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1. ABSTRACT 

Breast cancer (BrCa) is the most commonly 

diagnosed cancer and the second leading cause of 

cancer-related death in women. Alarming increases 

in the cases quests for more effective treatment of 

BrCa. As most chemotherapeutic drugs are 

associated with drug resistance, cancer relapse, and 

side effects, scientists are turning to agents with more 

efficacy, such as natural compounds for treatment 

and prevention of BrCa. Selected natural 

compounds, substances derived from living 

organisms, promote apoptosis and inhibit metastasis, 

preventing cancer growth. As a result, these 

compounds have the potential to suppress BrCa 

progression, thus increasing patient survival rates 

and decreasing the number of BrCa-related deaths. 

In this review, we summarize natural compounds that 

have displayed, anti-cancer effects on BrCa cells in 

various studies. These natural compounds inhibit the 

development of BrCa, suppress the growth of cancer 

cells, and promote cell death. We conclude that 

natural compounds are efficient, effective and 

promising agents for treating BrCa other than 

therapeutic methods. 

2. INTRODUCTION 

Breast cancer (BrCa) is the most frequent 

type of cancer diagnosed in women worldwide (1). 

Approximately 1 in 8 women are diagnosed with BrCa 

sometime in their lives (2). In the United States, 

roughly 266,120 women are estimated to have been 

diagnosed with invasive BrCa in 2018 (3). In addition, 

it is the second most common cause of cancer-

related death in females globally (4). Therefore, 

effective treatments for BrCa are needed to reduce 

the numbers of deaths from BrCa. Moreover, BrCa is 
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more frequently diagnosed in certain races or 

ethnicities. African American women younger than 

age 40 are two times more likely to develop BrCa in 

comparison to white women of the same age. 

Another BrCa disparity is that African, American and 

Hispanic females are more at risk to be diagnosed 

with aggressive and advanced forms of BrCa (5). 

These BrCa disparities point to a need for more 

efficient treatments for BrCa. 

Due to the high incidence of BrCa, effective 

agents are needed to treat this cancer (6). Surgery, 

chemotherapy, radiotherapy, and hormone therapy 

are the most frequently used methods of treatment 

for BrCa. Although BrCa is typically treated with 

chemotherapeutic drugs, the development of drug 

resistance, the occurrence of side effects, and 

reoccurrence of the disease indicate that these drugs 

have limited efficacy (4, 7). The well-studied drug 

efflux genes are MDR1, ABCG2, and BCRP (7). The 

side effects are unpredictable and depend upon the 

chemotherapeutics; some common effects include 

nausea and vomiting, neuropathy, constipation, 

diarrhea, and trouble breathing. Since clinicians need 

therapies that treat BrCa without extensive side 

effects and drug efflux, there is a need for replacing 

present chemotherapy drugs with natural 

compounds, which are organic chemical substances 

that are the products of living organisms (8) (Figure 

1). Natural compounds are considered to be effective 

in the treatment of BrCa, as they affect several 

targets and have minimal or no side effects (Table 1). 

In addition, several studies have been identified in 

natural compound targeted therapies on subtypes of 

breast cancers (Basal-like, Luminal and HER-2) (9). 

In certain cases, natural compounds are safer, faster, 

cheaper, and less toxic in treatment of BrCa (10). 

Some of these compounds induce apoptosis and 

function in chemo-sensitization (11). The aim of this 

review is to evaluate natural compounds and show 

how they can be more effective than other 

therapeutic methods in treating BrCa. 

3. NATURAL COMPOUNDS 

3.1. Quercetin 

Quercetin (QC), a flavonol from the 

flavonoid group of polyphenols, is produced by 

plants, including Allagopappus viscosissimus, 

Opuntia ficus-indica var. saboten, Lychnophora 

staavioides, and Rhamnus species (12, 13). The 

geographical distribution determines, it is found in 

more than twenty pants material (14). This compound 

present in various vegetables and fruits and in wine, 

tea, and coffee (15), has anticancer, antioxidant, 

antitumor, and anti-inflammatory properties (16). QC 

promotes apoptosis in a wide variety of cells, 

including those of prostate, lung, breast, colon, and 

cervical cancers (15). In addition, nanoparticles 

containing QC reduce the growth of cancer cells and 

cause them to undergo apoptosis, (12). To promote 

apoptosis of cancer cells, QC decreases the 

expression of anti-apoptotic proteins, such as 

survivin, Bcl-xL, and Bcl-2, and increases the 

expression of the pro-apoptotic proteins, such as Bad 

and Bax, (15). Since it targets cancer cells and 

causes them to undergo apoptosis, this compound is 

a potential therapeutic for treating various cancers 

(17). 

QC is a promising agent for prevention and 

therapy of BrCa (12). For BrCa cells (BT-20 and 

MCF-7), QC promotes apoptosis by inducing the 

inactivation of c-FLIPL and upregulating DR5. In 

addition, QC arrests proliferation of BrCa cells (MCF-

7) by inhibiting the cell cycle (15). Moreover, it inhibits 

the growth and invasive capacity of BrCa stem cells 

(MDA-MB-231) and downregulates various proteins, 

including aldehyde dehydrogenase 1A1, epithelial 

cell adhesion proteins, and others that are associated 

with the growth of BrCa cells. Therefore, by 

downregulating these proteins, the proliferation of 

BrCa cells is inhibited, showing that QC has 

anticancer properties (17). Thus, since QC promotes 

apoptosis of BrCa cells, it is likely to be effective in 

treating BrCa. 

3.2.Tetrandrine 

Tetrandrine, which demonstrates anti-

proliferation and antitumor properties (18), is a 

dibenzyl tetrahydro isoquinoline alkaloid present in 

Stephania tetrandra, an Asian herb (Chinese plant) 

used for medicinal purposes (18, 19). This natural 

compound has proapoptotic effects on cancers, 

including leukemias, melanomas, and prostate and 

breast cancers (18). Tetrandrine has 
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pharmacological properties in that it contributes to 

the blockade of positive ion channels and blocks 

various drug resistance proteins (19). Used to treat 

various cancers, tetrandrine affects the resistance of 

tumor cells (20), and it reverses drug resistance in 

human BrCa cells (21). Further, tetrandrine induces 

autophagy. As a result, cells that are resistant to 

apoptosis and thus are resistant to cell death in 

general, undergo autophagic cell death (22). 

Therefore, since tetrandrine decreases the growth of 

cancer cells, it is a promising agent for treating 

various cancers. 

