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1. Abstract

Alzheimer’s disease (AD) and type 2 diabetesmel-
litus (T2DM) share many common features including in-
flammation, oxidative stress and neuronal degeneration. In-
sulin resistance (IR) appears to be a common path in these
pathological processes. IR is an early pathogenic event in
AD, which leads to augmentation of hyperphosphorylated
tau and Amyloid beta (Aβ).

The reviewed studies related to AD have revealed
a positive association between T2DM and AD. This associ-
ation was maintained in peripheral hyperinsulinemia cases
without the presence of T2DM, which might be due to de-
creased insulin transport to the brain or the inadequate cere-
bral insulin production. Gut dysbiosis induces inflamma-
tion and consequently provokes both peripheral and cere-
bral IR and can amplify processes promoting AD.

Additionally, the risk of increased progression of
AD was revealed due to pre-diabetes, T2DM and gut dys-
biosis. The pro-inflammatory changes might affect pro-
gression of AD pathology by inhibition of the autophago-
lysosomal pathway and cerebral insulin signaling pathway.

This review elaborates the role that cerebral IR might play
in the underlying pathological events in AD.

2. Introduction

Alzheimer’s disease (AD) is a neurodegenerative
brain disorder and the most common cause of dementia [1].

According to an estimation of the 2010 US Census
Bureau and the Chicago Health and Aging Project (CHAP)
5.8 million Americans age 65 and older are living with
Alzheimer’s disease in 2020. The population with AD in-
creases with age, and the estimated growth of the population
of age 65 and older is from 56 million in 2020 to 88 million
by 2050. If there are no preventative measures instituted,
the number of those suffering from AD is expected to grow
to 13.8 million by 2050 [2, 3].

In 2011, the National Institute on Aging (NIA) and
the Alzheimer’s Association revised the diagnostic guide-
lines of AD, determining the stages of the disease based on
clinical symptoms and biomarkers [4, 5]. Their recent stud-
ies have examined the brain processes underlying cogni-

http://doi.org/10.52586/S550
https://www.fbscience.com
https://creativecommons.org/licenses/by/4.0/


18

tive impairment by using post-mortem samples and in vivo
biomarkers. In AD, slowly progressive cognitive decline is
associated with characteristic pathological changes such as
accumulation of beta-amyloid plaques outside neurons, and
tau-protein tangles inside neurons [4, 5]. Inflammatory pro-
cesses and enhanced amyloid aggregation consequently in-
crease tau-protein accumulation, which exacerbate the pro-
gression of cognitive decline [6, 7].

Alzheimer’s disease is a multifactorial disease as-
sociated with both genetic and modifiable factors. Early-
onset AD has been linked with genetic mutations of pre-
senilin 1 and 2, as well as of the encoding gene of APP
(amyloid precursor protein) [8]. Late-onset AD has been
associated with factors such as older age, especially above
75 years, family history of AD, and being a carrier of the
APOE (apo-lipoprotein E) ε4 gene [9–12].

Multidomain lifestyle prevention trials have
shown a significant effect on maintaining cognitive decline
or improving cognitive performance among elderly who
had increased risk of dementia. The interventions included
dietary counseling, exercise, cognitive training, and man-
agement of vascular and metabolic risk factors [13–15].
The latest World Health Organization report highlighted
diabetes, obesity, smoking and hypertension as leading
risk factors contributing to increased risk of dementia and
cognitive decline [16].

T2DM predisposes to the development of demen-
tia in the elderly population and increases the risk of
AD by two-to three-fold compared with subjects with-
out T2DM [17–19]. Type 2 diabetes (T2DM) and AD
share common pathological features including inflamma-
tion, oxidative stress, which contribute to insulin resis-
tance and neuronal degeneration in both disorders [20–24].
Moreover, metabolic disturbances such as peripheral hy-
perglycemia and hyperinsulinemia before the T2DM stage
have a negative impact on the pathophysiological processes
and progression of AD [25–27]. A positive correlation
was revealed between brain insulin signaling desensitiza-
tion, brain insulin resistance and AD progression during
the early stage of the disease regardless of the presence of
T2DM [28, 29]. Dysbiosis due to the increased level of
pro-inflammatory bacteria of the gut caused by a long-term
high-fat diet can lead to systemic oxidative stress, inflam-
mation and thus metabolic disturbance [30, 31]. This sys-
temic inflammatory state might explain the increased risk
of development of T2DM and AD with a high-fat diet [32–
34].

Overall, prevention strategies that focus on im-
provement of metabolic impairment, such as lifestyle mod-
ification, may have a protective effect against cognitive de-
cline in AD [13, 35, 36]. Our review aims to discuss the
role that insulin resistance plays in Alzheimer’s disease as
well as the effect of Type 2 diabetes and gut dysbiosis in the
progression of cognitive decline in AD.

