0.0796)	23.2607 (3.6681)	19.8310 (3.4925)
OGS_G.ridge	-0.4462 (9.7117)	311.3224 (526.7253)	121.4321 (13.3355)	36.8617 (5.1348)	0.5973 (0.0856)	29.3041 (4.1555)	24.7078 (4.3394)
OGS_G.ridge_ALasso	0.7357 (2.5986)	244.8488 (198.9061)	96.4460 (13.1026)	27.5813 (5.2893)	0.4507 (0.0914)	22.0708 (4.2530)	18.7724 (3.9844)
OGS_SVR	-2.2300 (48.6514)	164.9359 (255.0762)	139.3309 (12.5035)	37.2596 (3.6611)	0.6008 (0.0537)	29.5154 (2.9300)	24.5860 (3.0880)
OGS_RF	0.6033 (9.7192)	299.7391 (1442.5547)	129.8464 (8.2173)	37.0854 (2.9283)	0.6019 (0.0482)	29.5477 (2.4636)	24.9841 (2.8997)
OGS_KNN	21.5828 (253.5380)	202.8519 (538.8489)	159.9890 (10.0371)	42.7823 (3.1866)	0.6945 (0.0490)	34.1005 (2.6264)	28.7858 (3.2589)

MAPE, mean absolute percentage error; SMAPE, symmetric mean absolute percentage error; RMSE, root mean squared error; MASE, mean absolute scaled error; MAE, mean absolute error; MDAE, median absolute error; SIS, sure independence screening; OGS, overlapping group screening; SVR, support vector regression; RF, Random Forest; KNN, k-nearest neighbors.

Table 4. The average (standard deviation) of prediction accuracy from 200 simulation analyses under Gene Structure II.

Method	MinMax Accuracy	MAPE (%)	SMAPE (%)	RMSE	MASE	MAE	MDAE
Oracle	1.1878 (2.6650)	64.1145 (262.2200)	20.3052 (3.6218)	3.6105 (0.2804)	0.0530 (0.0062)	2.8617 (0.2415)	2.3847 (0.3062)
SIS_Lasso	1.5922 (16.2790)	325.4094 (698.8159)	133.8282 (8.1499)	42.9855 (3.1250)	0.6353 (0.0469)	34.4168 (2.6477)	29.0987 (3.4569)
Ordinary_Lasso	-0.2268 (40.7950)	258.2261 (649.2819)	122.9424 (8.4288)	37.7662 (2.8756)	0.5580 (0.0428)	30.2318 (2.4826)	25.6980 (2.9641)
OGS_Ridge	2.4615 (35.0658)	299.4902 (855.1537)	142.4277 (8.0232)	44.8423 (3.2134)	0.6610 (0.0478)	35.8121 (2.7630)	30.2960 (3.7008)
OGS_Lasso	0.3925 (11.9970)	371.0417 (963.1335)	120.0683 (16.1679)	38.3600 (4.9675)	0.5683 (0.0821)	30.7230 (4.0444)	26.1716 (4.1695)
OGS_ALasso	0.3897 (16.5750)	456.8200 (1075.6511)	118.0533 (12.8660)	40.4871 (6.2626)	0.5995 (0.1025)	32.3873 (5.0111)	27.5544 (4.6994)
OGS_G.ridge	-3.1482 (77.8741)	502.7925 (1899.9081)	128.0602 (10.9844)	44.2214 (4.2306)	0.6526 (0.0729)	35.3018 (3.5517)	29.8727 (4.0881)
OGS_G.ridge_ALasso	2.1295 (22.2190)	518.4625 (2103.3653)	114.8411 (13.7029)	39.2424 (6.7836)	0.5824 (0.1121)	31.4421 (5.4566)	26.6852 (4.9976)
OGS_SVR	-0.4871 (28.2289)	190.9094 (549.3813)	137.7514 (17.4938)	40.2370 (4.8160)	0.5911 (0.0704)	32.0259 (4.0320)	26.8084 (4.3726)
OGS_RF	3.5606 (50.9942)	251.7642 (637.7145)	140.2724 (10.7404)	43.2332 (3.1884)	0.6378 (0.0452)	34.5680 (2.7642)	29.4925 (3.4944)
OGS_KNN	-7.1837 (101.0930)	283.6388 (1342.6511)	157.5052 (11.5435)	46.4494 (3.4574)	0.6850 (0.0468)	37.1275 (2.9458)	31.4680 (3.5750)

While both OGS_G.ridge and OGS_Ridge are based on ridge regression, OGS_G.ridge uses a generalized version that adjusts penalty strength based on variable characteristics, offering more flexibility. It achieves nearly 18% lower SMAPE than OGS_Ridge. Despite a slightly higher standard deviation, its improved accuracy suggests that generalized ridge better captures complex data relationships. Comparing OGS_ALasso with OGS_G.ridge_ALasso shows further improvement when generalized ridge is introduced. Both use adaptive lasso for variable selection, but OGS_G.ridge_ALasso applies variable-specific penalties, aiding in retaining key information. Though the SMAPE improvement is about 3.8%, it remains meaningful in complex high-dimensional data.

In conclusion, OGS_G.ridge_ALasso shows clear advantages over traditional ridge, adaptive lasso and other ML methods, offering low error and high stability. It is especially effective for high-dimensional structured problems like genetic data, highlighting both theoretical progress and practical potential.

We also examine an alternative gene network with 24 groups, each containing 23 genes, detailed in Fig. 7. This setup includes 504 genes and 552 group-specific gene effects. Groups 1, 7, 13 and 19 have significant effects, with underlying values of 2.25, 2.25, 1.5 and -1.5 respectively. In group 13, key gene-gene interactions (G253–G265, G255–G263, G257–G261) have coefficients 4, 6 and 4. For groups 13 and 7, interactions (G128–G266, G130–G268, G132–G270) have coefficients 4, 6 and 4.8. The simulation includes 127,260 major gene and interaction pairs.

According to Table 4, OGS_G.ridge_ALasso achieved the best predictive performance among all models, with an average SMAPE of 114.8411% and a standard deviation of 13.7029%, indicating both low error and high stability—making it well-suited for high-dimensional structured data. In contrast, most machine learning methods showed higher SMAPE values, likely due to overfitting or difficulty capturing the underlying data structure.

Compared to OGS_Lasso, OGS_G.ridge_ALasso improved SMAPE by about 5% and outperformed in other metrics, showing greater stability and predictive power. The addition of adaptive lasso to OGS_G.ridge further enhanced accuracy, significantly reducing SMAPE. This highlights the substantial performance gain achieved by combining the two techniques. OGS_Ridge, which lacks flexible variable selection, had relatively poorer performance. Similarly, OGS_G.ridge_ALasso outperformed OGS_ALasso (SMAPE = 118.0533%), highlighting the benefit of incorporating generalized ridge.

To further evaluate the robustness of the proposed method, we conducted an additional simulation study for sensitivity analysis. This analysis incorporated two different gene group structures (high-overlap and low-overlap scenarios) and simulated varying effect sizes by reducing the magnitude of the true biomarker coefficients (original coefficients divided by 2). Our results (Supplementary Tables 2,3) show that OGS_G.ridge_ALasso accurately identifies the relevant gene groups under these conditions, demonstrating strong robustness to varying signal strengths.

In summary, OGS_G.ridge_ALasso stands out in both accuracy and stability across metrics. It is particularly well-suited for high-dimensional and structurally complex prediction tasks, such as those involving genomic data, and holds significant practical value for real-world applications.

3.2 Real Data Application: TCGA CESC Data

Given the potential contamination and batch effects in TCGA transcriptomic data, we performed data normalization during the preprocessing stage to minimize the impact of technical variability. Furthermore, to account for the possible presence of outliers, we employed the non-parametric Kendall's tau correlation coefficient to identify the top 1000 genes significantly associated with BMI for subsequent analyses as this method is less sensitive to outliers, thereby enhancing the overall robustness of the analysis.

Our TCGA CESC dataset includes 258 subjects: 100 with BMI < 25, 72 with 25 < BMI < 30 and 86 with BMI > 30. Given the likely limited pool of BMI-associated genes, we first streamline the gene set using Kendall's tau correlation, selecting the top 1000 genes with the highest absolute correlations. Among these, 581 genes are mapped to 617 pathways based on the Gene Ontology Cellular Component (GO-CC) database. The remaining 419 unmapped genes are either excluded or grouped separately within the OGS framework. This results in 169,071 or 500,500 main gene and gene-gene interaction effects.