Tetrandrine displays a preventive effect 

against the growth of inflammatory and breast tumor-

initiating cells by killing these cells. This compound 

reduces mammosphere formation, which is a 

surrogate for the proliferation of cancer cells, and it 

reduces the protein expression of aldehyde 

dehydrogenase. For SUM-149 and SUM-159 BrCa 

cells, tetrandrine exhibits anti-proliferative properties. 

In addition, by downregulating aldehyde 

dehydrogenase proteins, it demonstrates anti-

proliferation characteristics because these proteins 

are related to the growth of BrCa cells (19). For BrCa 

MCF-7/TAM cells, tetrandrine reverses drug 

resistance of tamoxifen. As an activator of 

autophagy, tetrandrine has pro-autophagic effects on 

numerous BrCa cell lines, and it promotes cell death 

in cells that are resistant to apoptosis. Due to 

autophagy, apoptosis-resistant cell lines that have 

low expression of caspase 3, caspase 7, and Bax, 

Bak undergo cell death when treated with tetrandrine. 

Thus, tetrandrine is useful in activating cell death 

amongst cancer cells (22), and it shows properties 

that make it a promising treatment for the prevention 

and treatment of BrCa (21). 

3.3. Curcumin 

Curcumin (CUR),a component of the spice 

plant Curcuma longa turmeric, probably originated 

from South and South-East Asia, is commonly used 

for medicinal purposes and is effective in the 

treatment of a variety of cancers (23-25). It has anti-

inflammatory, anti-tumor, anti-microbial, anti-

oxidative, and anticancer properties, and it has anti-

carcinogenic effects on squamous cell carcinomas 

and on lung, breast, pancreatic, brain, head and 

neck, and colorectal cancers (24-27). In addition, 

CUR displays anti-proliferative effects on cancer 

cells, including those of melanoma and mantle cell 

lymphoma and hepatic, ovarian, and prostatic 

carcinomas (28, 29). CUR regulates the expressions 

of several proteins, including inflammatory cytokines 

and enzymes, transcription factors, and gene 

 
 

Figure 1. Chemical structure of natural compound leads as therapeutics in treating breast cancer. 
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products associated with cell survival and growth 

(26). This polyphenol derivative also promotes 

apoptosis and hinders angiogenesis and tumor 

metastasis (30). By disrupting a variety of signaling 

Table 1. Understanding the effectiveness of natural compounds in BrCa therapy 

Natural 

Compound 

Source Action Reference 

Curcumin Curcuma longa  Promotes apoptosis; blocks angiogenesis and tumor metastasis; regulates the NF-κB 

signaling pathway; downregulates expression of human epidermal growth factor 2 and 

the phosphorylation of Akt; prevents the activation of NF-kB; downregulates vascular 

endothelial growth factor and intercellular adhesion molecule-1; promotes cell cycle 

arrest and beta-catenin nuclear translocation; and inhibits EMT markers. 

(25, 26) 

(30, 33) 

(24, 34, 38) 

Diosgenin Dioscorea villosa 

and 

Trigonellafoenum 

graecum 

Suppresses cancer growth and progression; promotes apoptosis; inhibits actin 

polymerization, inhibits ER-α protein and mRNA expression; induces the intrinsic 

antioxidant defense system; affects CSCs via the Wnt β-catenin pathway (enhances β-

catenin expression); reduces mTOR and Akt phosphorylation; induces JNK 

phosphorylation; suppresses the Raf/MEK/ERK pathway; induces cell cycle arrest; 

regulates DNA methylation; activates GATA3; downregulates MMP9. 

(85-91) 

Garcinol Garcinia indica Regulates the NF-κB signaling pathway; suppresses histone acetyltransferases and 

ROS; induces cell cycle arrest; reverses EMT markers; regulates β-catenin; and Wnt 

signaling pathway. 

(102, 104) 

Genistein Fabaceae Reduces tumorigenesis; induces cell differentiation; inactivates the epidermal growth 

factor signaling pathway, modulates gene transcription by regulating epigenetic 

activities; suppresses topoisomerase I and II and DNA polymerase; suppresses 

tyrosine kinases; regulates Hedgehog-Gli1 signaling; cell cycle arrest; and PI3K/Akt 

and MEK/ERK signaling pathways  

(92, 93, 95, 

96, 98) 

 

Honokiol Magnolia 

grandiflora 

Inhibits angiogenesis; prevents tumor cell proliferation, induces apoptosis; regulates 

immunoresistance through PI3K/mTOR pathway; induces autophosphorylation; 

suppresses leptin-induced Wnt1-MTA1-β-catenin signaling; reduces phosphorylation 

of STAT3; inhibits PLD activity; suppresses mammosphere formation, ALDH activity, 

and expression of iPSC inducers; induces cell cycle arrest; inhibits EGFR; suppresses 

phosphorylation of c-Src. 

(75, 76) 

(78, 81) 

(82, 83) 

 

Quercetin Allagopappus 

viscosissimus, 

Opuntia ficus-

indica var. 

saboten, 

Lychnophora 

staavioides, and 

Rhamnus species 

Promotes apoptosis, cell cycle; prevents invasive activity of BCSCs (13, 15, 17, 

109) 

Resveratrol Polygonum 

cuspidatum 

Prevents tumorigenesis, DNA damage, and cancer metastasis; induces cell cycle 

arrest and apoptosis; modifies genetic and epigenetic profiles of cells; hinders COX 

activity; diminishes DNA binding activity of NF-κB; reduces cell viability, glucose 

consumption, and ATP content; downregulates expression of TGFβ1; reduces survival 

of BCSCs; induces autophagy by inhibiting the Wnt/β-catenin signaling pathway; 

diminishes PI3K/Akt/mTOR signaling.  

(61-64, 68) 

(69, 71, 73) 

Silibinin Silybum marianum Induces apoptosis through extrinsic and intrinsic pathways; initiates autophagy; 

diminishes ROS production; lowers EGF-induced FN expression; inhibits STAT3 

phosphorylation; inhibits the EGF/STAT3 signaling pathway; downregulates the 

expression of MMP-9; blocks MEK and ERK phosphorylation; downregulates the 

expression of TGF-β2, basal FN, and MMP-2. 

(39, 40, 44, 

46, 48) 

 

Tetrandrine Stephania 

tetrandra 

Contributes to blockade of positive ion channels; overcomes multiple drug resistance; 

induces autophagy; promotes apoptosis. 

(18, 19, 22) 

Thymoquinone Nigella Sativa Promotes apoptosis by p53-dependent and p53-independent pathways; initiates p38 

and ROS signaling; cell cycle arrest; hinders tumor growth by targeting NF-κB; 

enhances the PPAR-γ activation pathway/ PPAR-γ activity; diminishes Akt,4E-BP1, 

eIF4E, S6R and p70S6K phosphorylation. 

