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1. ABSTRACT 

Diabetes, obesity and increased body mass 

index are associated with changes in metabolism that 

lead to an inadequate reservoir or use of ATP in the 

heart and susceptibility to arrhythmia. Lack of 

availability of ATP and abnormal levels of metabolic 

end products can cause gene reprogramming and 

electrical remodelling that make myfibers susceptible 

to arrhythmia. Understanding the metabolic 

aberrations that lead to arrhythmia require better 

understanding of cardiac metabolism. Here, I discuss 

metabolic genes, enzymes and reducing equivalents 

and functional aspects of metabolic-induced 

arrhythmia with a special focus on atrial induced 

arrhythmia. It appears that normalisation of altered 

Kv1.5 channel, an oxygen sensing ion channel and 

fulfillment of oxygen demand by myocardium might 

offer a new strategy for preventing alterations of 

repolarisation that cause arrhythmia. 

2. INTRODUCTION 

Metabolism is a set of life-sustaining 

chemical reactions in organisms that provide 

energy and other substrates through distinct 

metabolic pathways. Metabolism provides the 

cellular ATP which is required in the regulation of 

normal physiological processes. The life-

sustaining chemical reactions become abnormal in 

aberrant metabolism. This would consequently 

lead to inadequate generation of metabolic end 

products, and the cellular ATP, which the 

mammalian heart depends on to maintain its 

workload. On a wide range of workloads, the scale 

of the absolute cardiac ATP pool can vary 

minimally; however, the ATP turnover can vary 

significantly. As a result, moderate changes in 

cardiac metabolism can produce significant effects 

on cardiac function. Earliest studies of cardiac 

metabolism showed that reduced myocardial 

glucose and increased fatty acid oxidation in 

diabetic patients may be harmful to cardiac 

myocytes (1, 2). Abnormal signalling transduction, 

discordant heart rates and misconfiguration of 

action potential (AP) morphology may be linked to 

uncoupled respiration (3). Cardiac functions are 

therefore influenced by metabolism and signalling 

transduction, meaning that there is vicious 

feedback of numerous mechanisms that ensure 
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effective response of the heart to its environment 

and the cardiac metabolism (Figure 1). In fact, 

abnormality in the series of chemical reactions, 

termed metabolic aberrance, that occur during 

glycolysis, Krebs cycle and oxidative 

phosphorylation in the heart can lead to aberrant 

gene and ion channel expression, which in turn 

constitute electrical remodelling and 

arrhythmogenesis. The impact of this is profound.  

For instance, cardiovascular complications 

and diseases such as atrial fibrillation, emanating 

from metabolic disorders are the leading cause of 

sudden cardiac deaths in the developed countries (4-

6).  Combatting metabolic-induced cardiovascular 

complicates and diseases, including arrhythmia 

remains an unmet need. Tremendous efforts at 

designing therapeutic approaches for the treatment 

of the complications and diseases have been 

ongoing, though without much attention to cardiac 

arrhythmia. There was reduced mortality rate in 

patients with myocardial infarction who upon 

admission received glucose and potassium orally 

and insulin subcutaneously (7). Ranolazine, an 

inhibitor of β-oxidation of fatty acid, at therapeutic 

concentrations partially reversed cardiomyocyte 

hypertrophic-related cellular alterations via late 

sodium current (INa) inhibition (8). The revision of 

glucose-insulin-potassium in acute coronary 

syndrome and in energy-depleted heart re-enforces 

classically and historically this approach and its 

benefits in alleviating metabolic disorders in the heart 

diseases (9).  