We used a validation set approach, randomly splitting the dataset into 80% training (206 samples) and 20% testing (52 samples), and repeated this process 30 times after excluding 419 unmapped genes. Table 5 summarizes the average prediction results for BMI. We also evaluated two additional GO pathway databases: Biological Process (GO-BP) and Molecular Function (GO-MF) with results in **Supplementary Tables 4,5**. Across all databases, OGS_G.ridge_ALasso outperformed other methods, including standard machine learning models, particularly in terms of SMAPE, while also showing strong results in other metrics.

Next, based on the GO-CC pathway database, we apply our proposed method to the entire TCGA CESC dataset for model selection and parameter estimation. The method identifies 11 genes and 60 gene-gene interaction biomarkers, with corresponding network structure shown in Fig. 8 and and the top 10 highest and bottom 10 lowest biomarker coefficient values in shown in Table 6. **Supplementary Table 6** presents all the selected biomarkers and their corresponding coefficients. In summary, we have incorporated node sizes and edge weight elements into the network figu-

Table 5. Using the GO_CC gene set database, the TCGA CESC dataset was randomly split 30 times into training/testing sets at an 80:20 ratio.

	MinMax Accuracy	MAPE (%)	SMAPE (%)	RMSE	MASE	MAE	MDAE
SIS_Lasso	0.8958 (2.9121)	312.5154 (163.7632)	148.5368 (9.3349)	1.0794 (0.1569)	0.8367 (0.1119)	0.8275 (0.0903)	0.6896 (0.1008)
Ordinary_Lasso	7.2680 (49.3375)	107.2105 (8.3599)	185.2941 (8.9152)	0.9095 (0.1420)	0.7270 (0.0702)	0.7215 (0.0729)	0.6427 (0.0902)
OGS_Ridge	1.5766 (4.2834)	290.0074 (161.4077)	140.2715 (10.2328)	0.9688 (0.1473)	0.7488 (0.0860)	0.7420 (0.0788)	0.6151 (0.0933)
OGS_Lasso	0.4340 (4.8077)	326.0319 (196.3179)	138.4399 (10.0905)	1.0091 (0.1454)	0.7796 (0.0929)	0.7717 (0.0755)	0.6446 (0.0692)
OGS_ALasso	0.0650 (5.3114)	327.7718 (202.5703)	138.0082 (10.0865)	1.0106 (0.1478)	0.7795 (0.0962)	0.7713 (0.0768)	0.6365 (0.0767)
OGS_G.ridge	1.8217 (6.2966)	291.1387 (164.8034)	140.6525 (10.0384)	0.9715 (0.1476)	0.7516 (0.0866)	0.7452 (0.0822)	0.6079 (0.0888)
OGS_G.ridge_ALasso	3.2068 (15.9334)	329.9966 (208.0807)	138.2342 (9.9804)	1.0133 (0.1522)	0.7810 (0.0965)	0.7729 (0.0789)	0.6429 (0.0750)
OGS_SVR	1.2924 (3.4622)	278.4534 (138.8284)	142.9585 (9.0704)	0.9415 (0.1428)	0.7349 (0.0702)	0.7299 (0.0792)	0.6125 (0.0921)
OGS_RF	-4.0286 (25.6163)	250.5968 (111.9902)	144.7685 (9.8766)	0.9288 (0.1457)	0.7292 (0.0714)	0.7248 (0.0866)	0.6141 (0.0931)
OGS_KNN	-9.9220 (52.9677)	267.7436 (129.7886)	144.7497 (8.8615)	0.9379 (0.1416)	0.7343 (0.0715)	0.7293 (0.0808)	0.6136 (0.0926)

The table reports the mean (standard deviation) of the test prediction performance for various prediction methods.

Table 6. The top 10 and bottom 10 biomarkers with the highest and lowest coefficients, respectively, among the candidate genes and gene-gene interactions selected using the OGS_G.ridge_ALasso method.

CESC (71 AC	CESC (71 ACTIVE)		CTIVE)	LIHC (148 A	CTIVE)	ESCA (71 ACTIVE)					
ID	Coefficient	ID	Coefficient	ID	Coefficient	ID	Coefficient				
	Top 10 biomarkers										
SLC17A8-UXT	0.1643	C8A	0.1287	FUT5-GPR174	0.1549	C15ORF48	0.1944				
EZH1-STAU1	0.1433	C1QL2	0.1271	FUT5-KCNB1	0.1439	CATSPERB-IQCE	0.1674				
PABPN1	0.1344	LMOD2	0.1186	PIGR	0.1389	ACE-DYNC111	0.1605				
CDC42BPB-PSME4	0.1241	GYPB	0.0975	FUT5-PIGR	0.1190	IQCA1-SMO	0.1443				
UXT	0.1044	MIOS	0.0850	FUT5-ZAP70	0.1189	CALM3-SLC6A7	0.1416				
ADAM11-TDRD6	0.095	ATP6V1B1	0.0766	OPN4	0.1163	SLC26A3-SLC3A2	0.1353				
EZH1	0.094	ZFYVE1	0.0748	ITGAX-SLC24A4	0.1117	CALM3-LGALS3	0.1347				
EZH1-SPEF2	0.0929	HPR-LMOD2	0.0623	FUT5-RABEPK	0.1031	ITPKA	0.1207				
DPF3	0.0913	LILRA4	0.0618	PPP3R2	0.0983	CALM3-KIAA1614	0.1115				
TDRD6	0.0867	INTS10-LMOD2	0.0589	FPR2-FUT5	0.0976	AQP2-ATP8A1	0.1091				
			Bottom 10	biomarkers							
CRK-TMOD4	-0.1473	DNAI2	-0.1826	CAT-FUT5	-0.1342	KIF9-SLC26A3	-0.1892				
PLG-TAF1A	-0.1097	EXOC7-HDAC1	-0.1439	FPR2-SLC24A4	-0.1278	ACE-CYS1	-0.1372				
DEFA1B	-0.1052	PPP1R3A	-0.1414	HYAL3	-0.1263	CYS1-TTLL6	-0.1347				
DTNBP1-UNC45B	-0.1020	$LMOD2 ext{-}TRIOBP$	-0.1217	PLEC	-0.1210	KIF3C-SLC26A3	-0.1287				
DCTN1-FANCL	-0.1005	LMOD2-OGDH	-0.0917	HDAC6-PPP3R2	-0.1156	FXR1	-0.1141				
SEC31B-WNT1	-0.0919	TRAPPC2	-0.0863	DCLRE1C	-0.1113	CYS1-HYDIN	-0.1003				
ART1-EZH1	-0.0913	HDAC1	-0.0845	CHRAC1-FUT5	-0.1093	KIF9-TTLL6	-0.0943				
PSMD2-UNC45B	-0.0774	LMOD2-MAFG	-0.0771	FUT5-UGT3A1	-0.1087	DYNLRB2-RSPH1	-0.0834				
SLC17A8-TAF1A	-0.0664	NME7	-0.0745	B4GALT2-PCSK6	-0.1004	MCM5	-0.0738				
MFN1-UNC45B	-0.0642	LMOD2-YAP1	-0.0656	FUT5-OS9	-0.0996	CALM3-CD44	-0.0609				

res. Larger nodes represent genes with greater importance. Additionally, the color of each node indicates the direction of effect: red represents a positive effect, while yellow represents a negative effect.

Some of the selected biomarkers have been confirmed to have biological significance in existing literature. For example, Li et al. [41] indicated that WNT1 is a target gene of miR-34a, and the decreased expression of miR-34a (suppressed by HPV E6/E7) leads to an increase in WNT1 expression. In CESC, WNT1 promotes cell proliferation, invasion, and the conversion of "E-cadherin to P-cadherin" by activating the WNT/ β -catenin signaling pathway, further driving cancer progression. Therefore, WNT1 plays a carcinogenic role in CESC. Additionally, Park [42] highlighted the association between the CRK gene and CESC. The CRK gene belongs to the Crk family and encodes an adaptor protein with SH2 and SH3 domains, involved in various cellular processes, such as cell proliferation, migration and survival. Studies have shown that CRK is upregulated in several human cancers, including cervical cancer.

3.3 Real Data Application: TCGA BLCA Data

Our TCGA BLCA dataset includes 356 subjects: 147 with BMI <25, 124 with 25 < BMI < 30 and 85 with BMI >30. Given the likely limited pool of BMI-associated genes, we first streamline the gene set using Kendall's tau correlation, selecting the top 1000 genes with the high-

est absolute correlations. Among these, 620 genes are mapped to 586 pathways based on the GO-CC database. The remaining 380 unmapped genes are either excluded or grouped separately within the OGS framework. This results in 192,510 or 500,500 main gene and gene-gene interaction effects.