(49, 51, 53, 

54, 56, 58) 
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pathways, CUR inhibits the survival, growth, and 

invasive migration of cancer cells (31). Furthermore, 

unlike most chemotherapeutic drugs, CUR has 

minimal side effects (24). Therefore, CUR displays 

characteristics of a promising agent for treatment of 

various cancers. 

For BrCa cells, CUR has a wide range of 

effects. CUR, either alone or in combination with 

other natural compounds or chemotherapeutics, 

hinders tumorigenesis and cancer cell growth. For 

instance, CUR reduces proliferation of human BrCa 

cells by preventing the activation of nuclear factor 

kappaB (32), which is associated with cancer cell 

survival, cell growth, and metastasis. Furthermore, in 

BT-474 and SK-BR-3 cells, CUR downregulates 

MAPK, and NF-κB(32). 

CUR reduces paclitaxel-induced NF-κB 

by inhibiting the activation of IκBα kinase and 

through IκBα phosphorylation and degradation. 

This compound also downregulates the expression 

of anti-apoptotic proteins, such as BCL-xL and 

BCL-2; proliferative proteins, such as cyclin-D1 

and c-Myc; and metastatic proteins, such as 

vascular endothelial growth factor and intercellular 

adhesion molecule-1 (33). It decreases the 

number of viable cells in the BrCa cell line, MDA-

MB-231. CUR inhibits growth of tumors, showing 

that it has therapeutic potential for treatment of 

BrCa (25). 

For MCF-7 BrCa cells, CUR reduces the 

proliferative effects of bisphenol A, which is 

associated with the development of BrCa (34). It 

also reverses the upregulation of oncogenic miR-

19a and miR-19b and the downregulation of miR-

19-related downstream proteins (PTEN, p-AKT, p-

MDM2, p53) and proliferating cell nuclear antigen, 

which is elevated by bisphenol A. CUR modulates 

the miR-19/PTEN/AKT/p53 axis to reduce the 

growth of bisphenol A-promoted MCF-7 cells (34). 

Furthermore, in BrCa cells, the compound 

promotes cell cycle arrest (24). For instance, CUR 

decreases the expression of CD44 and CD24 in 

MCF-10F cells, and CD24 in MCF-7 cells. In 

addition, CUR downregulates the expression of 

CD44 in MDA-MB-231 cells. Thus, by enhancing 

the amount of CD44+/CD24+ cells and reducing 

the amount of CD44+/CD24-cells, CUR decreases 

the growth of BrCa cells (35). 

CUR reduces expression of the 

inflammatory cytokines, CXCL1 and -2, which 

results in a decrease in BrCa metastasis. 

Moreover, in BrCa metastasis is regulated by the 

expression of a variety of miRNAs, including 

miR181b, which diminishes the expression of 

CXCL1 and -2 by binding to their 3’-UTRs.This is 

relevant to its anticancer activity against BrCa cells 

(36). 

CUR enhances the expression of Nrf2, a 

regulator of antioxidant defense systems in BrCa 

cells and decreases expression of the Flap 

endonuclease 1 (Fen1) protein, a DNA-repair 

nuclease (37). Additionally, CUR causes Nrf2 

translocation from the cytoplasm to the nucleus and 

suppresses Fen1-induced activity through reduced 

recruitment of Nrf2 to the Fen1 promoter. CUR 

reduces the proliferation of BrCa cells, providing a 

new strategy for the inhibition of tumor growth (37). 

In the BrCa cell lines, MDA-MB-231 and MCF-7, CUR 

downregulates the expression of Bcl-2, an anti-

apoptotic protein, and upregulates the expression of 

Bax, a pro-apoptotic protein (29). 

CUR targets cancer stem cells, in which it 

diminishes the formation of the E-cadherin/beta-

catenin complex (38) and enhances expression of 

genes associated with the epithelial-mesenchymal 

transition (EMT), such as Slug. By downregulation of 

E-cadherin and promotion of the EMT, the migration 

of the BrCa stem cells is enhanced. However, CUR 

reduces nuclear translocation of beta-catenin. 

Therefore, CUR activates EMT-promoting target 

genes, and upregulates the expression of E-

cadherin. By enhancing formation of the E-

cadherin/beta-catenin complex and retention of beta-

catenin, the EMT is inhibited, as is the migration of 

the BrCa stem cells. In sum, CUR suppresses the 

migration and growth of BrCa cells (38). 

3.4. Silibinin 

Silibinin (INN), from the plant Silybum 

marianum, a milk thistle, possesses anti-

carcinogenic and anti-proliferative properties (39). In 
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Europe and Asia, INN is a commonly used medicine 

with hepatoprotective effects (40). This compound 

has inhibitory effects on various cancers, including 

those of the breast, colon, prostate, skin, brain, and 

lung (41). The hepatoprotective, anti-inflammatory, 

anti-fibrotic, and anti-tumor effects of INN show that 

it has potential as a therapeutic agent in the treatment 

of various cancers (42). 

INN is effective in treating BrCa. Against 

MCF-7 BrCa cells, it induces apoptosis and displays 

anti-proliferative properties. In these cells, INN 

activates the conversion of light chain 3 (LC3)-I to 

LC3-II, upregulates Atg12-Atg5 formation, raises 

beclin-1 expression, and diminish es Bcl-2 

expression (39). These effects show that, for MCF-7 

BrCa cells, INN initiates autophagy, and demonstrate 

that it promotes autophagic cell death. INN promotes 

cell death by reducing the expression of Bcl-2 

adenovirus E1B 19-kDa-interacting protein 3 

(BNIP3), increasing ROS production, and regulating 

ΔΨm and ATP levels (39). 

Fibronectin (FN) is associated with cell 

adhesion, migration, and oncogenic transformation, 

and its expression correlates with a poor prognosis 

for various types of cancer, including BrCa (40). A 

study focused on the effect of INN on the expression 

of the epidermal growth factor (EGF)-induced FN in 

triple negative BrCa (TNBC) cells found that a STAT3 

inhibitor reduced the expression of EGF-induced FN 

(40). In MDA-MB-468 and BT20 BrCa cells, EGF 

increases the expression of FN mRNA. As a result, 

EGF-induced FN expression is diminished by 

AG1478 and gefitinib, which are EGFR inhibitors. In 

addition, MEK1/2, PI3K, and STAT3 inhibitors 

downregulate EGF-induced FN expression. INN 

diminishes the EGF-induced FN expression, which 

inhibits STAT3 phosphorylation. Thus, INN inhibits 

the EGF/STAT3 signaling pathway, which leads to 

the inhibition of FN expression in TNBC cells. 