3. Methods

We searched PubMed for articles, clinical studies
and human experimental studies published during 2015–
2020, with search terms including Alzheimer’s disease, pe-
ripheral and brain insulin resistance, type 2 diabetes melli-
tus, gut microbiome and gut dysbiosis. The search yielded
publications which covered human cell culture and brain
tissue experiments, clinical trials, and population based
studies, and excluded all animal related studies.

4. Impact of peripheral insulin resistance and
presence of brain insulin resistance in
Alzheimer’s disease

4.1 Population studies regarding the association
between AD and T2DM

T2DM-associated decreased in cognitive function,
memory impairment, and increased risk of AD have previ-
ously been shown by preliminary epidemiological studies
[18, 37, 38]. Subsequent studies discussed below have fo-
cused on the correlation between AD progression and the
level of peripheral insulin as well as the role that insulin
plays in the brain.

Among numerous clinical trials which have
demonstrated an association between DM and cognitive
decline was a prospective cohort study, which showed a
19% greater cognitive decline over 20 years-in participants
with diabetes than in participants without diabetes [39].
Decreased cognitive performance was found in the pre-
diabetic group (HbA1c 5.7–6.4%), the poorly controlled di-
abetic group (HbA1c ≥ 7.0%), and in the group of par-
ticipants who had longer standing diabetes. Moreover,
a higher baseline insulin resistance, calculated using the
homeostatic model assessment (HOMA), was related with a
greater impairment of overall cognition, especially of mem-
ory. This association is independent of other vascular risk
factors and hyperglycemic status [40, 41]. According to an-
other prospective population-based study with an average
10-year follow up, insulin resistance and a higher level of
plasma insulin increased the risk of AD within a short pe-
riod [42]. However, the risk of AD was no longer evident
after 3 years, which might indicate that insulin level is more
an accelerator of neuropathological changes in AD rather
than the causative factor (Table 1).
4.2 Association between CSF insulin level and insulin
resistance and AD

It is known that peripheral insulin levels corre-
spond with insulin levels in the cerebrospinal fluid (CSF),
as human studies have shown an increase in CSF insulin
after injection of insulin peripherally in normal individuals
[43]. Recent studies showed that individuals with periph-
eral insulin resistance have reduced CSF insulin levels. A
study by Heni et al. showed a positive correlation between



19

Table 1. Relationship between Alzheimer’s disease, cognitive performance, and insulin resistance.

Study design and objectives Sample Size
Results

Conclusions References
Statistical Analysis P-value

• Prospective study (1993–2004). To determine relation between insulin
resistance and the risk of AD

• N = 3139 Insulin resistance and AD: 1.39 (95% CI 1.04, 1.86) < 0.05 • Higher plasma insulin level and insulin resistance were associated a
higher short-term risk of AD with an increase in risk of approximately
40%.

[43]

• Prospective study (1987–2013). To determine if diabetes in mid-life is
associated with a 20-year cognitive decline

• N = 13351 20 years decline, No diabetes: -0.78 (95% CI: -0.80,
-0.75) 0.071

• Diabetes in midlife was associated with significantly greater cognitive
decline over 20 years. [40]

20 years decline, Diabetes: -0.92 (95% CI: -1.00, -
0.85)

Subjects with poorly controlled diabetes (HbA1c ≥ 7.0%) had a larger
decline compared to persons whose diabetes was controlled (HbA1c <
7.0%).

Difference: -0.15 (95% CI: -0.22, -0.08)
• Prospective study (1990–2013). To determine the association • N = 1232 • Higher baseline HOMA-IR levels were associated with

[41]
between HOMA- IR and cognitive performance in individuals 1. follow-up between

2004–2009 (N = 489)
1/a. β = -3.66 ± 1.24 1/a. 0.003 poorer cognitive performance after 15 years. The observed re-

with cardiovascular disease, with and without diabetes 1/b. exclusion of DM cases: β = -4.45 ± 1.54 1/b. 0.004 lationships were independent of vascular risk factors and dia-
2. follow-up between
2011–2013 (N = 347)

2/a. β = -0.16 ± 0.06 2/a. 0.006 betic status.
2/b. exclusion of DM cases: β = -0.17 ± 0.06 2/b. 0.008

• Cross-sectional study (2014). To determine the association • N = 444 • Hyperglycemia was associated with cognitive dysfunction,
[42]between HOMA-IR and cognitive performance 1. With diabetes (N = 61) 1. MMSE score: β = -0.105 HOMA-IR 1. 0.022 mainly in the executive function domain. IR was associated

2. Without diabetes (N = 383) 2. Logical memory II score: β = -0.091 2. 0.047 with memory impairment.

AD: Alzheimer’s disease; HOMA-IR: Homeostatic Model Assessment of Insulin Resistance; DM: diabetes mellitus; IR: insulin resistance.