Despite these approaches and others 

including the use of neurohumoral antagonist and 

 
 

Figure 1. Cardiac Oxidative Metabolism: Cardiac Oxidative Metabolism: The Krebs cycle aconitase produces NADH AND FADH2 as 

substrates for electron transport chain. The cardiac oxidative phosphorylation starts with entrance of the electrons into the electron-transport 

chain. The electrons pass through four complexes I–IV in the electron-transport chain (the small faint black arrows down) with the aid of the 

electron carriers, the cytochromes, ubiquinone (Q), and iron-sulphur proteins. The transfer of the electrons creates membrane potential (mV) 

that pump protons out of the mitochondrial matrix. This generates electrochemical energy in the form of a proton-motive force in the inner 

mitochondria space (IMS). This force then enables the production of ATP as protons flow passively back into the mitochondrial matrix through 

a proton pore that is associated with ATP synthase. MM is mitochondria membrane and IM is the inner mitochondria. 
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devises, first, benign worrisome cardiovascular 

related mortality induced by abnormal metabolism 

persists, reaching millions in the developed 

nations. Second, the efforts have been hampered 

because complete understanding of the functional 

mechanisms of metabolic induced cardiac 

complications and diseases is currently lacking. 

Therefore, further studies are needed to better 

understand the mechanisms to improve the 

treatment strategies. In this direction, it became 

necessary to evaluate metabolism in the 

mechanisms of arrhythmia. The discussion of the 

aberrant metabolic pathways is not the scope of 

this review. The goal of which is to review 

functional aspects (figure 2) of metabolic-induced 

arrhythmia in addressing the unmet need. Specific 

atrial mechanisms were specifically highlighted 

with the aim to provoke further studies and 

revolutionize the current therapeutic approach in 

the combat of arrhythmias. 

3. CONSEQUNECES OF ABERRANT 

METABOLISM LEADS TO ARRHYTHMIA 

Metabolic consequences are adverse 

effects of abnormal metabolism and energy 

imbalance. Patients with diabetes, obesity and 

abnormal body mass index are at increased risk of 

cardiovascular complications and diseases (10-14). 

Diabetes and obesity increased incidence of AF (10). 

Arrhythmia is defined as irregular heartbeat. It is 

common, complex, challenging and a major cause of 

mortality, globally. Studies are advancing our 

knowledge on the cellular and molecular 

mechanisms of arrhythmia. They demonstrate 

perturbation in metabolic pathways such as, 

glycolysis, Krebs cycle and oxidative phosphorylation 

as a major cause of arrhythmias. However, the 

cellular and molecular mechanisms of metabolic-

induced arrhythmia are not yet clearly understood. 

Several hypotheses including alteration of structural 

proteins and interstitial fibrosis (15), autonomic 

system (16,17), Ca2+-handling (18-20) and electrical 

remodeling (8,21,22) have been put forward to 

explain metabolic mechanisms of cardiac 

remodelling (Figure 2), but further insights into the 

hypothesis are needed to better understand the 

mechanisms and improve strategies for therapy.  

4. DIABETES, OBESITY, AND BODY MASS 

INDEX: FROM ENERGY STATUS OF THE 

HEART TO CHANGES IN IONIC 

COMPOSITION AND ELECTRICAL 

REMODELLING 

The heart is a pump organ. It operates by 

mechanical action and therefore uses energy. 

Energy is the ability to do work and the mechanical 

actions of the heart that involve the use of energy 

include: excitation and contraction coupling, wall 

stress mechanics and heart rate. Oxygen is engaged 

in energy use. The heart as an aerobic organ 

engages oxygen in mechanical actions. Bing et al in 

1949 suggested that mechanical efficiency of the 

heart is the ratio of functional energy performed to 

oxygen consumed.  Adenosine triphosphate (ATP), 

an energy-rich phosphate ester, as described several 

years ago is highly important to the ratio (24).  

ATP yield or turnover varies significantly 

according to substrate availability, oxygen supply, 

and metabolic demands of the body. The variability 

influences pathophysiology of the heart. Acute 

increase in afterload was characterised by switches 

in the utilisation of the major energy substrates and 

in the activities of metabolic enzymes (25) that 

regulate the energy substrates. More so, diabetes 

can be a function of metabolic reverse, energy status 

or ATP turn over, especially in occasional rise in 

blood glucose levels. Metabolic reverse is the unused 

potential energy available in response to an increase 

in cardiac workload according to demand. This is 

maintained by the heart’s complex metabolic energy 

machineries that breakdown carbon-based fuels or 

source for ATP and ensure that ATP concentration 

(ATP) remains constant regardless of changes in 

ATP turnover. The prevailing response of the heart to 

the vicious feedback process between cardiac 

metabolic demand and substrate availability could be 

detrimental, especially in chronicity. 