Consequently, INN has anti-proliferative and anti-

migratory effects on BrCa cells, which show that it is 

a promising agent for treatment of TNBCs (40). 

Moreover, for MDA-MB-231 cells, INN suppresses 

EGFR phosphorylation; reduces the expressions of 

COX-2, VEGF, and MMP-9; and reduces tumor sizes 

in mice, showing that it has anti-tumor and anti-

cancer activities (43). 

Matrix metalloproteinases (MMPs) 

contribute to cell migration, cell invasion, and cancer 

metastasis. INN downregulates the expression of 

MMP-9 and reduces 12-O-tetradecanoylphorbol-13-

acetate-induced cell migration. In addition, in MCF-7 

BrCa cells, INN lowers MEK and ERK 

phosphorylation (44). Moreover, the expressions of 

miR-21 and miR-155 are low in INN-treated T47D 

BrCa cells, and the expressions of potential targets, 

CASP-9 and APAF-1, are upregulated. In cells, INN 

downregulates miR-21 and miR-155, which are 

frequently over-expressed in cancers (45). INN has a 

similar effect on MCF-7 cells by promoting apoptosis 

and by decreasing the expression miR-21 and miR-

155 while increasing the expression of potential 

targets. Additionally, the increase in expression of 

CASP-9 and BID in MCF-7 cells reveals that INN 

promotes apoptosis through the extrinsic and intrinsic 

pathways (46). 

INN, acting as a CXCR4 antagonist, affects 

CXCR4 signaling. It reduces chemokine ligand 12 

(CXCL12)-induced CXCR4 internalization; as a 

consequence, downstream intracellular signaling is 

suppressed. By suppressing CXCL12-induced 

migration in MDA-MB-231 cells, INN demonstrates 

its capacity to regulate cancer proliferation and 

metastasis (47). High levels of TGF-β2 correlate with 

a poor prognosis. In TNBC cells, INN downregulates 

the expression of TGF-β2, basal FN, and MMP-2 

(48). Thus, INN is a promising agent to prevent BrCa 

metastasis and a promising treatment for BrCa.  

3.5. Thymoquinone 

Thymoquinone (TQ) is present in the seeds 

of Nigella sativa, which is cultivated in the 

Mediterranean region and in Western Asian countries 

(49, 50). This compound has activity against varying 

types of cancers, including myeloblastic leukemia, 

osteosarcoma, and pancreatic adenocarcinoma and 

breast, liver, ovarian, larynx, prostate, and colorectal 

cancers(49-53). The antitumor activity of TQ involves 

several targets, including p53, p73, STAT3, NF-κB, 

PPAR-γ, and ROS (53). In MCF7, HCT-116, and HL-

60 cancer cells, TQ increases the ratio between Bax 

and BCL-2, raising amounts of the pro-apoptotic 

protein and diminishing amounts of the anti-apoptotic 

protein and demonstrating its anti-proliferative 



Natural compounds in breast cancer therapy 

143 © 1996-2020 
 

properties (51). Thus, TQ is a promising compound 

for treatment of cancers. 

TQ has anticancer effects on BrCa cells. It 

exhibits anti-migratory and pro-apoptotic properties 

against BrCa cells by elevating phosphorylation of 

p38 and ROS signaling. In addition, TQ suppresses 

the expression of anti-apoptotic proteins, including 

survivin, Bcl-xL, and Bcl-2, displaying its anti-

proliferation activity (54). The downregulation of anti-

apoptotic proteins, promotion of p38 phosphorylation, 

and reduction of the size of breast tumors indicates 

that TQ is an effective treatment for BrCa (53). In 

addition, TQ inhibits molecules associated with the S 

phase and, in cells, induces sub-G1 arrest, which 

relates to its capacity to inhibit cell proliferation. TQ 

promotes apoptosis by p53-dependent and p53-

independent pathways through modulation of various 

targets. TQ hinders cell proliferation and tumor 

growth by targeting NF-κB and affecting the cell 

cycle. With long-term treatment, even low 

concentrations suppress BrCa cells (54). 

TQ causes cleavage of poly (ADP-ribose) 

polymerase, enhancement of γH2AX, a decline in 

phosphorylation of Akt, and downregulation of the 

expression of X-linked inhibitor of apoptosis (55). In 

addition, it serves as a ligand of PPAR-γ and inhibits 

proliferation of BrCa MCF-7/DOX cells (56). 

Consequently, TQ enhances PTEN protein 

expression, and reduces Akt phosphorylation. Since 

Akt phosphorylation maintains cell survival, by 

decreasing it, TQ inhibits cell growth. Further, TQ 

blocks MCF-7/DOX cells at the G2/M phase (57, 58). 

TQ also reduces the expression of cyclin D1 and 

cyclin E and reduces Akt by diminishing the 

phosphorylation of 4E-BP1, eIF4E, S6R and p70S6K 

(58). Thus, TQ is an effective compound for the 

treatment of BrCa, as it induces apoptosis among 

BrCa cells. 

3.6. Resveratrol 

Resveratrol (trans-3,5,4′-trihydroxystilbene, 

RES), a polyphenolic compound with anti-

carcinogenic activity, is present in plant foods and 

dietary sources, including grapes, peanuts, 

soybeans, pomegranates, and berries (59, 60). A 

plant that contains considerable amounts of 

resveratrol is Polygonum cuspidatum, or Japanese 

knotweed, which has beneficial effects against 

inflammation. For hundreds of years in Asian 

countries, this plant has been used to prevent and 

treat several diseases, including cancer. RES 

induces cell cycle arrest and causes apoptosis of 

tumor cells. RES also downregulates the expression 

of tumor-derived nitric oxide synthase, functions as 

an antioxidant, and prevents DNA damage; it also 

reduces tumor growth (61). This compound modifies 

genetic and epigenetic profiles of cells within tumors, 

demonstrating its antitumor properties (62). In 

addition, it diminishes the DNA-binding activity of NF-

κB. Since this factor promotes the transcription of 

genes that induce tumor cell proliferation, RES 

prevents tumor growth by diminishing its binding 

activity (61). RES reduces intracellular ROS, 

mitochondrial membrane potential, and 

phosphorylation of mTOR, RP-S6, and 4EBP1. It 

prevents inflammation and leukemia and inhibits 

viruses. RES has neuroprotective and apoptotic-

inducing properties (63). RES causes apoptosis 

through several pathways, such as by targeting p53, 

Rb, and cell cycle kinases (64). RES hinders cancer 

cell proliferation and promotes apoptosis of various 

cancer cells (65). It has antitumor effects on 

colorectal, liver, pancreatic, prostate, and breast 

cancers (61, 66). Because RES displays multi-target 

effectiveness, medical safety, convenience, and cost 

efficacy, it provides an effective method of treatment 

for various cancers (67). 