Table 2. Relationship between Insulin Resistance and Alzheimer’s disease biomarkers and pathology.

Study designs and objectives Sample Size
Results

Conclusions References
Statistical Analysis P-value

• Cross-sectional study. To evaluate whether a higher HOMA- • N = 186 1. HOMA-IR frontal: F (1, 135) = 5.429 1. 0.021 • Normoglycemia with higher insulin resistance corresponded

[58]
IR may predict greater amyloid burden using [C-11]-Pittsburgh 2. HOMA-IR temporal: F (1,135) = 4.751 2. 0.031 to higher PiB uptake in frontal and temporal areas, reflecting
compound (PiB) and PET scanning in asymptomatic, late 3. PiB uptake frontal: R2 = 0.071 3. < 0.05 increased amyloid deposition.
middle-aged adults. 4. PiB uptake temporal: R2 = 0.036 4. < 0.05

• Cross-sectional study. To evaluate whether higher HOMA- • N = 70 middle-aged 1. CSF sAPP-β (HOMA-IR): F (1 ,63) = 4.21 1. 0.044 • Higher HOMA-IR was associated with higher sAPP-β and

[55]

IR and APOE-ε4 levels would be associated with greater AD cognitively asymptomatic 2. Aβ42 (HOMA-IR): F (1, 63) = 4.26 2. 0.043 Aβ42 levels. APOE-ε4 carriers had significantly higher lev-
pathology in the CSF and worse memory performance. adults with a parenteral 3. CSF sAPP-α (APOE ε4): F (1, 63) = 8.65 3. 0.005 els of sAPP-α, sAPP-β and P-tau181/ Aβ42 ratios compared

history of AD 4. sAPP-β (APOE ε4): F(1,63) = 7.74 4. 0.007 to noncarriers. Higher HOMA-IR and greater P-tau181/ Aβ42
5. P-tau181/Aβ42: F (1,63) = 5.21 5. 0.026 ratios predicted lower memory performance.
6. memory performance: F (1,60) = 6.14 6. 0.016

• Cross-sectional study. To examine the influence of IR on AD using
plasma and CSF biomarkers related to IR and AD in cog-

• N = 58 cognitively asymp-
tomatic men

• Significant correlation between plasma insulin and CSF Aβ/tau ratio.
CSF and serum proteins significantly correlated

[53]nitively healthy men (age and APOE-ε4- matched). 1. IR (N = 28) 1. P-insulin and CSF T-tau: r = 0.310 1. 0.018 with CSF AD biomarkers (Aβ, T-tau and P-tau).
2. non-IR (N = 30) 2. P-insulin and CSF T-tau: r = 0.299 2. 0.023
3. compare IR (N = 28) and
non-IR (N = 30)

3. FCN2 β = -0.57 3. 0.014

Aβ, amyloid beta; AD, Alzheimer’s disease; APOE, apolipoprotein E; CSF, cerebrospinal fluid; FCN2, Ficolin-2; HOMA-IR, Homeostatic Model Assessment of Insulin Resistance; IR, insulin resistance; PET, Positron
emission tomography; P-insulin, peripheral insulin; sAPP-α, soluble amyloid beta precursor protein alfa; sAPP-β, soluble amyloid beta precursor protein beta.
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CSF insulin level and serum insulin level in insulin sensitive
individuals, and a negative correlation between the two fac-
tors in insulin-resistant participants [44]. Another study by
Kern et al., obese human subjects showed, independently
from other variables, that insulin resistance negatively cor-
related with the CSF: plasma insulin ratio [45]. Reduced
CSF insulin levels might be a consequence of impaired in-
sulin transport through the blood-brain barrier (BBB) by re-
ceptor mediated transcytosis [46, 47]. According to an ex-
perimental model, reduced insulin receptor density on mi-
crovascular endothelial cell cultures of T2DM subjects can
support this theory [48].

Reduced insulin levels were found in the CSF
of participants with mild cognitive impairment (MCI) and
early stage ADwithout the presence of an increased level in
peripheral insulin [49]. On one hand, this could potentially
be explained by the reduced brain insulin production in AD
[29]. The insulin gene and insulin receptor expression was
found to be at a higher distribution in the hypothalamus and
the hippocampus in postmortem brain tissue and its reduc-
tion corresponded with the progression of AD [50, 51]. On
the other hand, transcytosis of insulin may also be affected
in AD and have an impact on the CSF insulin level. An
experimental model of the BBB consisting of human cere-
bral microvascular endothelial cells (hCMEC/D3) showed
decreased insulin transcytosis in the presence of Aβ40 and
Aβ42 [52].