Such a complex scheme of interlocking 

mutual response, characterised by insufficient 

availability of ATP, as result of aberrant metabolism, 

can produce electrical remodelling overtime. 

Electrical remodeling is the changes in normal 

working modality of a plethora of ion channels that 

generate and maintain AP. Changes in the 
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expression of genes that carry ion channels and/or in 

channel current density cause electrical remodeling. 

Major principal culprits that inundate remodeling are 

glucotoxicity, lipotoxicity and glucolipotoxicity (12). 

Energy storage, intake or expenditure as critical 

components of energy imbalance produces the 

culprits. When fatty acid availability is more than fatty 

acid oxidation, intra-myocardial lipids accumulates, 

leading to lipotoxicity. When energy expenditure 

exceeds energy intake, the consequence is decrease 

in body mass, while when intake exceeds 

expenditure, the consequence is increase in body 

mass.  

Hyperglycemia, lipidemia and hyperglyce-

lipidemia are in fact pathological and affect the 

electrical remodelling of the heart and ionic 

homeostasis. Hyperglycemia can produce advanced 

glycation end-product (AGE)-associated reactive 

oxygen species (ROS) (26) and ROS alter electrical 

properties and cause remodeling (27). Advanced 

glycation end-product (28), hyperlipidemia 

associated with increased expression of the acyl 

transferase (29) and hyperglycemia (30) through 

reduced nitric oxide (NO) (31) decreased Na+/K+-

ATPase activity, which is one of the most energy-

demanding subcellular processes that maintains 

cellular gradient for Na+ and K+. Suppression of 

increased ROS production through application of 

superoxide dismutase and increase in the 

bioavailability and synthesis of NO through 

application of L-arginine reversed the decrease in the 

activity of Na+/K+-ATPase (31). Together, the findings 

suggest that metabolic ROS can alter ion channels 

both molecularly and genetically. The alteration is 

arrhythmogenic. 

For instance, increased Na+ influx and Na+ 

overload in diabetes type 2 may contribute to 

arrhythmogenesis (32). How metabolic intracellular 

Na+ accumulation causes arrhythmia is very complex 

and multifactorial. In addition to initiating Ca2+ loading 

(33), it can trigger net loss in K+ due to lack of electro 

neutrality (33). Furthermore, increased Ca2+ influx 

following Na+ accumulation, when there is lack of 

oxygen supply, can be explained by pro-arrhythmic 

enhanced late INa, (34, 35). Intracellular Na+ 

accumulation and insufficient oxygen supply resulted 

 
 

Figure 2. Hypothetical effects of metabolic consequences on cardiac remodeling: Metabolic consequences induce functional and structural 

remodeling. Structural remodeling is characterized by tissue enlargement and fibrosis. Reentry substrate requires abbreviated refractoriness 

of the APD and/or conduction abnormalities.  Ectopic firing occurs due to early after depolarisation, delay after depolarisation and action 

potential prolongation. These together produce cardiac arrhythmia. 
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in calcium overload that was attenuated by 

ranolazine inhibition of INa in ischemia (35). 

Consistently, in 191 patients under Monotherapy 

Assessment of Ranolazine In Stable Angina trial at 

52 investigational sites from U.S., Czech Republic, 

Poland, and Canada, ranolazine offered a metabolic 

approach of treating ischemia by delaying and 

preventing imbalance in oxygen demand that 

characterize ischemia, glucose and fatty acid cardiac 

metabolic maladaptation (36).  

Taken together, metabolic consequences 

influence cardiac function by changing the working 

modality of numerous cardiac ion channels and 

ionic components. How this occurs is not known 

completely. Whereas ventricular mechanisms 

have been extensively studied (27,33), atrial 

specific mechanisms remain largely known and 

advancement in the subject has not provided 

insight into underpinnings, correlations and into  

metabolic reducing equivalents such as flavin 

adenine dinucleotide (FADH2), that are molecular 

moieties, that transfer electron analogous in 

oxidation-reduction reactions in the tricarboxylic 

acid cycle (TCA) within the mitochondria electron 

transport chain (ETC) that might lead to 

arrhythmias. This in part highlights the importance 

of this study.  With an interest in the atria, I start 

with succinct discussion on some ion channels that 

contribute in generating the electrical properties of 

the heart.  