We used a validation set approach, randomly splitting the dataset into 80% training (284 samples) and 20% testing (72 samples), and repeated this process 30 times after excluding 380 unmapped genes. Table 7 summarizes the average prediction results for BMI. We also evaluated two additional GO pathway databases: GO-BP and GO-MF with results in **Supplementary Tables 7,8**. Across all databases, OGS_G.ridge_ALasso outperformed other methods, including standard machine learning models, particularly in terms of SMAPE, while also showing strong results in other metrics.

Next, based on the GO-CC pathway database, we apply our proposed method to the entire TCGA BLCA dataset for model selection and parameter estimation. The method identifies 23 genes and 19 gene-gene interaction biomarkers, with corresponding network structure shown in Fig. 9 with the top 10 highest and bottom 10 lowest biomarker coefficient values shown in Table 6. **Supplementary Table 9** presents all the selected biomarkers and their corresponding coefficients.

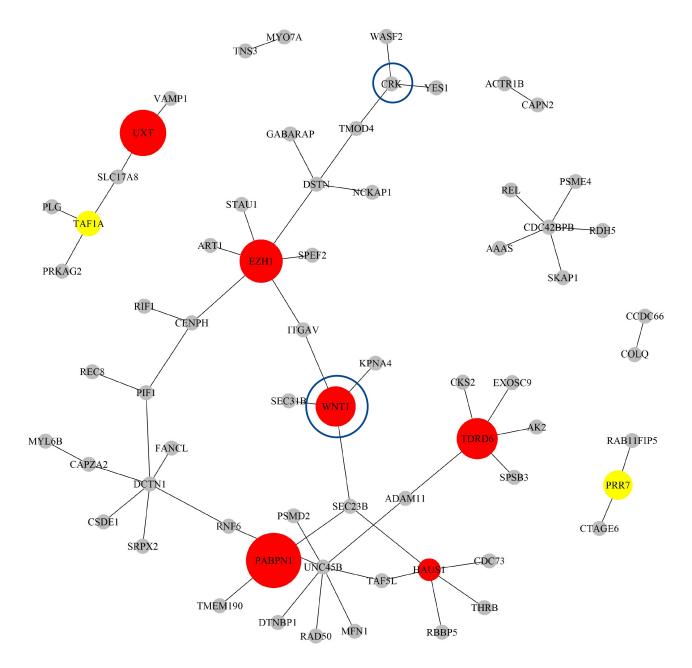


Fig. 8. The Network structure of the selected G-G interaction by the proposed OGS_G.ridge_ALasso method in CESC.

The *HUS1* gene has been confirmed to have biological significance in the literature [43]. *HUS1* is a protein involved in DNA repair, and its expression is elevated in BLCA. Studies indicate that inhibiting *HUS1* enhances chemotherapy efficacy in cisplatin-sensitive cancer cells, but has no significant effect in resistant cells. Additionally, high expression of *HUS1* is associated with poor prognosis in patients, suggesting that *HUS1* might be a key factor influencing responses to platinum-based chemotherapy and could potentially serve as a therapeutic target.

3.4 Real Data Application: TCGA LIHC Data

Our TCGA LIHC dataset includes 334 subjects: 177 with BMI <25, 89 with 25 < BMI < 30 and 68 with

BMI >30. Given the likely limited pool of BMI-associated genes, we first streamline the gene set using Kendall's tau correlation, selecting the top 1000 genes with the highest absolute correlations. Among these, 634 genes are mapped to 557 pathways based on the GO-CC database. The remaining 366 unmapped genes are either excluded or grouped separately within the OGS framework. This results in 201,295 or 500,500 main gene and gene-gene interaction effects.

We used a validation set approach, randomly splitting the dataset into 80% training (267 samples) and 20% testing (67 samples), and repeated this process 30 times after excluding 366 unmapped genes. Table 8 summarizes the average prediction results for BMI. We also evaluated

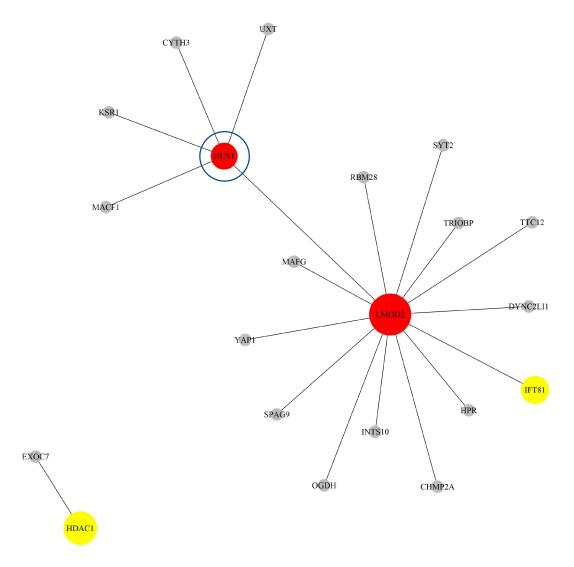


Fig. 9. The Network structure of the selected G-G interaction by the proposed OGS_G.ridge_ALasso method in BLCA.

two additional GO pathway databases: GO-BP and GO-MF with results in **Supplementary Tables 10,11**. Across all databases, OGS_G.ridge_ALasso outperformed other methods, including standard machine learning models, particularly in terms of SMAPE, while also showing strong results in other metrics.

Next, based on the GO-CC pathway database, we apply our proposed method to the entire TCGA LIHC dataset for model selection and parameter estimation. The method identifies 16 genes and 132 gene-gene interaction biomarkers, with corresponding network structure shown in Fig. 10 with the top 10 highest and bottom 10 lowest biomarker coefficient values shown in Table 6. Supplementary Table 12 presents all the selected biomarkers and their corresponding coefficients.

Among the selected biomarkers, some have already been confirmed in existing literature to hold biological significance. A study by Chen *et al.* [44] found that the expression of *CAT* was significantly downregulated in advanced LIHC tissues, and that high *CAT* expression was associated

with better survival outcomes. Furthermore, when CAT expression is low, MET inhibitors such as SU11274 may serve as effective treatment options for LIHC with low CAT expression. This suggests that CAT might play an important role in LIHC and is closely related to tumor progression and prognosis. Wang et al. [45] reported that ZFP36 is a gene associated with ferritinophagy and exhibits abnormal expression in immune cells in LIHC with their results indicating that ZFP36 could be closely involved with the functions of monocytes and macrophages, and might participate in immune regulation and tumor progression. ZFP36 shows potential as a target for liver cancer research or therapy. Zhao et al. [46] identified B4GALT2 as a gene related to amino acid metabolism, which has been incorporated into a prognostic risk model for LIHC patients, and as its high expression is associated with poorer survival outcomes and could be involved in immune regulation and metabolic reprogramming in tumors, it has the potential to serve as a biomarker for liver cancer treatment and prognosis assessment.

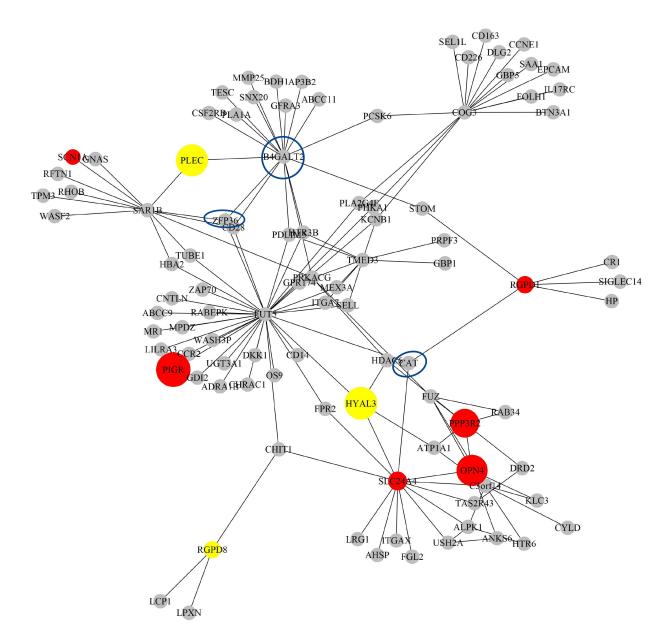


Fig. 10. The Network structure of the selected G-G interaction by the proposed OGS_G.ridge_ALasso method in LIHC.