4.3 Association between CSF biomarkers, insulin
resistance and AD

Although an inverse correlation was found be-
tween peripheral insulin levels and CSF insulin levels in
AD, but a positive association was found between periph-
eral insulin levels and levels of AD biomarkers. This is sup-
ported by the study performed byWestwood et al., whereby
a significant association was found between plasma in-
sulin levels and CSF Aβ/tau ratio and tau levels [53]. In
this study, the CSF and serum levels of molecules in-
volved in the pathogenesis of AD and insulin resistance
were also measured. One of the highlighted proteins was
FCN2 (Ficolin-2), previously associated with brain atro-
phy, which is reduced in insulin resistance and its level
showed a negative correlation with CSF Aβ levels in the
insulin-resistant group [54, 55]. This can be support the
idea that AD and insulin resistance, and thus T2DM, share
common pathological pathways. Another study showed
that even in cognitively asymptomatic individuals, the
higher the Homeostatic Model Assessment of Insulin Re-
sistance (HOMA-IR) value, the higher the level of soluble
beta-amyloid precursor protein (sAPP-β) and Aβ42 mark-
ers in the CSF and the worse the memory performance [55].
sAPP-β is a product of cleavage of amyloid precursor pro-
tein (APP) by the enzyme β-secretase (BACE1), which is
part of the amyloidogenic pathway and contributes to the
formation of amyloid plaques [56]. An experiment model

showed decreased cleavage at the β-secretase sites of APP
in the presence of insulin [57]. The influence of insulin re-
sistance on the accumulation of amyloid plaques examined
with Pittsburgh compound B (PiB) PET scan and increased
HOMA-IR value was associated with a higher amyloid bur-
den in the frontal and temporal lobes in cognitively normal
individuals [58]. Further investigation via follow-up of in-
dividuals with higher HOMA-IR should be performed in
order to observe changes in cognitive function and amyloid
deposition (Table 2).
4.4 Association between brain glucose metabolism,
insulin resistance and AD

Cerebral glucose uptake through the BBB and
metabolism in the brain are mainly insulin-independent and
peripheral hyperinsulinemia does not have a strong effect
on this process [59, 60]. However, some studies have found
insulin resistance to alter brain glucose metabolism.

Insulin-independent glucose transporters are glu-
cose transporter (GLUT) 1 in the astrocytes, GLUT3 in the
neurons, and GLUT5 in the microglia [61–63]. The insulin-
dependent, GLUT4 has limited expression in the brain and
is found mainly in astrocytes [64]. A study examining the
effects of insulin on human SH-SY5Y neuroblastoma cells
revealed increased GLUT4 transporter translocation to the
plasma membrane, as well as increased glucose uptake in
the presence of insulin [65]. However, the role of insulin is
mainly of regulatory nature within the brain. Insulin plays
an important role in memory and learning processes, which
was demonstrated in the medial-temporal lobe where it en-
hanced neuronal activity [66].

Insulin has been shown to directly stimulate neu-
rite outgrowth by regulation of tau phosphorylation, which
likely contributes to neuronal cytoskeleton dynamics and
neural plasticity [67, 68]. Additionally, insulin enhances
the proliferation and glycogen storage of astrocytes [69],
which is supported by the fact that abundant insulin-
dependent glucose transporters (GLUT4) can be found in
astrocytes [64]. Thus, astrocytes can contribute to the
metabolic changes in the brain during disease processes by
effect on the metabolic demand of neurons [24].

Older adults with prediabetes or diabetes were
shown to have greater insulin resistance associated with
decreased cerebral glucose metabolism observed on flu-
orodeoxyglucose (FDG)-positron emission tomography
(PET) [70]. The brain regions with reduced glucose
metabolism were found in the posterior cingulate cortex,
the precuneus region, the parietal cortices (Brodmann ar-
eas (BA) 7 and 40, the temporal/angular gyri (BA 39)), and
the anterior and inferior prefrontal cortices, which are all
affected in AD as well. Although the participants were not
diagnosed with MCI, a reduced ability to recall words was
recorded during an activation scan compared to the healthy
adult group of similar age and level of education [70].
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Table 3. Relationship between Alzheimer’s disease, insulin resistance, and cerebral glucose metabolism.

Study designs and objectives Sample Size
Results

Conclusions References
Statistical Analysis P-value

• Cross-sectional study. To examine cognitively normal individual with
higher HOMA-IR value and diagnosed prediabetes

• N = 23 with pre-diabetes or
diabetes

1. Right frontal glucose metabolic rate uptake
(HOMA-IR): r = -0.63

1. < 0.05 • Higher HOMA-IR associated with reduced glucose metabolic rate at
areas affected by AD, including posterior cingulate

[25]

and diabetes were associated with reduced cerebral glucose metabolic
rate in AD related brain areas.