4.1. Metabolism and cardiac IKACh 

IKACh is a member of the K+ channel 

families. K+ channels form the largest ion channel 

family. IKACh as a transmembrane ion channel is 

directly modulated by G-proteins in atrial myocytes 

and neurons. IKACh regulates the parasympathetic 

activity of the heart (37, 16). The modulation 

involves acetylcholine binding from vagal nerve 

endings to M2-muscarinic receptors localized 

primarily in atrial cardiomyocytes. The binding 

triggers disassociation of G-proteins into Gαi2 and 

Gβγ subunits. The latter subunit activates the G 

protein–coupled inward rectifying K+ channel 

(GIRK1)2/(GIRK4)2 to produce acetylcholine-

activated K+ current (IKACh). The IKACh is primarily 

localized in atrial (38, 39). To discuss IKACh and 

metabolism, I articulated the literature according to 

the available evidence and reflected on how the 

chemical energy insufficiency might remodel IKACh, 

leading atrial fibrillation. 

Intracellular Na+ as well as Gβγ, the 

activating subunit of the G-proteins gates IKACh (40, 

41). The gating mechanism could be dependent on 

the level of hydrolysis of intracellular ATP. Hence, 

blockade or reduction of phosphatidylinositol 4,5-

bisphosphate (PIP2), a transducer protein that 

mimics perturbation of the intracellular ATP 

hydrolysis decreased the Gβϒ subunit and the 

intracellular Na+ dependent activation of IKACh (42). 

Conversely, ATP and PIP2 liposomes application 

enhanced IKACh (42). Strong evidences, in part, 

implicate ATP in IKACh functional activity (43, 44), 

which may be important in vagal tone remodelling 

and chemical energy insufficiency. In general, 

substrate switch and metabolic flexibility as 

features of physiological function are lost in 

maladapted heart.  In maladaptation, the heart 

prefers to use fatty acid oxidation as the source of 

metabolic fuel instead of glucose oxidation. The 

reliance on fatty acid oxidation is less efficient to 

the heart as it uses more oxygen and the ATP. The 

fatty acid oxidation dependence remodels the 

parasympathetic system, as observed in patients 

with diabetic autonomic neuropathy, which 

developed arrhythmias (16) and subsequent 

sudden cardiac death (59).  

Accordingly, an association has been 

described between sterol regulatory element 

binding protein-1 (SREBP-1), a lipid transcriptional 

factor implicated in atrial arrhythmia susceptibility 

and the parasympathetic function in diabetes. In 

Akita (diabetes type 1) mice, direct stimulation of 

the intrinsic parasympathetic signaling pathway 

with carbamylcholine was reduced compared to 

the control heart (46). The reduction in the intrinsic 

downstream signaling pathway showed that the 

level of expression of GIRK1& 4 and its conducting 

current might be reduced. Hence, insulin treatment 

conversely restored the parasympathetic 

dysfunction and increased GIRK expression (46). 

Accordingly, either insulin treatment or adenoviral 

expression of SREBP-1 conversely, corrected 

energy depletion, reversed parasympathetic 
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dysfunction, increased GIRK expression and IKACh 

(46,47). Suggesting that in energy insufficiency 

GIRK activity might be reduced as well as, IKACh 

activation; decrease in GIRK activity has also been 

reported as a mechanism of permanent AF (48). In 

fact, metabolic derangement remodels IKACh.  

4.2. Metabolism and cardiac IKur 

Another member of the K+ channel families 

is Kv1.5. Kv1.5 channel underlines cardiac IKur and 

activates very rapidly. Its biophysical properties 

makes it difficult to separate from other K+ currents 

including Ito, which it overlaps at certain voltage 

ranges. The IKur α-subunit localizes largely in the 

atrial myocytes and to a very less extent in the 

ventricular myocytes (49), indicating that the 

expression and properties of Kv1.5 may be more 

predominant in the atrial. Consistently, Kv1.5 is not 

expressed in human ventricle myocytes and purkinje 

fibers, arguing that IKur may be a selective source for 

targeting atrial arrhythmias without constituting 

ventricular proarrhythmia (50).  