3.5 Real Data Application: TCGA ESCA Data

Our TCGA ESCA dataset includes 175 subjects: 97 with BMI <25, 49 with 25 < BMI < 30 and 29 with BMI >30. Given the likely limited pool of BMI-associated genes, we first streamline the gene set using Kendall's tau correlation, selecting the top 1000 genes with the highest absolute correlations. Among these, 642 genes are mapped to 532 pathways based on the GO-CC database. The remaining 358 unmapped genes are either excluded or grouped separately within the OGS framework. This results in 206,403 or 500,500 main gene and gene-gene interaction effects.

We used a validation set approach, randomly splitting the dataset into 80% training (140 samples) and 20% testing (35 samples), and repeated this process 30 times after excluding 358 unmapped genes. Table 9 summarizes the average prediction results for BMI. We also evaluated two additional GO pathway databases: GO-BP and GO-MF with results in **Supplementary Tables 13,14**. Across all databases, Our proposed method (OGS_G.ridge_ALasso), while slightly outperformed by OGS_KNN in terms of the SMAPE (%) evaluation metric, still demonstrates better predictive performance compared to the other methods.

Next, based on the GO-CC pathway database, we apply our proposed method to the entire TCGA ESCA dataset for model selection and parameter estimation. The method identifies 8 genes and 63 gene-gene interaction biomarkers, with corresponding network structure shown in Fig. 11 with the top 10 highest and bottom 10 lowest biomarker coefficient values are shown in Table 6. Supplementary Table 15 presents all the selected biomarkers and their corresponding coefficients.

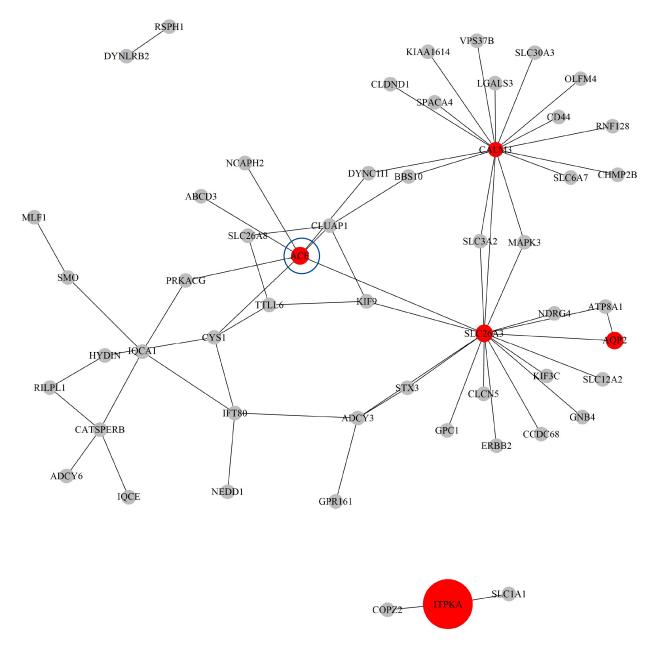


Fig. 11. The Network structure of the selected G-G interaction by the proposed OGS_G.ridge_ALasso method in ESCA.

The ACE gene has been shown to have biological significance in the literature [47]. The study demonstrated that, among patients with esophageal cancer, those with the ACE gene D/D genotype were more likely to develop postoperative pulmonary complications, with a risk more than three times higher than that of patients with the I/I or I/D genotypes. In addition, serum ACE levels were positively correlated with the presence of the ACE D allele; the higher the ACE level, the greater the risk of postoperative pulmonary complications. This suggests that the insertion/deletion polymorphism of the ACE gene may could an important role in susceptibility to postoperative pulmonary injury in patients with esophageal cancer.

3.6 BMI-Stratified Survival Analysis Reveals Gene-Specific Prognostic Associations

In this study, patients with various cancer types are stratified into three groups based on their BMI: normal, overweight and obese. Within each BMI subgroup, a Cox proportional hazards model is applied to assess the association between the expression level of individual genes and overall survival with each model including only one gene as the primary explanatory variable, and age and gender being incorporated as covariates to adjust for potential confounding effects. A stratified analytical approach is employed to evaluate whether BMI classification modulates the prognostic impact of gene expression on survival outcomes and to identify gene signatures with significant prognostic relevance within specific BMI categories. Gene selection is

Table 7. Using the GO_CC gene set database, the TCGA BLCA dataset was randomly split 30 times into training/testing sets at an 80:20 ratio.

	_ 0					, 0	
	MinMax Accuracy	MAPE (%)	SMAPE (%)	RMSE	MASE	MAE	MDAE
SIS_Lasso	6.2230 (20.4867)	153.1523 (50.3734)	159.6510 (7.2171)	0.9784 (0.1658)	0.7713 (0.0589)	0.7357 (0.0815)	0.6031 (0.0909)
Ordinary_Lasso	-28.3685 (87.3431)	106.9705 (9.2948)	182.0108 (12.8869)	0.9494 (0.1656)	0.7526 (0.0529)	0.7179 (0.0780)	0.5748 (0.0583)
OGS_Ridge	-0.9903 (8.9542)	168.7948 (46.0440)	151.4469 (13.4424)	0.9629 (0.1597)	0.7568 (0.0633)	0.7211 (0.0750)	0.5750 (0.0800)
OGS_Lasso	-0.3793 (5.0655)	210.1537 (79.8495)	144.6220 (13.9201)	0.9877 (0.1588)	0.7773 (0.0752)	0.7393 (0.0714)	0.6166 (0.0908)
OGS_ALasso	11.8011 (74.5594)	248.9250 (104.9382)	139.6349 (10.3840)	1.0477 (0.1979)	0.8150 (0.1017)	0.7732 (0.0774)	0.6290 (0.0902)
OGS_G.ridge	-0.1931 (4.2451)	229.5899 (84.3647)	139.8774 (11.1173)	1.0367 (0.2182)	0.7929 (0.1018)	0.7533 (0.0867)	0.6097 (0.0904)
OGS_G.ridge_ALasso	-0.4559 (4.3949)	280.6450 (149.6607)	139.6553 (9.7535)	1.0764 (0.1856)	0.8329 (0.0967)	0.7913 (0.0845)	0.6418 (0.1015)
OGS_SVR	0.4392 (4.4815)	160.9705 (52.2773)	147.9144 (13.6778)	0.9469 (0.1701)	0.7366 (0.0640)	0.7025 (0.0811)	0.5654 (0.0816)
OGS_RF	4.2248 (14.5991)	156.4021 (30.3354)	156.6699 (8.4587)	0.9722 (0.1473)	0.7741 (0.0712)	0.7360 (0.0669)	0.6155 (0.0762)
OGS_KNN	-0.3208 (4.8648)	171.0956 (58.5580)	153.2306 (13.2028)	0.9564 (0.1602)	0.7586 (0.0676)	0.7225 (0.0769)	0.5925 (0.0829)

The table reports the mean (standard deviation) of the test prediction performance for various prediction methods.

Table 8. Using the GO_CC gene set database, the TCGA LIHC dataset was randomly split 30 times into training/testing sets at an 80:20 ratio.

	MinMax Accuracy	MAPE (%)	SMAPE (%)	RMSE	MASE	MAE	MDAE	
SIS_Lasso	-2.2580 (6.0536)	332.4607 (207.7500)	139.6710 (9.4129)	1.0110 (0.4015)	0.8912 (0.1631)	0.6283 (0.0866)	0.4656 (0.0606)	
Ordinary_Lasso	-5.0734 (17.9602)	308.1448 (220.9625)	150.2410 (21.8989)	0.9754 (0.4296)	0.8445 (0.1218)	0.5992 (0.0881)	0.4467 (0.0603)	
OGS_Ridge	10.9704 (59.6618)	330.3707 (252.2040)	140.4011 (14.6550)	1.0014 (0.3908)	0.8703 (0.1600)	0.6125 (0.0772)	0.4506 (0.0534)	
OGS_Lasso	1.2601 (12.1217)	385.5694 (322.1085)	136.4481 (19.2138)	1.0496 (0.3702)	0.9144 (0.1894)	0.6409 (0.0809)	0.4601 (0.0770)	
OGS_ALasso	-3.0848 (12.5386)	453.0267 (331.5226)	131.5387 (9.0808)	1.0687 (0.3576)	0.9497 (0.2076)	0.6619 (0.0668)	0.4751 (0.0544)	
OGS_G.ridge	-7.7167 (27.3397)	421.3698 (286.6483)	131.7760 (8.6800)	1.0424 (0.3687)	0.9173 (0.1974)	0.6414 (0.0751)	0.4741 (0.0712)	
OGS_G.ridge_ALasso	-2.0931 (5.4303)	494.6527 (355.0585)	132.5872 (9.1075)	1.1132 (0.3379)	1.0051 (0.2554)	0.6951 (0.0692)	0.5223 (0.0888)	
OGS_SVR	-1.2808 (11.1659)	270.0525 (202.1000)	136.0872 (16.8650)	0.9203 (0.4336)	0.7729 (0.1013)	0.5512 (0.0950)	0.4034 (0.0674)	
OGS_RF	1.0304 (4.3231)	300.3950 (188.4677)	142.1591 (10.3168)	1.1064 (0.4338)	0.9349 (0.2765)	0.6477 (0.1109)	0.4667 (0.0652)	
OGS_KNN	0.9596 (6.5329)	205.5634 (154.2807)	156.1949 (18.8047)	0.9444 (0.4359)	0.8122 (0.1059)	0.5771 (0.0845)	0.4444 (0.0575)	

The table reports the mean (standard deviation) of the test prediction performance for various prediction methods.