2. Posterior cingulate cortex glucose metabolic rate
uptake (HOMA-IR): r = -0.58

2. < 0.05 cortex, the precuneus region, parietal cortices, the temporal/angular
gyri, and the anterior and inferior prefrontal cortices.

• Cross-sectional study. To determine the association between IR,
deficits in brain glucose metabolism, and cognitive perfor-

• N = 150 middle-aged adults
with normal cogni-

1. global glucose metabolism (HOMA-IR): β = -
0.29

1. < 0.01 • Insulin resistance is associated with significantly lower regional cere-
bral glucose metabolism, especially the medial tem-

[71]
mance in those at risk for AD. tion and parental history of AD 2. medial temporal lobe glucose metabolism

(HOMA-IR): R2 = 0.178
2. < 0.001 poral lobe, which in turn may predict poorer memory performance.

3. immediate memory (Lower glucose
metabolism): β = 0.317

3. < 0.001

4. delayed memory (Lower glucose metabolism):
β = 0.305

4. < 0.001

• N = 280
• Cross-sectional study. To determine the association between 1. Control (N = 26) • Higher HOMA-IR predicted lower FDG metabolism in the

[72]

FDG metabolism and HOMA-IR in MCI and AD. 2. MCI (N = 194) medial temporal lobe and hippocampus among participants
3. Stable (N = 148) with AD, and higher FDG for MCI participants who progressed
4. MCI progressed to AD
(N = 39)

FDG metabolism in hippocampus (MCI pro-
gressed): F = 0.098 ± 0.029

4. /a < 0.01 to AD by 24 months.

FDG metabolism in medial temporal lobe (MCI
progressed): F = 0.099 ± 0.020 R2 = 0.211

4. /b < 0.001

5. AD (N = 60)
5. /a FDG metabolism in hippocampus (AD): F=
-0.076 ± 0.032

5. /a < 0.05

5. /b FDG metabolism in medial temporal lobe: F
= -0.074 ± 0.034 R2 = 0.096

5. /b < 0.05

• Prospective study (24-month follow-up). To evaluate rela- • N = 412 t-Tau (FDG-PET 24 months): r = -0.17 < 0.00047 • Higher baseline concentrations of t-Tau, and p-Tau181p were [74]
tionships between cerebrospinal fluid (CSF) analyses include p-Tau181p (FDG-PET 24 months): r = -0.27 associated with a decline in cerebral glucose metabolism.
hyperphosphorylated tau (p-Tau181p), β-amyloid 1-42 (Aβ1-42) and to-
tal tau (t-Tau). To evaluate change in cognitive func-

p-Tau181p/Aβ1-42 (FDG-PET 24 months): r =
0.25

FDG-PET changes appeared to mediate t-Tau or t-Tau/Aβ1-42-
associated cognitive change across all brain regions. Sig-

tion. To assess change in FDG uptake using PET scanning. t-Tau/Aβ1-42 ADAS-Cog (24 months): r = 0.37 nificant direct effects of alterations in Aβ1-42 levels on hypometabolism
were observed in a single brain region: mid-

t-Tau (ADAS-Cog 24 months): r = 0.28 dle/inferior temporal gyrus.
FDG-PET M24 (ADAS-Cog 24 months): r = -0.66

1. Normal cognition
(N = 82)
2. MCI (N = 241)
3. AD (N = 89) 3. FDG-PET M24 (ADAS-Cog 24 months): r = -0.

40
3. < 0.00047

Aβ, amyloid beta; AD, Alzheimer’s disease; ADAS-Cog, Alzheimer’s disease assessment scale-cognitive subscale-13 items; FDG, [18F]-fluorodeoxyglucose; HOMA-IR, Homeostatic Model Assessment of Insulin Resis-
tance; MCI, mild cognitive impairment; PET, Positron emission tomography.
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Fig. 1. Connection between neuronal insulin resistance and progression of Alzheimer’s Disease.

Other studies have found similar results,
whereby a higher HOMA-IR value and decreased
glucose metabolism in the medial temporal lobe were
associated with worse immediate and delayed memory
performance on neuropsychological testing [71]. Further
examinations of the medial temporal lobe and hippocampus
of individuals with MCI and higher HOMA-IR values
showed hypo- or hypermetabolism in these areas, de-
pending on the rate of progression of the disease [72].
Namely, active progression of the MCI stage is related
with hypermetabolism, and AD with hypometabolism, as
detected by FDG-PET scanning [72]. This phenomenon
might be explained by metabolic compensation against
the incremental amount of the amyloid deposition [73].
In addition to using FDG-PET scanning to map cogni-
tive performance, Dowling et al. also measured CSF
biomarkers in subjects during a 24-month period [74]. This
study found that towards the later stages of AD, there is
an inverse correlation between baseline CSF biomarkers
of intra-neuronal neurofibrillary degeneration, t-Tau and
p-Tau181p, and the progression of hypometabolism and
cognitive decline [74]. Tau hyperphosphorylation can be
stimulated by amyloid beta oligomers and it was revealed
that insulin is able to inhibit Aβ-induced neuronal cell
death and prevent Aβ fibrillarization in AD [75, 76].