The Kv1.5 channel is a known oxygen 

sensing ion channel (51,52). Metabolic alterations 

and associated ROS remodels Kv1.5. ROS are 

products of oxidative respiration. Cardiac Kv1.5 

channel is regulated by ROS (53,54). In hypoxia, 

ischemia, and diabetes, Kv1.5 channel is reduced by 

high levels of ROS (53,55). The findings indicate that 

increase in ROS remodels IKur. IKur remodelling due to 

altered metabolism and associated ROS is 

arrhythmogenic. Studies demonstrating the role of 

Kv1.5 channels in metabolic arrhythmias are very 

scares. Morrow et al report appears to be among the 

very few works at present that has describe alteration 

of the Kv1.5 in metabolism in the context of cardiac 

specific genetic upregulation of peroxisome 

proliferator–activated receptor γ1 (PPARγ1) that 

recapitulates diabetes and obese-induced ventricular 

arrhythmia. In respect to lipids per se, the alteration 

of Kv1.5 in the Morrow et al report is reinforced by the 

hypothesis that Kv1.5 remodelling was followed by 

membrane depletion of cholesterol (56).  

Considering the Kv1.5 sensitivity to oxygen 

availability and selective presence in the atria, 

protection from aberrant levels of metabolic ROS 

would preserve cardiac IKur and reverse alteration of 

repolarization, implying that normalisation of altered 

Kv1.5 might in turn regulate oxygen insufficiency in 

metabolic arrhythmias.  Inhibition or knockout of 

Kv1.5 can correct alteration of repolarisation reserve 

and prevent arrhythmogenesis. Together, 

normalisation of altered Kv1.5 channel, an oxygen 

sensing ion channel and fulfillment of oxygen supply 

for the myocardium might offer a new strategy for 

preventing alterations of repolarisation that cause 

arrhythmia. 

4.3. Metabolism and Connexins (Cx) 

Structural intercalated disks join cardiac 

myocytes. Adjoining the disks is gap junctions 

formed by Cx. Cx transmit impulses from cell-to-

cell in electrical propagation in neurons and 

cardiac myocytes. Cx ensure low membrane 

resistance and passage of the electrical impulse, 

second messengers and metabolites within 

apposing cells. This junctional communication can 

be selective because the junctions have 2-3 nm 

pore diameter that appose cells from each other 

within the plasma membrane. Gap junctions are 

expressed in non-excitable and excitable tissues 

and have huge functional significance.  

They have different unique biophysical 

properties, which underline their different 

phenotypes in different cells types they are 

expressed (57). Cardiac myocytes express 

different connexin types (58). While the ventricular 

myocytes express Cx43 and Cx45 (59), the atrial 

myocytes express Cx40 in addition (59,60). The 

differential expression may have suggested that 

specific Cx perform impulse transmission within 

specific heart chambers. For instance, ventricular 

conduction velocity was reduced in mice lacking 

Cx43 without AF, but not in the atria (59). 

Conduction velocity in human atrial was principally 

regulated by Cx40 (60). However, atrial specific 

genetic deletion of Cx43 in a known healthy young 

female apparently resulted in AF (61).  

Nonetheless, while alteration in Cx 

expression constitutes reentrant arrhythmia, 

normalisation of abnormal Cx expression to some 

extent is effective in preventing AF. Either Cx40 or 
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Cx43 gene transfer abolished the development of 

AF and reentrant mechanism due to gap junction 

protein alterations (62). Furthermore, Gap junction 

modulator, rotigaptide reduced AF vulnerability in 

a canine mitral incompetence model of AF (63). 