Table 9. Using the GO_CC gene set database, the TCGA ESCA dataset was randomly split 30 times into training/testing sets at an 80:20 ratio.

		· · · · · · · · · · · · · · · · · · ·				0	
	MinMax Accuracy	MAPE (%)	SMAPE (%)	RMSE	MASE	MAE	MDAE
SIS_Lasso	2.7686 (4.0457)	258.6933 (132.1144)	108.7875 (11.2686)	0.9117 (0.1998)	0.7831 (0.1125)	0.6334 (0.0923)	0.4391 (0.0727)
Ordinary_Lasso	1.7824 (6.6566)	200.7705 (107.6323)	114.7371 (12.8876)	0.8606 (0.2394)	0.7174 (0.0778)	0.5876 (0.1151)	0.4106 (0.0718)
OGS_Ridge	1.1757 (1.5268)	232.8646 (122.2114)	105.6107 (14.1393)	0.8431 (0.2280)	0.7205 (0.1063)	0.5881 (0.1141)	0.4298 (0.0775)
OGS_Lasso	0.9132 (1.7178)	260.1778 (138.2418)	107.1521 (15.4873)	0.8670 (0.2226)	0.7557 (0.1442)	0.6135 (0.1221)	0.4504 (0.0898)
OGS_ALasso	1.4643 (4.8301)	265.4442 (150.5444)	107.4061 (15.3619)	0.8640 (0.2260)	0.7530 (0.1520)	0.6111 (0.1248)	0.4556 (0.1057)
OGS_G.ridge	-2.5742 (22.4868)	237.4606 (127.2772)	105.9300 (14.4189)	0.8362 (0.2260)	0.7178 (0.1154)	0.5857 (0.1178)	0.4391 (0.0878)
OGS_G.ridge_ALasso	1.4586 (1.8296)	257.2740 (140.6211)	106.0141 (13.7132)	0.8572 (0.2190)	0.7408 (0.1260)	0.6017 (0.1120)	0.4454 (0.0850)
OGS_SVR	2.0123 (2.7678)	245.4466 (137.2884)	109.6309 (12.6539)	0.8647 (0.2128)	0.7419 (0.1161)	0.6021 (0.1052)	0.4436 (0.0719)
OGS_RF	1.4777 (6.2537)	250.5895 (145.5156)	106.9120 (11.5959)	0.8387 (0.2223)	0.7177 (0.1196)	0.5836 (0.1064)	0.4122 (0.0723)
OGS_KNN	2.0430 (1.5909)	246.6405 (134.6129)	101.2479 (13.7206)	0.8217 (0.2389)	0.6823 (0.0743)	0.5623 (0.1225)	0.3886 (0.0786)

The table reports the mean (standard deviation) of the test prediction performance for various prediction methods.

Table 10. BMI-Stratified Cox Regression Results for Selected Genes Across Cancer Types.

Cancer Type	BMI Class	Number of Patients (events)	Coef (p-value)	Coef (p-value)	Coef (p-value)
CESC			WNT1	CRK	
	Normal	100 (26)	-0.2515 (0.340)	0.2658 (0.248)	
	Overweight	72 (10)	-0.4274 (0.4295)	0.6888 (0.0611)	
	Obese	86 (16)	-0.1744 (0.467)	0.0592 (0.831)	
BLCA			HUS1		
	Normal	147 (54)	-0.0550 (0.6725)		
	Overweight	124 (62)	0.1361 (0.3170)		
	Obese	85 (34)	-0.0227 (0.8864)		
LIHC			CAT	ZFP36	B4GALT2
	Normal	177 (61)	-0.2142 (0.0578)	0.0341 (0.769)	0.2113 (0.0979)
	Overweight	89 (28)	-0.7447 (0.0005)	0.0217 (0.931)	0.4846 (0.0227)
	Obese	68 (23)	-0.0227 (0.9282)	-0.3233 (0.1300)	0.0242 (0.9189)
ESCA			ACE		
	Normal	97 (35)	0.0074 (0.969)		
	Overweight	49 (19)	-0.2145 (0.3558)		
	Obese	29 (16)	0.1242 (0.630)		

based on both the analytical framework developed in this study and relevant targets reported in the literature. The results are summarized in Table 10.

The results show that most genes do not exhibit statistically significant associations with overall survival across different cancer types and BMI subgroups. However, in LIHC, the expression of the CAT gene in the overweight group is significantly negatively associated with overall survival (coefficient = -0.7447, p = 0.0005), indicating a potential protective prognostic role. In contrast, the B4GALT2 gene shows a significant positive association (coefficient = 0.4846, p = 0.0227), suggesting it might function as a risk factor. Additionally, in CESC, the expression of the CRK gene in the overweight group demonstrates a borderline significant positive association (p = 0.0611). Overall, the findings indicate that specific genes are significantly associated with survival only within certain BMI categories, suggesting that BMI could act as a modifier of gene-based prognostic effects and warrants further investigation into the underlying biological mechanisms.

We perform Kaplan-Meier survival analyses within each BMI subgroup, using the median gene expression as a cutoff. Several genes show significant or borderline associations with overall survival in specific BMI categories (**Supplementary Figs. 1–7**). WNT1 is significantly associated with survival in the normal BMI group (p = 0.0036), while CAT shows protective associations in both the normal (p = 0.0028) and overweight (p = 0.0087) groups. B4GALT2 is linked to worse survival in the normal group (p = 0.037), and CRK shows a borderline association in the overweight group (p = 0.059). HUSI (p = 0.1) and ZFP36 (p = 0.1) also display borderline significance in the normal and obese groups. These results suggest that BMI could modify the prognostic impact of gene expression.

3.7 Gene Set Analysis Identifies BMI-Related Pathways in Various Cancer Types Using MGSA

To better interpret the biological significance of gene expression data, we analyzed not only individual genes but also gene sets with functional or regulatory relevance. Model-based Gene Set Analysis (MGSA) is a Bayesian approach that reveals expression patterns and functional relationships among gene sets within biological systems [48]. MGSA integrates pathway information and statistical modeling to evaluate gene set changes under different conditions, helping to understand their impact on diseases or physiological states. This method is implemented in the R package "mgsa" and incorporates Gene Ontology data [49]. In this study, we identified important genes using our proposed method, OGS G.ridge ALasso, and annotate them based on gene sets from the MSigDB database, including collections such as c2.cp.biocarta, c2.cp.kegg, c5.GOBP, c5.GOCC and c5.GOMF.

Using MGSA, we identified multiple biologrelevant pathways significantly associated with BMI across different cancers. In BLCA, GOBP_INTRACILIARY_TRANSPORT_INVOLVED_IN CILIUM ASSEMBLY, related to cilium assembly and intraciliary transport, links to BMI, highlighting processes crucial for cell polarity and signal transduction. In ESCA, KEGG_MEDICUS_REFERENCE_AVP_V2R_PKA_SIG NALING PATHWAY, involving antidiuretic mone signaling via the V2 receptor and PKA activation, associates with BMI, implicating metabolism and intracellular signaling regulation. In CESC, GOBP REGULATION OF NEUROMUSCULAR JUN CTION DEVELOPMENT, which regulates neuromuscular junction formation funccorrelates with BMI. Finally, in LIHC, GOBP NEGATIVE REGULATION OF HYDROGEN

PEROXIDE_METABOLIC_PROCESS, involved in negative regulation of hydrogen peroxide metabolism and oxidative stress response, shows significant association with BMI. These findings support the biological relevance of the identified biomarkers and provide insight into the pathways through which BMI may influence cancer biology.