Reduced brain insulin signaling, and thus brain
insulin resistance, which was observed in AD and T2DM
cases, can promote neurodegeneration by decreasing brain
glucose metabolism and hyperphosphorylation of tau [76].
These pathological changes and the previously mentioned

regulatory role of insulin points toward the direction that
insulin resistance has an indirect effect on metabolic dis-
turbance of the brain by contribution to neuronal cell death
(Table 3) (Fig. 1).

5. Brain insulin pathway and mechanism

The presence of insulin resistance and the detailed
steps of the insulin pathwaywere examined on post-mortem
brain tissues from non-diabetic subjects with AD and MCI
and control subjects [77, 78]. The examined areas were
the hippocampus, the dentate gyrus and subiculum, the pre-
frontal cortex and the cerebellar cortex. The insulin bio-
logical pathway under normal conditions is Insulin → In-
sulin receptor (IR) → insulin receptor substrate-1 (IRS1)
→ phosphoinositide 3-kinase (PI3K) → Akt, which in-
hibits several intracellular regulatory molecules, including
apoptosis- inducing molecules such as, glycogen synthase
kinase 3 (GSK-3) and the mammalian target of rapamycin
(mTOR) complex. The central molecule in insulin signal-
ing is IRS1, which is inhibited by serine kinases such as
GSK-3 and mTOR via feedback inhibition, and extracellu-
lar signal-regulated kinase 2 (ERK2), inhibitor of kappa B
kinase (IKK), and c-Jun N-terminal kinase (JNK) via feed-
forward inhibition. Phosphorylation of the serine residue
instead of the tyrosine residue on IRS1 leads to the disrup-
tion of the insulin signal, and therefore towards insulin re-
sistance.
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The levels of all the aforementioned kinases were
elevated in brain tissue samples of subjects with AD, and el-
ements of the amyloid plaques (Aβ oligomers) were shown
to activate some of these kinases as well [77, 78]. Gradu-
ally increased levels of serine phosphorylated IRS1 (pSer-
IRS1), from MCI to AD, were measured in post mortem
brain tissue without diabetes and independently of APOE
ϵ4 status, which found that elevated levels of serine ki-
nases correlated with an increased accumulation of amy-
loid plaques [79]. Another complex study further provided
evidence of the role of IRS1 in AD, which focused on the
association between the neuronal phosphorylated IRS1 and
brain atrophy in AD [80]. In this study, brain volume was
positively associated with p-panTyr-IRS-1 (insulin signal-
ing pathway) and negatively associated with pSer312-IRS-
1 (insulin inhibition pathway) in the parietal-occipital junc-
tion and middle temporal gyrus bilaterally [80]. The vol-
umetric variations were spatially correlated with IRS1 ex-
pression in normal brains [81]. Briefly, a likely cause of at-
rophy could be the impaired inhibitory effect of the insulin
signal against apoptosis and oxidative stress [80]. All of
these steps are directly affected by Aβ oligomers and lead
to insulin signal inhibition [82].

Insulin has a role in impeding amyloid beta ac-
cumulation by promoting APP cleavage into the non-
amyloidogenic, soluble sAPPalfa and stimulating the
degradation of Aβ and proper functioning of the autophago-
lysosomal pathway [56, 57, 77, 83]. Insulin enhances the
transcription of α-secretase (ADAM10), which cleaves the
APP in normal conditions [56, 57]. However, APP cleaved
by beta-secretase (BACE1) and y-secretase lead to the amy-
loidogenic sAPP-β and AICG production [56, 57]. GSK3
phosphorylates APP intracellular domain (AICD), which is
then able to translocate into the nucleus and form a com-
plex with nuclear proteins, thereby activating transcription
of amyloid production proteins such BACE1, APP, GSK3.
Insulin inhibits AICD translocation by inhibition of GSK3
activity [83, 84]. Insulin also stimulates insulin-degrading
enzyme (IDE) transcription, which promote Aβ degrada-
tion. Astrocytes are the main source of IDE and Aβ can be
degraded by stimulating IDE secretion of astrocytes via the
autophagy-based secretory pathway in AD [85]. Increased
IDE activity was found in postmortem brain tissue in AD
and its reduced activity towards the later stage of the dis-
ease is explained by increased neurodegeneration [86].