Put the Guerra et al, Igarashi et al and Thibodeau 

et al reports together, it is comprehensible in their 

contexts that targeting Cx43 and 40 isotypes in AF 

rather than just Cx40, the principal atrial isotype 

would be rather a better approach in treatment of 

Cx abnormal conduction velocity. These reports 

highlight great functional roles of Cx43 in the atrial 

conduction velocity in contract to Thomas et al (59) 

and Dupont et al (60) reports. Together, it 

advocates further works on atrial Cx43 to critically 

evaluate their extent of localisation and roles in the 

pathogenesis of AF.  

The functions of Cx have been suggested 

in metabolic homeostasis, cell differentiation (64), 

cell development (65), and in growth (64,66). In 

cancer cells, Cx act as conditional modulators of 

cell proliferation, adhesion and migration. 

Alterations in intercellular Cxs electrical coupling 

due to energy levels are critical for reentrant 

arrhythmias. It can slow the cardiac myocytes 

conduction velocity. Weak synchronous electrical 

coupling, underpinned by changes in the levels of 

Cx proteins, increased susceptibility to AF 

(60,62,63,67). Given that Cx hemichannels 

release chemical energy (68), a parsimonious 

explanation for the weak electrotonic coupling and 

reentrant arrhythmia, might be associated 

underlying ATP and oxygen use. For instance, 

increased dephosphorylated Cx43 in ventricular 

myocytes constituted the development of lethal 

arrhythmia in accumulation of toxic metabolites 

(69), due to depletion of the metabolic ATP and 

glucose (70). Obesity (13) and diabetes (71) can 

cause arrhythmogenesis through energy 

imbalance-induced Cx43 alteration, as shift in 

energy balance, which alters metabolic regulation 

is a feature of diabetes and obesity. Consistently, 

levels of ATP corresponded to astrocytes gap 

junction coupling (72). These observations are 

further supported by the illustration that energy 

depletion in ventricular arrhythmias is associated 

with Cx43 conduction slowing (73). These studies 

have highlighted that alteration of Cx43 due 

inadequate chemical energy can lead to the 

formation of ventricular arrhythmia. Patchy 

evidence exists in the atria and represents a 

significant gap.  

5. METABOLIC GENES AND ION CHANNEL 

CONTROL 

Cardiac energetics is contended in 

substrate utilisation. The principal factors which 

determine substrate utilisation are mechanical 

load, oxygen demand or requirement and signaling 

transduction pathways. These factors are at times 

limiting in the setting of cardiac disturbances. The 

substrate-providing metabolites such as fatty acid 

which yield about 90% and glucose which yield 

about 10% (74,75) act as sensors to the 

expression of gene encoding proteins that regulate 

the transport of the substrate-providing products 

and their metabolism (76,12). Accordingly, fatty 

acid induced mRNA upregulation of malonyl-CoA 

decarboxylase (MCD), fatty acid-handling protein 

acyl-coenzyme A synthetase (ACS), muscle-type 

carnitine palmitoyltransferase-1 (MCPT-1), long-

chain acyl-coenzyme A dehydrogenase (LCAD) 

and the uncoupling proteins 2 and 3 (UCP-2/-3)) at 

transcriptional levels (77). A family of 3 

transcriptional factors, SREBPs-1, that regulate 

expression of genes involved in lipid and glucose 

metabolism is modulated by glucose hormone 

(78). More so, Meox2 and Tcf15 haplodeficiency 

disabled FA uptake in cardiac endothelial cells and 

reduced contractility and FA transport to 

cardiomyocytes (79). The studies indicate that 

alteration of the genes encoding the substrate-

providing metabolites (Table 1), can affect cardiac 

performance. 

In a complex scheme of continual interaction 

between metabolic consequences and the functional 

myocardium through the life process, temporary and 

chronic alteration in expression of the metabolic genes 

can cause pathogenesis. For instance, failing adult 

hearts retrogress to a fetal pattern of energy substrate 

metabolism and metabolic gene expression (80) that 

can cause arrhythmias (81,82). Furthermore, a 

spectrum of cardiomyopathpies such as hypertrophy 

and diabetes are associated with chronic alteration in 

energy metabolism and gene expression (75,83,84). 
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Conversely, improved homeostatic regulation can 