4. Discussion

4.1 Potential Improvements to the OGS Method

Identifying susceptibility genes and variants for complex diseases is challenging due to the often unknown underlying disease mechanisms. The OGS method, which incorporates the SKAT to screen for gene-gene interactions, relies on predefined pathways to extract gene network information although such reliance might lead to information loss while limiting the method's scope; additionally, while current implementations typically consider only simple two-way or multiplicative interactions, future research should aim to develop statistical approaches capable of capturing higher-order and more complex interactions.

Multivariate analysis is another widely used approach, testing grouped variants defined by genes, pathways, or physical locations. Common statistical methods include burden tests, SKAT and the combined SKAT-O, each showing strengths under different biological conditions [50] Data-adaptive methods, which adjust models based on the data structure, have attracted increasing attention. Notably, Ueki [51] proposed a novel approach based on Yanai's generalized coefficient of determination, which allows for the control of type I error without requiring test-specific null distributions. This method is computationally efficient and broadly applicable to models such as lasso, ridge and elastic net, enabling both variant selection and feature filtering. In summary, future efforts should focus on developing more flexible, accurate and interpretable methods to improve the detection of relevant variants in genome-wide studies.

4.2 Leveraging TCGA for Multi-Omics Insights into BMI and Cancer

TCGA provides a rich and comprehensive resource for exploring the relationship between BMI and cancer. With its extensive genomic and clinical datasets spanning numerous cancer types, TCGA enables multi-omics analyses—integrating gene expression, somatic mutations, DNA methylation and copy number variations. This multi-layered approach allows for a deeper understanding of how BMI could influence cancer biology at the molecular level [52], while its pan-cancer structure facilitates cross-tumor comparisons, helping to uncover both shared and cancer-specific BMI-related molecular features.

We agree that validating BMI-associated gene signatures in independent cohorts is a crucial step to enhance the generalizability of our findings. We have reviewed multiple external datasets from sources such as Gene Expression

Omnibus (GEO) and International Cancer Genome Consortium (ICGC) and confirmed that some do include BMIrelated annotations [53,54]. Although external validation was not performed in the current study, we fully recognize its importance in establishing the broader applicability of our results. Future studies should consider validating the gene signatures identified here using independent datasets with BMI information, although owing to considerable heterogeneity in data generation platforms and clinical variable definitions, incorporating such datasets would require extensive data harmonization and standardization efforts, introducing complexity beyond the scope of this study. In light of these challenges, we focused on leveraging the pan-cancer framework of TCGA to assess the internal consistency and robustness of BMI-associated gene signatures across multiple cancer types. These results provide preliminary support for the validity of our findings.

4.3 Limitations of Western BMI Standards and the Need for Population-Specific Cutoffs

In our current simulated and real data analysis, BMI was treated as a continuous variable rather than categorized into discrete groups. This modeling approach allowed us to avoid arbitrary threshold effects and better capture dose-dependent associations between BMI and clinical or molecular outcomes. As such, the issue of cutoff definition (e.g., WHO vs. Asian-specific thresholds) did not directly affect our core statistical framework; nonetheless, we fully acknowledge the importance of population-specific BMI classification when translating findings into clinical practice.

The widely used BMI classification system—defining 18.5–24.9 as normal, 25+ as overweight and 30+ as obese—is based predominantly on data from Western populations, although research on individuals of Asian descent often exhibit higher body fat percentages at the same BMI levels along with increased susceptibility to chronic conditions such as cancer, type 2 diabetes, hypertension and cardiovascular disease. Consequently, applying Western BMI thresholds to Asian populations might lead to underestimation of health risks.

To address this disparity, region-specific resources such as the Taiwan Biobank and Taiwan's National Health Insurance Research Database offer valuable Asian population-based insights. These have informed proposals to lower the overweight and obesity thresholds to 23 and 27 for Asian populations respectively, in the endeavor to enhance disease risk prediction and improve public health strategies. Looking ahead, the integration of genetic, dietary and environmental factors holds promise for advancing more personalized and accurate health assessment models.

4.4 Addressing Confounding and Limitations in the TCGA Dataset Related to the Obesity Paradox

Although this study utilizes TCGA data to investigate the relationship between obesity and cancer prognosis and

observes the so-called "obesity paradox" in certain contexts, where patients with higher BMI exhibit better outcomes, these findings should be interpreted with caution. The TCGA dataset lacks many potential confounding variables such as treatment history, comorbidities (e.g., diabetes) and lifestyle factors (e.g., smoking and physical activity), which might lead to residual confounding and distort the true relationship between obesity and prognosis. Furthermore, BMI is measured at a single time point, limiting the ability to capture weight changes over time and to differentiate between fat and muscle mass. The retrospective nature of the study design further constrains causal inference; accordingly, future prospective cohort studies with more comprehensive clinical data are warranted to clarify the true causal relationship between obesity and cancer prognosis and validate the observed "obesity paradox" phenomenon reported in this study.

4.5 Need for Experimental Confirmation

Regarding experimental validation such as qPCR or Western blot, we agree that such assays could further strengthen the biological significance of our findings. However, these experiments fall beyond the current scope and resources of this study, which is primarily computational in nature. Although this study does not include laboratory-based experimental validation, we conducted pathway enrichment analysis using the MGSA method to explore the functional relevance of the top-ranked BMI-associated genes, with results indicating that these genes could be involved in metabolic and inflammatory pathways known to be associated with obesity and cancer progression.

4.6 Cancer-Specific vs. Pan-Cancer Perspectives

This study focuses on four cancer types: BLCA, CESC, LIHC and ESCA, selected based on their sample sizes, BMI distributions and biological characteristics. However, the current results are not yet placed within the broader TCGA pan-cancer framework, which might limit the generalizability of the findings. Notably, LIHC and ESCA show lower obesity rates, which likely relate to their unique disease etiologies and risk factors such as viral infections, alcohol consumption or chronic hepatitis thereby possibly weakening the association between BMI and cancer outcomes; additionally, the interactions between BMI and gene expression vary across cancer types, suggesting that the prognostic impact of BMI could be cancer-type specific. Future research should expand analysis to additional cancer types to more comprehensively assess the universality and biological relevance of BMI-associated gene signatures.

5. Conclusions

This study highlights the critical role of BMI in cancer development and prognosis, using TCGA data for in-depth analysis. Both high and low BMI levels were found to be

linked to increased cancer risk, where obesity plays a role through hormonal imbalance, inflammation and immune dysfunction, while at the same time, underweight individuals might suffer from malnutrition and reduced treatment tolerance. BMI also affects treatment outcomes: obese patients often face higher complication risks, while underweight individuals might recover less effectively. Interestingly, the "obesity paradox" suggests that in some cancers, higher BMI can be linked to better survival, underscoring the complex, context-dependent nature of the BMI—cancer relationship.

Using the OGS method combined with regularized regression, particularly the OGS_G.ridge_ALasso model, we identified BMI-related genes and interactions from high-dimensional genetic data. This model performed best in accuracy and consistency, particularly in settings with overlapping genetic signals. By applying it to TCGA data, we uncovered meaningful molecular links between BMI and cancer, supporting the importance of maintaining a healthy BMI and offering a framework for exploring gene networks and biomarkers that can inform personalized cancer care.

Abbreviations

ABC, Advanced breast cancer; ALasso, Adaptive lasso; BLCA, Bladder urothelial carcinoma; BMI, Body mass index; BP, Biological process; CC, Cellular composition; CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma; COAD, Colon adenocarcinoma; COADREAD, Colorectal adenocarcinoma; DNA, eoxyribonucleic acid; EBC, Early breast cancer; ESCA, Esophageal carcinoma; GEO, Gene Expression Omnibus; G-G, gene-gene interaction; GO, Gene ontology; G.ridge, Generalized ridge regression; ICGC, International Cancer Genome Consortium; IQR, Interquartile range; KIRP, Kidney renal papillary cell carcinoma; KNN, k-nearest neighbors; lasso, Least absolute shrinkage and selection operator; LIHC, Liver hepatocellular carcinoma; MAE, Mean absolute error; MDAE, Median absolute error; MAPE, Mean absolute percentage error; MASE, Mean absolute scaled error; MCP, Minimax concave penalty; MF, Molecular function; MGSA, Model-based Gene Set Analysis; ML, Machine learning; MSigDB, The human molecular signature database; NSCLC, Non-small cell lung cancer; OGS, Overlapping group screening; OLS, Ordinary least squares regression; RF, Random forest; RMSE, Root mean squared error; SMAPE, Symmetric mean absolute percentage error; SCAD, Smoothly clipped absolute deviation; SIS, Sure independence screening; SKAT, Sequence kernel association test; SVR, Support vector regression; TCGA, The Cancer Genome Atlas; UCSC, University of California, Santa Cruz; WHO, World health organization.