RES has anticancer effects on BrCa cells. 

Against triple-negative BrCa cell lines, MDA-MB-231 

and MDA-MB-231/PacR, RES prevents cell growth, 

promotes senescence, downregulates the 

expression of survivin, and initiates apoptosis. In 

promoting apoptosis, it activates caspase 7 (65). 

Moreover, RES reduces cell viability, glucose 

consumption, and the ATP content in MCF-7 cells; it 

also suppresses PFK. In this manner, RES reduces 

the survival and proliferation of these cells (68). 

RES inhibits tumor growth in various animal 

models. For instance, it reduces the incidence of 

tumor formation in female rats. In rats, RES 

decreases the expression of COX2 and the binding 

of NF-κB to DNA. It reduces the expression of single-

strand DNA; decreases DNA damage; and 
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downregulates the expression of 5-LOX, TGFβ1, and 

NF-κB. Additionally, RES decreases BrCa tumor 

growth and metastasis(61). 

In BrCa cells, RES modulates apoptotic 

and cell cycle machinery by regulating tumor-

suppressive miRNAs, including miR-125b-5p, miR-

200c-3p, miR-409-3p, miR-122-5p, and miR-542-3p. 

miR-542-3p is involved in inhibition of apoptosis in 

MCF-7 cells and miR-122-5p in MDA-MB-231 cells. 

By modulating miRNAs, RES demonstrates its 

anticancer and anti-proliferative properties against 

BrCa (69). Furthermore, in MCF-7 cells, RES 

enhances the expression of ASPP1, a protein 

activator of p53 that stimulates apoptosis. RES also 

upregulates BAX and p21 (70). Its modulation of Bcl-

2 inhibits cancer progression. RES increases p53 

expression, reduces procaspase 8, and activates 

caspases 7 and 9. In addition, RES induces cell cycle 

arrest in the S phase and raises p-Chk2 levels. RES 

reduces the active form of CDK2 and blocks CDK7 

activity (71). It promotes p53-dependent apoptosis 

through plasma membrane integrin αvβ3, 

demonstrating its anti-proliferative activity(72). In 

HER2-positive BrCa cells, RES modifies cell cycle 

progression and promotes apoptosis by blocking 

FASN (73). Therefore, RES is a promising agent for 

treating BrCa. 

3.7. Honokiol 

Honokiol (HNK), a natural compound 

derived from the plant, Magnolia grandiflora, native to 

the Southeastern United States and many other 

regions of the globe (74), demonstrates antimicrobial, 

anti-oxidative, and anti-inflammatory properties (75, 

76). It also inhibits angiogenesis, which is associated 

with tumor metastasis (75) and suppresses vascular 

endothelium growth, leading to anti-tumor effects 

(77). It reduces proliferation of tumor cells in culture 

and inhibits growth of tumor xenografts in mice. For 

B-cell chronic lymphocytic leukemia cells, HNK 

promotes caspase-dependent apoptosis (75). This is 

accomplished through p53-independent pathways 

(76). Similarly, HNK suppresses bone metastasis of 

prostate cancer cells (75). Furthermore, in glioma, 

breast, and prostate cancer cells, it diminishes 

PI3K/mTOR pathway-mediated immunoresistance 

(78). Moreover, HNK induces differentiation of 

human HL-60 cells. The compound reduces VEGF-

induced KDR autophosphorylation in HUVECs and 

angiosarcoma proliferation in mice. Additionally, it 

suppresses growth of RKO colon cancer cells and, in 

mice, growth of RKO solid tumors. HNK extends the 

lifespan of the mice with solid tumors (76). Therefore, 

HNK is a promising as a cancer therapeutic agent. 

HNK shows potential as an agent for 

treating BrCa. The compound suppresses the growth 

of the BrCa cells and enhances the efficacy of other 

drugs against these cells. In mice, HNK causes cell 

cycle arrest of BrCa cells (79). For MDA-MB-231 

cells, it promotes the activation of caspase 3 and 

induces pro-apoptotic traits. In HNK-treated mice, 

tumor cell proliferation is suppressed (80). In 

addition, HNK suppresses leptin-induced Wnt1-

MTA1-β-catenin signaling. It reduces the 

phosphorylation of STAT3, and, because of the 

release of repressor-STAT3, activates miRNAs (81). 

The survival of cancer cells is greater when 

phospholipase D (PLD) activity is enhanced. Thus, 

an agent that suppresses PLD activity is likely to be 

effective in inhibiting proliferation of BrCa cells. HNK 

inhibits PLD activity, hence preventing the 

proliferation of cancer cells. In MDA-MB-231 cells, 

enhancement in PLD activity correlates with Ras 

activation; HNK inhibits PLD activity as well as Ras 

activation. By suppressing Ras and PLD activity, 

which promotes cell survival, HNK shows potential as 

a therapeutic agent for BrCa (75). 

Furthermore, HNK demonstrates 

anticancer effects on BrCa cells through suppression 

of mammosphere formation, ALDH activity, and 

expression of iPSC inducers. By downregulating 

iPSC inducers through STAT3 inactivation, HNK 

promotes LKB1 and suppresses the stem-like 

phenotype of BrCa cells (82). Additionally, HNK 

suppresses the growth of MDA-MB-231 BrCa cells by 

inducing G0/G1 phase cell cycle arrest. This is 

associated with the increase of a CDK inhibitor, 

p27Kip-1, and with increases of CDK4, cyclin D1, 

CDK2, cyclin A, and cyclin E. Further, HNK promotes 

the cleavage of PARP and DNA fragmentation by 

activating a caspase cascade. Hence, apoptosis of 

these BrCa cells is enhanced. Moreover, HNK shows 

an antigrowth effect by regulating cell signal 
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transduction pathways. This compound inhibits 

EGFR, the receptor tyrosine kinase ErbB, and c-Src, 

which stimulates EGFR through phosphorylation of 

the receptor at itsTyr845 position. The 

phosphorylation of c-Src is also suppressed by HNK. 

For MDA-MB-231 cells, inhibition of factors that 

contribute to BrCa cell growth and angiogenesis 

relate to the anti-proliferative traits of HNK. In addition 

to diminishing the expression of c-Src, HNK reduces 

the expression of Akt, which promotes cell survival 

and suppresses apoptosis. The inhibition of Akt and 

c-Src is regulated by modulation of Hsp90; HNK also 

inhibits Hsp90. Thus, by modulating c-Src/EGFR-

mediated signaling and inhibiting the expression of c-

Src and Akt, HNK is a treatment option for BrCa (83). 