Aβ and tau are removed by autophago-lysosomal
pathway and mTOR is one of the regulatory molecules of
autophagy induction. However, the increasing level of Aβ
leads to mTOR hyperactivity, which in turn inhibits au-
tophagosome and lysosome fusion in neurons [87]. The
increased level of Aβ further activates mTOR, which as
a vicious cycle leads to a higher level of Aβ. Insulin can
contribute the proper autophagy function by induction of
mTOR through the PI3K/akt pathway [77, 83].

The Aβ monomer, in contrast to the Aβ oligomer,

is the physiologic form of Aβ. It activates the PI3K/Akt
pathway, leading to the phosphorylation of cAMP response
element binding (CREB) protein, which binds to the cAMP
response element (CRE) and mediates brain-derived neu-
rotrophic factor (BDNF) transcription [88]. Aβ oligomers
inhibit BDNF transcription by decreasing the level of the
phosphorylated active form of CREB [88]. BDNF has a
crucial role in human hippocampal synaptic plasticity via
increasing the expression of synaptic proteins involved in
the learning and memory processes, and the absence of it
can therefore lead to neurodegeneration [89, 90].

6. Gut dysbiosis- inflammatory
pathway—neurodegeneration

The microglia is the main phagocyte in the cen-
tral nervous system (CNS), and provides a surveillance
mechanism against pathogens via toll-like receptors (TLR),
antigen presentation and cytotoxicity activity, such as the
production of reactive oxygen species and cytokines [91].
Microglia shows pro-inflammatory hyperactivation in AD,
which is induced by interferon gamma (INFγ), tumor
necrosis factor alpha (TNFα), interleukins (IL) 4 and 13
and TLR ligand. The cytokines produced by microglia are
TNFα, IL1-β and α, and IL6 [92, 93]. One of the several
effects of the pro-inflammatory signal is insulin signal inhi-
bition via augmentation of JNK activity, which in turn leads
to the inhibition of IRS1 aswas detected in post-mortemAD
brain tissues [94].

Furthermore, the transcription of certain microR-
NAs (miRNA), such as miRNA-125b, is upregulated in
AD, and has a higher concentration in the CSF [95]. This
is thought to be a consequence of activated nuclear factor
kappa B (NF-κB) via the inflammatory pathway. The up-
regulated miRNA-125b has been shown to downregulate
several essential brain genes that have a critical role in neu-
roprotection via neuroprotectin D1, anti-inflammation via
NF-kB regulation, and immuno-regulation via vitamin D3
receptor (VDR) [96]. The overexpression of miRNA-125b
was also associated with tau hyperphosphorylation due to
the downregulation of phosphatases and the neuroprotec-
tive Bcl-2-like protein 2 (Bcl2L2, Bcl-w) [97].

Peripheral proinflammatory cytokinesmay be able
to activate the microglia, as the integrity of the BBB de-
creases with age. BBB degradation, which begins in the
hippocampus, was observed to be more prominent in MCI
and in early-onset AD than in normal aging brains [98, 99].
Moreover, hyperglycemia and hyperinsulinemia, as seen in
T2DM, synergistically impair the permeability of the BBB
[100]. Additionally, T2DM enhances the pro-inflammatory
signals due to the increase the oxidative stress and NF-κB
- mediated inflammation [101].

The enhanced pro-inflammatory signals in the
brain due to the increased cytokines and reactive oxygen
species (ROS) leads to initiation of autophagy. Accumula-
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tion of Aβ increases the production of ROS and blocks the
aforementioned lysosomal degradation. A study by Lipin-
ski et al. revealed that besides the ROS- dependent activa-
tion, autophagy is up-regulated at the transcriptional level
as well in AD. Although increased autophagic activity can
be preventive in normal aging brain it is counterproductive
in AD due to the failure of autophagolysosome formation
[102, 103].

Production of pro-inflammatory cytokines (IL-1,
IL-6, TNFα) can be triggered by bacterial lipopolysaccha-
rides (LPS), and as the integrity of the human intestinal bar-
rier decreases with age, the cytokines and LPS can further
cause systemic and cerebral inflammation [104, 105]. Fur-
thermore, these pathological connections correspond to the
detected LPS and Escherichia coli fragments in amyloid
plaques of post-mortem AD brain tissues [105].

Several bacteria have the ability to cause inflam-
mation, such as Bacteriodes, Alistipes, Gemella, and Blau-
tia, which are more abundantly found in AD cases, whereas
the anti-inflammatory bacteria, including Firmicutes, Acti-
nobacteria, Dialister, and Bifidobacterium are less abun-
dant in AD [106]. An increased number of AD-related
bacteria was associated with a greater level of CSF AD
biomarkers (p-tau and p-tau/Aβ42), while presence of the
less abundant AD-related bacteria were associated with a
lower level of AD biomarkers in the CSF [106].