normalise the expression of the genes and reverse the 

alterations. Thus, long and short-term deletion of 

cardiac malonyl coenzyme A decarboxylase MCD gene 

Table 1. genes and their roles 

Genes  Roles References 

Meox2 and Tcf15 FA uptake in cardiac endothelial cells 79 

Xanthine oxidase Breakdown of purine nucleotide 91 

Glycerol-3-phosphate dehydrogenase triglyceride synthesis 75 

ACS 
breakdown of some essential amino acids and beta-

oxidation of fatty acids 
77 

MCPT-1 
Transports long chain fatty acyl-COA into mitochondria 

matrix 
77 

UCP-2, UCP-3 Regulation of mitochondria oxidative phosphorylation 77 

MCD 
Inhibitor of mCPTI Activation of fatty acids by removal 

of malonyl-CoA 
85; 86 

SREBPs-1 Lipids and glucose metabolism 78 

LCAD Mitochondrial ß-oxidation of long-chain fatty acids.  92 

 

 
 

Figure 3. Schematics of consequences and cellular effects: Abnormal glucose, lipid and fatty acid metabolism leads to hyperglycemia, 

hyperlipidemia hyperglycelipidemia, oxidative stress, advanced glycation-end products accumulation, changes in ceramide levels and in 

aldose reductase pathway. These phenotypes in turn effect normal working modality of ion channels, cause mitochondria defects, ATP 

depletion and increase in ROS production. Mitochondria defects, ATP depletion and increase in ROS production remodel ion channels (the 

central arrow). With a vicious cycle of effects, in between ion channel remodeling, and the mitochondria defects, ATP depletion and increase 

in ROS production are metabolic ionic imbalances. A combinatorial drugable approach would target all the phenotypes. 
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in mice dramatically increased glucose oxidation and 

improved functional recovery of the heart after ischemia 

by correcting metabolic shift in energy utilisation 

between fatty acid and glucose (85,86). Taken together, 

the influence of alteration of the metabolic genes, which 

are discrete genes that directly govern metabolic 

pathways (Table 1) on substrate availability, can 

converge as metabolic consequences, which are 

squealers for cardiac ion channel remodelling. 

Consistently, SREBPs-1 is a critical regulator of 

GIRK1/4 which generates IKACh of the parasympathetic 

system, and in diabetes there is IKACh dysregulation of 

the parasympathetic system (46). Despite this 

knowledge, the literature is not yet at the stage to give a 

better account on cardiac ion channels regulation, 

metabolic genes and cardiac energy insufficiency.  

6. ENZYMES, METABOLIC REDUCING 

EQUIVALENTS AND ION CHANNEL 

CONTROL 

Intermediary metabolism represents the 

intracellular processes by which metabolic 

substrates are enzymatically degraded into cellular 

usable products. Mitochondria tricarboxylic acid 

cycle (TCA) synthesis metabolic reducing 

products, known as high energy biomolecule. 

NADH and FADH2 as metabolic reducing 

equivalents are called high energy biomolecules 

because they have stores of chemical energy 

mobilised from initial enzymatic degradation of 

glucose and fatty acid molecules. NADH and 

FADH2 are reduced form of NAD and FAD 

respectively. Their redox ability is utilised by 

electron transport chain (ETC) for bulk of ATP 

production. Proton (H+) gradient that enables ATP 

synthase to produce ATP from ADP is generated 

from the NADH and FADH2 in a complex series of 

electron transfer involving the mitochondria 

enzyme complexes through ubiquinone.  

FAD is specifically a prosthetic group of 

protein, but both FAD and NAD are coenzymes. As 

coenzymes they facilitate electron coupling in 

anaerobic and aerobic respiration. This 

notwithstanding, current discussions (20, 87,88) 

have authoritatively favoured NAD+/NADH, 

whereas  FADH2 has more positive reducing 

potential than NADH (which is equivalent to 

semiquinone or FADH) (27, 33). This represents 

an important gap in knowledge. For instance, the 

importance of the reducing equivalents on cardiac 

function, disease diagnosis and therapeutic 

targets are completely unknown. Understanding 

the roles of FAD/FADH2 is therefore crucial. FAD 

holds a lot of promise in optogenetics for disease 

monitoring. In vivo native fluorescence of FAD and 

NADH may be relevant in the molecular imaging of 

electroanatomical substrate, which is currently a 

major challenge in understanding the science and 

treatment of AF. Native fluorescence FAD and 

NADH varied in normal tissue and oral submucous 

fibrosis as early signs of invasive oral cancer (89).  