3.8. Diosgenin 

Diosgenin (DG) is a steroid saponin derived 

from the plants Dioscorea villosa and 

Trigonellafoenum graecum, mianly occur in China, 

India, Thailand, and South-East Asian countries, 

Mediterranean region, and Northern Africa (84). This 

compound is recognized for its contribution to 

synthetic steroidal drugs produced in the 

pharmaceutical field. DG, a constituent of traditional 

medicines, has anti-hypercholesterolemia, anti-

hyperglycemia, antifungal, antiviral, and anti-

diabetes properties (85, 86). For various cancer cells, 

this compound suppresses growth and progression, 

and promotes apoptosis. The cancers beneficially 

affected by DG include osteosarcoma, colon 

carcinoma, leukemia, hepatoma, and BrCa. DG 

inhibits cancer growth by regulating various cell-

signaling events related to cancer proliferation, 

differentiation, apoptosis, and growth (85). There are 

no reports indicating a toxic effect on non-cancerous 

cells (87). Thus, DG, which acts on numerous targets 

in various types of cancer, is a promising agent for 

treating cancer (85). 

For BrCa MDA-MB-231 cells, DG 

suppresses migration and reduces actin 

polymerization, Vav2 phosphorylation, and Cdc42 

activation, which are associated with cancer cell 

migration and invasion and with BrCa progression. 

Suppression of these factors may relate to the 

capacity of DG to inhibit cancer metastasis (85). 

Furthermore, in MDA-MB-231, MDA-MB-453, and 

T47D BrCa cells, DG downregulates the expressions 

of the anti-apoptotic proteins, Bcl-2 and cIAP-1 (86). 

It decreases the expression of myeloid cell leukemia-

1 (Mcl-1), which is associated with cell survival. 

Moreover, DG promotes apoptosis by causing 

apoptosis inducing factor (AIF) to be released from 

mitochondria and translocated to the nucleus. Thus, 

the AIF-facilitating, caspase-independent pathway 

regulates DG-induced apoptosis. By decreasing the 

expression of inhibitors of apoptosis, such as Bcl-2 

and clap-1, and inducers of cell survival, DG 

demonstrates its anti-proliferative effects on various 

BrCa cell lines (86). 

For ER-positive MCF-7 BrCa cells, DG 

suppresses growth and promotes apoptosis. For 

these cells, DG downregulates the expression of 

procaspase-3, procaspase-8, and survivin and 

upregulates the expression of Fas ligand and cleaved 

PARP1, demonstrating that DG-promoted apoptosis 

is regulated by the extrinsic pathway (88). In addition, 

DG suppresses ER binding to the estrogen response 

element. In MCF-7 cells exposed to DG, C-Myc and 

cyclin D1, which are ERα-mediated genes, are 

downregulated. Additionally, DG also downregulates 

activation of p38 and ERK1/2. N-methyl-N-

nitrosourea (NMU), a mammary carcinogen, 

promotes the development, in female Sprague 

Dawley rats, of BrCas that resemble those in 

humans. For these rats, DG reduces the occurrence 

of cancers by downregulating the peroxidation 

reaction and marker enzymes and by inducing the 

intrinsic antioxidant defense system. Therefore, DG 

demonstrates anticancer effects on NMU-induced 

BrCas through the reduction of lipid peroxidation by 

inducing the antioxidant defense system (89). 

Additionally, in MCF7, T47D, and MDA-MB-231cells, 

DG reduces the numbers of cancer stem cells 

(CSCs) by acting on the Wnt β-catenin pathway. DG 

enhances β-catenin expression and reduces GSK3β 

expression. In addition, it reduces the expression of 

epithelial markers of CSC and thereby suppresses 

the growth of BrCas (87). 

In HER2-overexpressing BrCa cells, DG 

inhibits the expression of fatty acid synthase. It also 

reduces cell growth, promotes apoptosis, and 

reduces mTOR and Akt phosphorylation. In ER+ and 

ER- cells, DG suppresses pAkt expression and Akt 
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kinase. This suppression occurs without effects on 

PI3 kinase levels, which lead to the suppression of its 

downstream targets. Targets that are downregulated 

include kappaB, Bcl-2, survivin, and XIAP. In ER+ 

cells, DG also suppresses the Raf/MEK/ERK 

pathway, another downstream target of Akt. 

Moreover, in ER+ and ER- BrCa cells, there is G1 cell 

cycle arrest as a result of DG decreasing the 

expression of cyclin D1, cdk-2, and cdk-4. In nude 

mice, it reduces cancer cell growth and promotes 

apoptosis. Thus, DG is a promising therapeutic for 

BrCa as it demonstrates antitumor effects on MCF-7 

and MDA-MB-231 cells by suppressing their 

proliferation (90). 

In MDA-MB-231 and MCF-7 cells, DG 

activates GATA3 by targeting the epigenome. Since 

low GATA3 expression correlates with a poor 

prognosis for BrCa patients, DG can be beneficial, as 

it induces the expression of GATA3. In addition, DG 

regulates DNA methylation and decreases cancer 

cell survival of both ER+ and ER- cells (91). These 

cells, exposed to DG, have morphological traits of 

epithelial cells. For instance, mRNA expression of 

DNMT3A, TET2, TET3, ZFPM2, and E-cad are 

upregulated; and TET1, VIM, and MMP9 are 

downregulated. In addition, DG enhances the 

expression of TET2, TET3, ZFPM2, and DNMT3A 

transcripts. TET2 contributes to DNA demethylation, 

and downregulation of TET2 correlates with 

enhancement of cell growth. Thus, by increasing the 

expression of this enzyme, DG displays its anti-

proliferative and anti-growth characteristics. 

Additionally, DG decreases MMP9, and, in MCF-7 

and MDA-MB-231 cells, VIM mRNA levels are 

downregulated. The modulation of TET and GATA3 

by DG is associated with the suppression of cell 

migration and invasion (91). Thus, DG is promising 

as an agent for treating BrCa. 

3.9. Genistein 

Genistein, an isoflavone phytoestrogen 

present in Leguminosae (Fabaceae), possesses anti-

tumor effects for various cancers (92). It is present 

notably in soybeans, and native of South-East Asia 

(93, 94). The compound overcomes cancer drug 

resistance and suppresses the recurrence of cancers 

(92). It also reduces tumorigenesis of cancers that 

require estrogen (93). Administered to rats, genistein 

prevents tumors, cardiovascular disease, and 

osteoporosis, and it is a preventive agent for 

chemically induced mammary tumors. Genistein 

induces cell differentiation and inactivation of the 

epidermal growth factor signaling pathway (93). In 

addition, it has anti-oxidation, anti-proliferation, anti-

cancer activities; it also promotes apoptosis and 

suppresses angiogenesis and metastasis (95, 96). 