An investigation by Cattaneo et al. showed a
greater number of pro-inflammatory bacteria, such as Es-
cherichia and /Shigella species, and a lower number of

anti-inflammatory, Eubacterium rectale species in the gut
of cognitively impaired individuals [107]. Furthermore,
an increased level of pro-inflammatory bacteria was found
in cognitively impaired subjects with detectable amyloid
plaques by PET scan, but not in subjects with undetectable
amyloid plaques [107].

The abundant pro-inflammatory bacteria already
predominate in the pre-diabetic state, and the increased ratio
of Bacteroidetes to Firmicutes is accompanied by reduced
glucose tolerance in diabetes [108, 109]. This indicates that
systemic inflammation, influenced by the composition of
the gut microbiome, may have a significant role in the pro-
gression of pre-diabetes and that of AD.

Dietary habits influence the composition of themi-
crobiome; an animal-based diet, including meat, eggs, and
cheeses increased the abundance of Bacteriodes and de-
creased the abundance of Firmicutes [110]. In contrast, the
plant-based diet, rich in grains, legumes, fruits, and veg-
etables increased the abundance of fiber-fermenting Firmi-
cutes, such as Eubacteria and Roseburia, which leads to an
increased level of short-chain fatty acids [110].

SCFAs, particularly butyrate, have several protec-
tive features such as maintenance of the integrity of the
intestinal wall, tight junction amplification and maintain-
ing the balance of the inflammatory pathways [111]. Bu-
tyrate suppresses production of the bacterial LPS-induced
pro-inflammatory cytokines, IL-1, IL2, IL6, IL8, IL12,
and TNFα by blocking the NF-κB transcription factor
[112]. Moreover, it can promote the differentiation of anti-

Fig. 2. Dietary effect on the gut microbiome. The gut microbiome plays an important role in insulin resistance in Alzheimer’s Disease and in Type 2
Diabetes.
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inflammatory IL-10-producing type 1 regulatory T cell by
inhibiting histone deacetylases [113]. In addition to the im-
munomodulatory features, SCFAs have been shown to reg-
ulate the protein-protein interactions between Aβ1-40 and
Aβ1-42 peptides, thus impeding the assembly of neurotoxic
Aβ aggregates [114] (Fig. 2).

7. Conclusions

The pathological processes of AD and T2DM
share many common features such as inflammation. More-
over, the peripheral insulin resistance without the develop-
ment of T2DM can further exacerbate the pathological pro-
cesses in the progression of AD. The pathological changes
of AD may also be involved in causing insulin resistance
in neurons. It is important to note that the function of the
insulin in the central nervous system is primarily neuroreg-
ulatory, and has less of a role in the metabolism of glucose
in the brain, in contrast to its function in peripheral organ
systems.

Numerous factors play a role in the development
of AD, and each enhancing the other can cause a vicious
cycle in its progression. The discussed experimental mod-
els, clinical trials and population-based studies indicate that
brain insulin resistance can be present independently of pe-
ripheral insulin resistance, which itself leads to amyloid
plaque and tau neurofibrillary tangle formation and conse-
quently neuronal cell death.

The presented studies indicate that gut dysbiosis
might be one of the causative factors of brain insulin resis-
tance, independently of peripheral insulin resistance. This
theory is supported by the previously revealed pathological
inflammatory pathways stimulated by gut dysbiosis. Pe-
ripheral insulin resistance can also develop or become fur-
ther accelerated by the stimulated pro-inflammatory path-
ways in gut dysbiosis. Therefore, evidence suggests that
gut dysbiosis may have a crucial role in the progression of
AD by promoting insulin resistance in the periphery and in
the brain. There is a negative association between a reduced
anti-inflammatory bacterial load and AD pathology. On
the other hand, an abundantly anti-inflammatory gut micro-
biome presumably decreases the risk and progression of AD
by production of protective factors, such as SCFA. Conse-
quently, lifestyle modification, which a properly composed
healthy diet is a pivotal part of, has proved its efficient pro-
tective role in deceleration of cognitive decline in AD.

Both AD and T2DM are considered chronic dis-
eases, which constantly develop from the asymptomatic to
the symptomatic forms. The progression of AD can be mit-
igating by alleviation of aggravating factors, such as sys-
temic inflammation and diabetes. The presence of brain IR
in AD, elaborated in this review, needs further clarification
by possible postmortem brain tissue evaluation and clinical
trials. Increasing evidence shows the determinative role of
inflammation in the progression of AD that might attain its

effect through the brain insulin pathway and the defective
autophagic function. Moreover, it was revealed that insulin
can affect autophagy via regulatory molecules. These asso-
ciations point towards new therapeutic targets.

In conclusion, we propose the importance of
implementing adequate lifestyle changes and initiating
timely treatment of chronic inflammatory conditions and
metabolic dysfunction in order to decrease the risk of and
prevent progression of AD. Further research is warranted in
the investigation of these associations.
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