Furthermore, FAD-dependent genes 

and enzymes that fine-tune metabolism include: 

acetyl-CoA-dehydrogenases in the breakdown of 

some essential amino acids (lysine, valine 

isoleucine and leucine) not synthesized de novo, 

and in beta-oxidation of fatty acids, xanthine 

oxidase in purine nucleotide, glycerol-3-

phosphate dehydrogenase in triglyceride 

synthesis, and the TCA succinate dehydrogenase 

that oxidizes succinate to fumarate. These 

functions are important to note since the roles of 

FAD in energy substrate metabolism is currently 

underrepresented. It also noteworthy that during 

electron coupling process, mitochondria ROS can 

 
 

Figure 4. Model of cardiac metabolism: The average contribution of 

each component to the energy currency of the cell is highly critical. 
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be generated through NAD and FAD as well. This 

has been appreciated for NAD+/NADH but not for 

FAD/FADH2, whereas the mechanisms may be 

similar. 

For instance, in diabetes, fatty acid 

substrate utilisation is preferred over glucose, 

resulting in increased expression of the fatty-

handling metabolic genes, through perhaps a 

proportionately high level of the FAD-dependent 

genes expression and enzymes activity. This can 

in turn increase FADH/FAD ratio to elevate ROS 

production. It follows that ROS production in the 

mitochondria is elevated by increased 

NADH/NAD+ ratio (90). The coenzymes as well as 

metabolic enzymes are crucial elements in 

arrhythmogenesis, as their metabolic products 

control cardiac ion channel (88). 

7. CONCLUSION AND PERSPECTIVE 

For about five decades now, efforts at 

combating metabolic-induced arrhythmia have not 

yielded a complete result as sudden cardiac death 

emanating from benign worrisome cardiac 

metabolic-induced arrhythmia persists at 

significant proportion in the population. Being a 

critical unmet need, targeting all but a 

combinatorial based therapeutic approach 

(Figure 3) obtained from different levels of the 

systems organisation would be more helpful. This 

study reviewed a broad spectrum of observations 

in the pathogenesis of metabolic-induced 

arrhythmia. Cardiac metabolism is complex, and a 

better understanding of cardiac metabolism 

requires a model of cardiac metabolism (Figure 4). 

Clearly, the literature is lacking on the subject. 

Thus, the persistence of a significant proportion of 

metabolic-induced arrhythmia in the population 

and lack of adequate therapy.  It is hoped that this 

study will increase the understanding, stimulate 

further discussions and revolutionize the current 

strategy for targeting arrhythmias associated with 

abnormal metabolism. It is stated that a better 

picture of metabolic-induced cardiac complications 

and disease, including therapeutic management 

would emerge from conditions examining to what 

degree of effect does exclusive cardiac oxidative 

 
 

Figure 5.  The heart as the pump organ of the body requires oxygen which depends almost entirely on the aerobic oxidation of substrates for 

energy production. This consequently couples with cardiac performance, heart rate and wall stress. However, the exclusive impact of cardiac 

oxidative metabolism in the development of cardiac arrhythmia is not known and developing a model of cardiac oxidative metabolism to 

delineate the impact is necessary. 
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metabolism cause to cardiac structure and 

functions (Figure 5). For the future, the question 

should be to what extent do abnormal intermediary 

metabolism, redox state, Krebs cycle and oxidative 

phosphorylation exclusively alter: signaling 

transducer molecules and sensors, enzymes, 

metabolic genes and reducing products, cardiac 

ion channels and their ionic currents. Therefore, an 

era that will text necessary caveats on the fidelity 

of the connections between enzymes, metabolic 

reducing products, metabolic genes and cardiac 

ion channels in metabolic-induced cardiac 

arrhythmia is eagerly waited. 
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