Genistein is thought to modulate gene transcription 

by regulating epigenetic activities (95). Furthermore, 

it suppresses topoisomerase I and II and DNA 

polymerase II, and it downregulates genes encoding 

cyclins, such as B1, D1, CDK-1, and Wee1. Genistein 

inhibits expression of Bcl-2, IAP, XIAP, and survivin, 

which are inhibitors of apoptosis. Moreover, for 

cancer cells, it increases expression of p53, p21, p27, 

and p16. Tyrosine kinases are factors involved in 

signaling pathways regulating cell growth and 

viability. Genistein suppresses tyrosine kinases, thus 

inhibiting cell survival and cancer progression. 

Additionally, it inhibits angiogenesis by modulating 

genes encoding VEGF, PTK, and MAPK, and it 

reduces proteolysis of cancer-related tissue (96). 

Thus, it a potential therapeutic agent for treating 

various types of cancers. 

Genistein is an effective preventive and 

therapeutic agent for BrCas. For MCF-7 and MDA-

MB-231 BrCa cells, it downregulates global DNA 

methylation levels, DNA methyltransferase (DNMT) 

activity, and DNMT1 expression levels (97). 

Genistein interacts with the catalytic domain of 

DNMT1 and thereby suppresses the binding of hemi-

methylated DNA to the catalytic domain of DNMT1. 

In addition, genistein reduces DNA methylation in the 

promoter area of various tumor suppressor genes 

(TSGs), including ataxia telangiectasia mutated 

(ATM), adenomatous polyposis coli (APC), 

phosphatase and tensin homolog (PTEN), and 

mammary serpin peptidase inhibitor (SERPINB5). 

Genistein upregulates the mRNA expressions of 

these TSGs. It demethylates methylation-silenced 

TSGs by interacting with the catalytic domain of 

DNMT1 and reducing the expression of DNMT1(97). 

For MCF-7 cells, genistein decreases their survival 

and growth and induces apoptosis. It also reduces 

breast cancer stem cells (BCSCs) and BrCa stem-

like cells by downregulating the Hedgehog-Gli1 
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signaling pathway. Blocking of this pathway reduces 

CSC survival by lowering of the proteins, SMO and/or 

Gli1. Exposure of BrCa cells to genistein 

downregulates SMO and Gli1 expression. ALDH1 is 

a marker for BCSCs. For mice, dosing with genistein 

decreases ALDH protein and mRNA levels, making it 

a promising therapeutic agent for BrCa. 

Downregulation of the Hedgehog-Gli1 signaling 

pathway and ALDH1 is associated with a decrease of 

the stemness of BCSCs. Thus, by decreasing the 

expression of these BCSCs, which are involved in 

drug resistance, cancer relapse, and metastasis, 

genistein prevents a primary cause of cancer, making 

it an effective preventive agent for BrCa (92). 

For MCF-7 BrCa cells, high concentrations 

of genistein promote changes in the expression of 

differentially expressed genes (DEGs) in the cell 

cycle. The key function of the DEGs is in the cell 

cycle, as 47 of these genes are involved in the cell 

cycle pathway. These DEGs include CDC20, BUB1, 

MCM2, and cyclin B1. Exposure to genistein results 

in cell cycle arrest, which happens at various phases 

in the cell cycle, including the G2/M, G0/G1, and 

G1/S phases (93). Genistein suppresses BrCa cell 

growth and prevents the development of cancers, 

suggesting that it is an effective treatment for BrCa. 

In addition, genistein restores ERα-dependent 

cellular responses to the activator, 17β-estradiol 

(E2). Thus, by targeting ERα reactivation, it is a 

promising therapeutic for BrCa (95). For T47D cells, 

genistein causes an increase in ERβ and enhances 

cytochrome c oxidase. As a result, the ATP 

synthase/cytochrome c oxidase ratio is lowered. 

Thus, genistein causes cell cycle arrest and improves 

the mitochondrial functionality of T47D BrCa cells 

(98). 

Genistein suppresses BrCa cell growth and 

stimulates apoptosis by promoting the inactivation of 

IGF-1R and p-Akt. Moreover, genistein decreases 

the Bcl-2/Bax ratio, suggesting that it can prevent 

BrCa progression (99). Furthermore, genistein 

induces morphological alterations of mammospheres 

that correlate with PI3K/Akt and MEK/ERK signaling 

pathways. The release of amphiregulin from ER+ 

BrCa cells activates these pathways. For 

mammospheres, genistein decreases the ratio of a 

subset of CD44+/CD24-/ESA+ cells and enhances 

the expression of differentiated cell markers. It 

promotes differentiation of BCSCs by interacting with 

ER+ cancer cells (99). In addition, for T47D cells, 

genistein decreases the expression of MMP-2, MMP-

3, MMP-13, MMP-15, TIMP-1, TIMP-2, and TIMP-3. 

Thus, it prevents BrCa angiogenesis and metastasis. 

In clinical practice, this compound has the potential 

to increase survival rates of patients with BrCa (96). 

3.10. Garcinol 

Garcinol, a polyisoprenylated 

benzophenone extracted from the plant Garcinia, 

popularly valued in the Indian subcontinent, Africa, 

and China (100), possesses anti-oxidative, anti-

bacterial, anti-fungal, anti-inflammatory, anti-

glycative, and anticancer characteristics (101, 102). 

This acetyltransferase inhibitor is present in plants 

that are in tropical areas (103). Traditionally used for 

its antioxidant properties, garcinol is now being 

utilized for its anticancer characteristics. Garcinol 

suppresses histone acetyltransferases and induces 

ROS. It down-regulates the NF-κB signaling pathway 

by suppressing constitutive NF-κB and by decreasing 

the expression of NF-κB-associated genes (102). 

Therefore, garcinol is a promising therapeutic agent 

for treating cancer. 

By modulating the NF-κB signaling pathway 

in BrCa cells, it suppresses cell growth and promotes 

apoptosis. For MCF-7 BrCa cells, garcinol 

suppresses E2-promoted proliferation and enhances 

apoptosis. Cell cycle arrest occurs at the G0/G1 

phase. For these cells, garcinol decreases the 

expression of ac-H3, ac-H4, and NF-κB/ac-p65 

proteins. It also suppresses the nuclear translocation 

of NF-κB/p65, as well as the mRNA and protein levels 

of cyclin D1, Bcl-2, and Bcl-xL Thus, garcinol reduces 

the progression of MCF-7 BrCa cells by lowering ac-

p65 expression in the NF-κB pathway and by 

modulating expressions of various genes(103). For 

MDA-MB-231 and BT-549 BrCa cells, garcinol 

affects EMT markers, with an increase in E-cadherin, 

an epithelial marker, and decreases in vimentin, 

ZEB-1, and ZEB-2, which are mesenchymal markers. 