Availability of Data and Materials

The TCGA transcriptomic data for CESC, BLCA, LIHC and ESCA, along with the clinical BMI outcomes

analyzed in this study and the R scripts used for both simulation and real data analyses are available from the corresponding author upon reasonable request. The TCGA data were originally obtained from the TCGA Hub repository (https://tcga.xenahubs.net), with the primary source being the TCGA website (https://www.cancer.gov/ccg/research/genome-sequencing/tcga).

Author Contributions

JHW conceived and designed the experiments. JHW, ZHW and TCC collected and organized the analysis data. JHW and HCL analyzed the data. JHW wrote the first draft of the manuscript. JHW made critical revisions and approved final version. All authors agreed with manuscript results and conclusions. All authors jointly developed the structure and arguments for the paper. All authors reviewed and approved of the final manuscript. All authors contributed to editorial changes in the manuscript. All authors have participated sufficiently in the work and agreed to be accountable for all aspects of the work.

Ethics Approval and Consent to Participate

Not applicable.

Acknowledgment

The authors sincerely thank Mr. Tzung-Ying Guo and Mr. Po-Lin Hou from the Department of Mathematics, National Chung Cheng University, for their invaluable assistance in creating figures, organizing tables, and assisting with the implementation of the MGSA method during the revision of this article. The results shown here are in whole or part based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga.

Funding

This research was supported by the grant NSTC 112-2118-M-194-003-MY2 from the National Science and Technology Council of Republic of China (Taiwan). The funding body did not play any role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Conflict of Interest

The authors declare no conflict of interest.

Declaration of AI and AI-Assisted Technologies in the Writing Process

During the preparation of this work, the authors used ChatGPT solely for spelling and grammar checking in the manuscript writing stage. The selection of the research topic, design of statistical methods, programming, simulations and data analysis were independently conducted by the authors and are entirely original. After using the AI tool, the authors carefully reviewed its suggestions and made re-

visions as needed, taking full responsibility for the final submitted content.

Supplementary Material

Supplementary material associated with this article can be found, in the online version, at https://doi.org/10.31083/FBL43294.

References

- [1] World Health Organization. Obesity and Overweight. 2020. Available at: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (Accessed: 22 May 2025).
- [2] Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K, et al. Body Fatness and Cancer–Viewpoint of the IARC Working Group. The New England Journal of Medicine. 2016; 375: 794–798. https://doi.org/10.1056/NEJMsr1606602.
- [3] Li X, Jansen L, Chang-Claude J, Hoffmeister M, Brenner H. Risk of Colorectal Cancer Associated With Lifetime Excess Weight. JAMA Oncology. 2022; 8: 730–737. https://doi.org/10.1001/jamaoncol.2022.0064.
- [4] Moghaddam AA, Woodward M, Huxley R. Obesity and risk of colorectal cancer: a meta-analysis of 31 studies with 70,000 events. Cancer Epidemiology, Biomarkers & Prevention. 2007; 16: 2533–2547. https://doi.org/10.1158/1055-9965. EPI-07-0708.
- [5] Bianchini F, Kaaks R, Vainio H. Overweight, obesity, and cancer risk. The Lancet. Oncology. 2002; 3: 565–574. https://doi.org/ 10.1016/s1470-2045(02)00849-5.
- [6] Miracle CE, McCallister CL, Egleton RD, Salisbury TB. Mechanisms by which obesity regulates inflammation and anti-tumor immunity in cancer. Biochemical and Biophysical Research Communications. 2024; 733: 150437. https://doi.org/10.1016/j.bbrc.2024.150437.
- [7] Bhaskaran K, Douglas I, Forbes H, dos-Santos-Silva I, Leon DA, Smeeth L. Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5·24 million UK adults. Lancet. 2014; 384: 755–765. https://doi.org/10.1016/S0140-6736(14)60892-8.
- [8] Huang X, Shu C, Chen L, Yao B. Impact of sex, body mass index and initial pathologic diagnosis age on the incidence and prognosis of different types of cancer. Oncology Reports. 2018; 40: 1359–1369. https://doi.org/10.3892/or.2018.6529.
- [9] Evans WJ, Morley JE, Argilés J, Bales C, Baracos V, Guttridge D, et al. Cachexia: a new definition. Clinical Nutrition. 2008; 27: 793–799. https://doi.org/10.1016/j.clnu.2008.06.013.
- [10] Harborg S, Cronin-Fenton D, Jensen MBR, Ahern TP, Ewertz M, Borgquist S. Obesity and Risk of Recurrence in Patients With Breast Cancer Treated With Aromatase Inhibitors. JAMA Network Open. 2023; 6: e2337780. https://doi.org/10.1001/jamane tworkopen.2023,37780.
- [11] Luo R, Chen Y, Ran K, Jiang Q. Effect of obesity on the prognosis and recurrence of prostate cancer after radical prostatectomy: a meta-analysis. Translational Andrology and Urology. 2020; 9: 2713–2722. https://doi.org/10.21037/tau-20-1352.
- [12] Wilson RL, Taaffe DR, Newton RU, Hart NH, Lyons-Wall P, Galvão DA. Obesity and prostate cancer: A narrative review. Critical Reviews in Oncology/Hematology. 2022; 169: 103543. https://doi.org/10.1016/j.critrevonc.2021.103543.
- [13] Siddiqui JA, Pothuraju R, Jain M, Batra SK, Nasser MW. Advances in cancer cachexia: Intersection between affected organs, mediators, and pharmacological interventions. Biochimica et Biophysica Acta. Reviews on Cancer. 2020; 1873: 188359. https://doi.org/10.1016/j.bbcan.2020.188359.
- [14] Lennon H, Sperrin M, Badrick E, Renehan AG. The Obesity

- Paradox in Cancer: a Review. Current Oncology Reports. 2016; 18: 56. https://doi.org/10.1007/s11912-016-0539-4.
- [15] Tu H, McQuade JL, Davies MA, Huang M, Xie K, Ye Y, et al. Body mass index and survival after cancer diagnosis: A pancancer cohort study of 114 430 patients with cancer. Innovation (Cambridge (Mass.)). 2022; 3: 100344. https://doi.org/10.1016/ j.xinn.2022.100344.
- [16] Petrelli F, Cortellini A, Indini A, Tomasello G, Ghidini M, Nigro O, et al. Association of Obesity With Survival Outcomes in Patients With Cancer: A Systematic Review and Meta-analysis. JAMA Network Open. 2021; 4: e213520. https://doi.org/10.1001/jamanetworkopen.2021.3520.
- [17] Alifano M, Daffré E, Iannelli A, Brouchet L, Falcoz PE, Le Pimpec Barthes F, et al. The Reality of Lung Cancer Paradox: The Impact of Body Mass Index on Long-Term Survival of Resected Lung Cancer. A French Nationwide Analysis from the Epithor Database. Cancers. 2021; 13: 4574. https://doi.org/10.3390/cancers13184574.
- [18] Modi ND, Tan JQE, Rowland A, Koczwara B, Abuhelwa AY, Kichenadasse G, et al. The obesity paradox in early and advanced HER2 positive breast cancer: pooled analysis of clinical trial data. NPJ Breast Cancer. 2021; 7: 30. https://doi.org/ 10.1038/s41523-021-00241-9.
- [19] Kroenke CH, Neugebauer R, Meyerhardt J, Prado CM, Weltzien E, Kwan ML, et al. Analysis of Body Mass Index and Mortality in Patients With Colorectal Cancer Using Causal Diagrams. JAMA Oncology. 2016; 2: 1137–1145. https://doi.org/10.1001/jamaoncol.2016.0732.
- [20] Hu C, Chen X, Yao C, Liu Y, Xu H, Zhou G, et al. Body mass index-associated molecular characteristics involved in tumor immune and metabolic pathways. Cancer & Metabolism. 2020; 8: 21. https://doi.org/10.1186/s40170-020-00225-6.
- [21] Clarke MA, Fetterman B, Cheung LC, Wentzensen N, Gage JC, Katki HA, et al. Epidemiologic Evidence That Excess Body Weight Increases Risk of Cervical Cancer by Decreased Detection of Precancer. Journal of Clinical Oncology. 2018; 36: 1184– 1191. https://doi.org/10.1200/JCO.2017.75.3442.
- [22] Jacob L, Obozinski G, Vert J. Group lasso with overlap and graph lasso. In Proceedings of the 26th Annual International Conference on Machine Learning (pp. 433–440). 2009. http://doi.org/10.1145/1553374.1553431.
- [23] Wang S, Liu X. The UCSCXenaTools R package: a toolkit for accessing genomics data from UCSC Xena platform, from cancer multi-omics to single cell RNA-seq. Journal of Open Source Software. 2019; 4: 1627. https://doi.org/10.21105/joss.01627.
- [24] Chicco D, Warrens MJ, Jurman G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ. Computer Science. 2021; 7: e623. https://doi.org/10.7717/peerj-cs.623.
- [25] Maiseli BJ. Optimum design of chamfer masks using symmetric mean absolute percentage error. EURASIP Journal on Image and Video Processing. 2019; 2019: 74. https://doi.org/10.1186/s13640-019-0475-y.
- [26] Kreinovich V, Nguyen HT, Ouncharoen R. How to estimate forecasting quality: a system-motivated derivation of symmetric mean absolute percentage error (SMAPE) and other similar characteristics (Technical Report UTEP-CS-14-53). University of Texas at El Paso. 2014.
- [27] Wang JH, Chen YH. Overlapping group screening for detection of gene-gene interactions: application to gene expression profiles with survival trait. BMC Bioinformatics. 2018; 19: 335. https://doi.org/10.1186/s12859-018-2372-2.
- [28] Wang JH, Chen YH. Overlapping group screening for binary cancer classification with TCGA high-dimensional genomic data. Journal of Bioinformatics and Computational Biology. 2023; 21: 2350013.