Garcinol enhances the expression of miR-200 and 

let-7 family miRNAs. It also enhances 

phosphorylation of β-catenin concomitant with its 

decreased nuclear localization. In addition to 
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promoting apoptosis and suppressing cancer cell 

invasion, garcinol suppresses the Wnt signaling 

pathway. Administered to mice, garcinol suppresses 

NF-κB, miRNAs, vimentin, and nuclear β-catenin. 

Therefore, the anti-carcinogenic effects of garcinol 

against BrCa are associated with reversal of the EMT 

phenotype (102). 

The promotion of apoptosis by garcinol is 

associated with downregulation of the NF-κB 

signaling pathway. For MCF-7 and MDA-MB-231 

BrCa cells, garcinol suppresses constitutive NF-

kappa events, correlating with the downregulation of 

genes related to NF-κB. Furthermore, this compound 

suppresses BrCa growth promoted by nicotine. 

Garcinol prevents the migration of these MDA-MB-

231 BrCa cells by decreasing the expression of α9-

nAChR and cyclin D3, which are associated with 

breast tumorigenesis promoted by nicotine. Thus, by 

suppressing the factors that contribute to the growth 

of breast tumors, garcinol is an anticancer agent 

(101) with potential to be useful in treating BrCa 

(104). 

4. COMBINATION EFFECT 

The combination of drugs has been 

proven to play an important role in treating breast 

cancer. As the synthetic drugs have side effects 

and expensive, scientists/ researchers are turning 

to methods such as combination treatment for 

treating BrCa. The combination therapy is 

expected to reduce the dosage regimen, fewer 

side effects, and cost-effective. In addition, using 

combination treatment can increase the quality of 

life of BrCa patients. Natural compounds and 

herbal medicine have been evidenced that the use 

of these compounds in adjunct of 

chemotherapeutic is not only enhanced 

therapeutic efficacy but reduces toxicity and 

inhibits resistance associated with multiple drugs 

(105). 

Furthermore, we showed in Table 2, the 

use of a natural compound in combination with 

other such compounds or other therapeutic 

agents, and their mode of action in BrCa therapy 

that has proven to be efficient in a low dosage of 

the carcinogenic compounds. These substances 

are potential therapeutic agents for BrCa (Figure 

2). This combination approach is a new therapeutic 

option, as it is generally more beneficial than single 

therapeutics alone. Combination therapy triggers 

cytotoxicity among cancer cells, affects the tumor 

environment, and alters the immune response to 

tumors (10). By combining therapeutics, the 

Table 2. Combinations of natural compounds and their modes of action in BrCa therapy 

Combination Action REFERENCES 

Tetrandrine 

and Arsenic 

Increases expression of FOXO3a, p21, and p27; downregulates expression of cyclin D1; induces 

G0/G1 phase arrest; promotes autophagy; suppresses expression of survivin. 

(110, 111) 

Curcumin and 

Berberine 

Promotes caspase-dependent apoptosis by activating ERK pathways; initiates autophagy; increases 

phosphorylation of JNK and beclin1; downregulates phosphorylation of Bcl-2. 

(112) 

Thymoquinone 

and Tamoxifen  

Diminishes relapse rates, TNF-α, IL-6 and TGF-β1; upregulates caspase-3 expression; 

downregulates Bcl-2 expression; decreases cell viability via the PI3-K/Akt pathway through 

suppression of Akt phosphorylation; induces XIAP degradation; activates caspase-9; promotes 

apoptosis. 

(113) 

Silibinin and 

Chrysin 

Suppresses BrCa cell proliferation; decreases mRNA expression of hTERT and cyclin D1. (114) 

Resveratrol 

and 

Salinomycin 

Regulates cell cycle ; induces caspase activation; initiates apoptosis; decreases expression of 

protein components of Wnt signaling; decreases vimentin and increases E-cadherin; suppresses 

cell migration and invasion; induces caspase-8 and -9 activity; downregulates Wnt/EMT signaling. 

(115) 

Garcinol and 

Paclitaxel 

Promotes cell cycle arrest; suppresses the caspase-3/cytosolic Ca2+-independent phospholipase 

A2 (iPLA2) signaling pathway; hinders nuclear factor-κB (NF-κB)/Twist-related protein 1 (Twist1) 

signaling pathway; inhibits cell viability, inflammation, angiogenesis, and cell migration. 

(116) 

Honokiol and 

Lapatinib 

Suppresses tumor cell growth; promotes apoptosis in cells over-expressing HER-2; inhibits HER-2 

expression. 

(117) 
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benefits of various mechanisms for inhibition of 

cancer cells are likely to be shown. This concept 

demonstrates the evolution of medical treatments 

for cancer. As cancer treatment progresses, 

improvements will allow for efficient treatment 

options for patients (106). 

5. CONCLUSIONS 

A promising approach for treating BrCa 

involves natural compounds, which are chemical 

substances derived from living organisms (8). 

Various natural compounds reverse the effects of 

drug resistance and affect various targets, 

demonstrating that they have therapeutic benefits 

(10). An analysis was organized to identify which 

areas of BrCa research, if targeted, could result 

in the greatest impact on BrCa patients (107). 

They recognized a gap of current knowledge on 

BrCa treatment, i.e. natural compound 

absorption, bioavailability, initiation, progression, 

knowledge of genetic changes, targets and 

diagnostic markers (107). However, several 

reports showed that natural compounds can 

suppress the promotion of carcinogenesis and 

reverse the progression of cancers by promoting 

apoptosis and cell cycle arrest. They act on tumor 

cells by modulating cell death pathways, 

including extrinsic and intrinsic apoptotic and 

autophagic pathways (11). In these processes, 

these substances inhibit the growth of cancer 

cells without displaying extensive toxic effects on 

normal cells (108). Because they demonstrate 

various anticancer and apoptotic effects and have 

little toxicity, natural compounds are now being 

considered for use in clinical practice. As the 

effects of additional natural compounds against 

BrCa are shown, many of these substances will 

likely be used to treat this disease (106). 

In conclusion, the natural compounds 

described are only a few of the various substances 

that show therapeutic effects against BrCa. These 

substances are bringing scientists a step closer to 

effective treatment of BrCa. They have the potential 

to reduce the numbers of BrCa-related deaths and to 

prolong the lives of patients around the world. Thus, 

the use of natural compounds as a strategy for 

treatment of BrCa is being widely considered. 
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