- https://doi.org/10.1142/S0219720023500130.
- [29] Wang JH, Hou PL, Chen YH. Multicategory Survival Outcomes Classification via Overlapping Group Screening Process Based on Multinomial Logistic Regression Model With Application to TCGA Transcriptomic Data. Cancer Informatics. 2024; 23: 11769351241286710. https://doi.org/10.1177/11769351241286710.
- [30] Zeng Y, Breheny P. Overlapping Group Logistic Regression with Applications to Genetic Pathway Selection. Cancer Informatics. 2016; 15: 179–187. https://doi.org/10.4137/CIN.S40043.
- [31] Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing for sequencing data with the sequence kernel association test. American Journal of Human Genetics. 2011; 89: 82–93. https://doi.org/10.1016/j.ajhg.2011.05.029.
- [32] Davies RB. Algorithm AS 155: The distribution of a linear combination of two random variables. Journal of the Royal Statistical Society. Series C (Applied Statistics). 1980; 29: 323–333. http://doi.org/10.2307/2346911.
- [33] Duchesne P, de Micheaux PL. Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods. Computational Statistics & Data Analysis. 2010; 54:858-862. https://doi.org/10. 1016/j.csda.2009.11.025.
- [34] Tibshirani R. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society. Series B (Methodological). 1996; 58: 267–288.
- [35] Zou H. The adaptive lasso and its oracle properties. Journal of the American Statistical Association. 2006; 101: 1418–1429. https://doi.org/10.1198/016214506000000735.
- [36] Simon N, Friedman J, Hastie T, Tibshirani R. Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent. Journal of Statistical Software. 2011; 39: 1–13. https: //doi.org/10.18637/jss.v039.i05.
- [37] Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics. 1970; 12: 55–67. http://doi.org/10.1080/00401706.1970.10488634.
- [38] Yang SP, Emura T. A Bayesian approach with generalized ridge estimation for high-dimensional regression and testing. Communications in Statistics-Simulation and Computation. 2017; 46: 6083–6105. https://doi.org/10.1080/03610918.2016.1193195.
- [39] Emura T, Matsumoto K, Uozumi R, Michimae H. g.ridge: An R package for generalized ridge regression for sparse and highdimensional linear models. Symmetry. 2024; 16: 223. http://doi.org/10.3390/sym16020223.
- [40] Breiman L. Random forests. Machine Learning. 2001; 45: 5–32. http://doi.org/10.1023/A:1010933404324.
- [41] Li B, Guo X, Li N, Chen Q, Shen J, Huang X, et al. WNT1, a target of miR-34a, promotes cervical squamous cell carcinoma proliferation and invasion by induction of an E-P cadherin switch via the WNT/β-catenin pathway. Cellular Oncology. 2020; 43: 489–503. https://doi.org/10.1007/s13402-020-00506-8.
- [42] Park T. Crk and CrkL as Therapeutic Targets for Cancer Treatment. Cells. 2021; 10: 739. https://doi.org/10.3390/cell s10040739.
- [43] Lindner AK, Furlan T, Orme JJ, Tulchiner G, Staudacher N, D'Andrea D, *et al.* HUS1 as a Potential Therapeutic Target in Urothelial Cancer. Journal of Clinical Medicine. 2022; 11: 2208. https://doi.org/10.3390/jcm11082208.
- [44] Chen PM, Huang YH, Chen HH, Chu PY. Catalase Expression Is an Independent Prognostic Marker in Lung Adenocarcinoma. Anticancer Research. 2024; 44: 287–300. https://doi.org/10.21873/anticanres.16811.
- [45] Wang G, Li J, Zhu L, Zhou Z, Ma Z, Zhang H, et al. Identification of hepatocellular carcinoma-related subtypes and development of a prognostic model: a study based on ferritinophagy-related genes. Discover Oncology. 2023; 14: 147. https://doi.or

- g/10.1007/s12672-023-00756-6.
- [46] Zhao Y, Zhang J, Wang S, Jiang Q, Xu K. Identification and Validation of a Nine-Gene Amino Acid Metabolism-Related Risk Signature in HCC. Frontiers in Cell and Developmental Biology. 2021; 9: 731790. https://doi.org/10.3389/fcell.2021.731790.
- [47] Lee JM, Lo AC, Yang SY, Tsau HS, Chen RJ, Lee YC. Association of angiotensin-converting enzyme insertion/deletion polymorphism with serum level and development of pulmonary complications following esophagectomy. Annals of Surgery. 2005; 241: 659–665. https://doi.org/10.1097/01.sla. 0000157132.08833.98.
- [48] Bauer S, Gagneur J, Robinson PN. GOing Bayesian: model-based gene set analysis of genome-scale data. Nucleic Acids Research. 2010; 38: 3523–3532. https://doi.org/10.1093/nar/gk q045.
- [49] Bauer S, Robinson PN, Gagneur J. Model-based gene set analysis for Bioconductor. Bioinformatics. 2011; 27: 1882–1883. https://doi.org/10.1093/bioinformatics/btr296.
- [50] Lee S, Abecasis GR, Boehnke M, Lin X. Rare-variant association analysis: study designs and statistical tests. American Journal of Human Genetics. 2014; 95: 5–23. https://doi.org/10.1016/j.ajhg.2014.06.009.

- [51] Ueki M. Alzheimer's Disease Neuroimaging Initiative. Testing conditional mean through regression model sequence using Yanai's generalized coefficient of determination. Computational Statistics & Data Analysis. 2021; 158: 107168. https://doi.org/10.1016/j.csda.2021.107168.
- [52] Xiong Z, Li X, Yang L, Wu L, Xie Y, Xu F, et al. Integrative Analysis of Gene Expression and DNA Methylation Depicting the Impact of Obesity on Breast Cancer. Frontiers in Cell and Developmental Biology. 2022; 10: 818082. https://doi.org/10. 3389/fcell.2022.818082.
- [53] Zhao D, Wang X, Beeraka NM, Zhou R, Zhang H, Liu Y, et al. High Body Mass Index Was Associated With Human Epidermal Growth Factor Receptor 2-Positivity, Histological Grade and Disease Progression Differently by Age. World Journal of Oncology. 2023; 14: 75–83. https://doi.org/10.14740/wjon1543.
- [54] Feng NN, Du XY, Zhang YS, Jiao ZK, Wu XH, Yang BM. Overweight/obesity-related transcriptomic signature as a correlate of clinical outcome, immune microenvironment, and treatment response in hepatocellular carcinoma. Frontiers in Endocrinology. 2023; 13: 1061091. https://doi.org/10.3389/fendo. 2022.1061091.

