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Abstract

Background: Cryopreservation cannot be widely used for rooster sperm due to high incidences of cryoinjury, including damage to sperm
membranes. Thus, cryopreserved rooster sperm has limited use due to low sperm motility and reduced fertilizing ability, which disrupts
the mechanisms involved in sperm—egg interactions. Previously, we used an Illumina 60K single-nucleotide polymorphism (SNP) array
to search for genes associated with rooster sperm quality, before and after freeze-thawing. As a continuation of these genome-wide
association studies (GWAS)), the present investigation used a denser 600K SNP chip. Consequently, the screen depth was expanded by
many markers for cryo-resistance in rooster sperm while more candidate genes were identified. Thus, our study aimed to identify genome-
wide associations with ejaculate quality indicators, including those concerning sperm membrane damage. Methods: We selected sperm
quality indicators after freezing—thawing using samples from a proprietary cryobank collection created to preserve generative and germ
cells of rare and endangered breeds of chickens and other animal species. A total of 258 ejaculates from 96 roosters of 16 different breeds
were analyzed. Moreover, 96 respective DNA samples were isolated for genotyping using a 600K Affymetrix® Axiom® high-density
genotyping array. Results: In total, 31 SNPs and 26 candidate genes were associated with characteristics of sperm membrane damage,
progressive motility, and sperm cell respiration induction using 2,4-dinitrophenol. In particular, we identified the ENSGALG00000029931
gene as a candidate for progressive motility, PHF14 and ARID 1B for damaged sperm membranes, and KDELR3, DDX17, DMD, CDKLS,
DGAT2,ST18, FAM150A4, DIAPH2, MTMR7, NAV2, RAG2, PDE11A,IFT704, AGPS, WDFY1, DEPDCS5, TSC1, CASZI1, and PLEKHM?2
for sperm cell respiration induction. Conclusions: Our findings provide important information for understanding the genetic basis of
sperm membrane integrity and other traits that can potentially compromise the mechanisms involved in sperm—egg interactions. These
findings are relevant to the persistence of fertility after thawing previously frozen rooster semen.

Keywords: frozen—thawed semen; chicken (Gallus gallus); rooster sperm; genome-wide association studies; genetic predisposition;
damaged membranes; impaired fertility; compromised sperm—egg interaction; sperm cryostability

1. Introduction contact [5-7], since fusion exhibits less unique species-
specificity. In recent times, numerous individual molecules
on the sperm and/or egg have been identified as essential
(or near-essential) to the process; however, more informa-

tion is needed with regard to how they interact [4,8].

Sperm—egg fusion is the initial stage in the forma-
tion of a new individual [1-3]. It is an intricate process
that merges the gametes, unites the cytoplasm and fuses
the two parental genomes. A crucial step in this process
is membrane fusion; however, little is understood about
the molecules and mechanisms involved [4]. Previous

The last several decades have seen a major develop-
ment in our knowledge of the molecular mechanisms un-

work suggested that membrane fusion requires a more con-
served mechanism and set of molecules than the preced-
ing processes in fertilization such as zona pellucida—sperm

derlying sperm—egg contact in mammalian species [9,10].
Nevertheless, due to the size of the egg and the challenge
of simulating the physiological polyspermy that occurs dur-
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ing normal fertilization, the same degree of knowledge has
not been gathered for birds. Because avian oocytes are so
much larger than those of mammals, we are unable to ob-
serve the sperm—egg contact directly in vitro [11]. Never-
theless, male fertility issues in birds remain a significant
factor that has a major impact on reproductive success re-
lated to sperm—egg interaction [12,13].

The use of assisted reproductive technologies is
thought to be crucial if the productivity of the poultry in-
dustry is to be improved [14—16]. One of the most im-
portant technologies is artificial insemination using frozen—
thawed sperm and this has wide applicability to both “back-
yard farm” and large scale industrial animal and poultry
(re)production [17-19]. The fertilizing potential of rooster
sperm depends on the quality and quantity of sperm pro-
duced by the testes (e.g., [20-23]). Furthermore, since each
rooster is engaged in mating with several hens, sperm char-
acteristics, and the genetic factors responsible for their for-
mation, can have a large impact on the fertility of the breed-
ing flock [24]. Currently, cryopreservation of reproductive
cells is an effective means of preserving male genetic ma-
terial in a cryobank [25]. On the other hand, technologies
for bird sperm cryopreservation require further improve-
ment. This includes work on optimizing cooling and freez-
ing protocols, as well as optimizing the composition of cry-
oprotectants and semen extenders [26]. Traditional assess-
ment of poultry semen quality and sperm function is mainly
based on monitoring motility, viability, sperm concentra-
tion, sperm morphology and acrosome integrity [27-30]. It
is well known that cryopreserved rooster sperm has some
limitations associated with low sperm motility and reduced
fertilizing ability [31]. These include high frequency of cry-
otrauma, such as sperm membrane damage [32-35].

Many factors affect sperm during the freezing process.
One cause of impairment is oxidative stress, which seems to
play a particularly important role [36]. Sperm have limited
antioxidant defenses, high levels of polyunsaturated fatty
acids, and an inability to synthesize proteins, so they are
susceptible to oxidative stress. High levels of reactive oxy-
gen species harm sperm by promoting oxidative damage to
sperm lipids, proteins, and DNA, which then leads to in-
fertility [37]. Reactive oxygen species can be considered
a trigger for mitochondrial apoptosis. Low levels of reac-
tive oxygen are produced by spermatozoa and are involved
in physiological processes such as phosphorylation and hy-
peractivation of spermatozoa during fertilization. Avian
sperm membranes contain high levels of polyunsaturated
fatty acids (as compared to mammals), making them vulner-
able to lipid peroxidation and reactive oxygen species that
are produced by cellular components during freezing [31].
Therefore, an important rationale for further study of ge-
netic features affecting resistance to oxidative stress is the
test for sperm response to 2,4-dinitrophenol (2,4-DNP or
simply DNP) [38,39]. DNP is the best-known agent for un-
coupling oxidative phosphorylation and turns off adenosine
triphosphate (ATP) production through oxidation, causing

the cell respiration (CR) rate to increase. If the respiratory
chain is damaged, there is little or no response to DNP. This
method has been tested in mammals and revealed a signifi-
cant correlation of this parameter with fertilizing ability of
the sperm [17]. On the other hand, the cryoprotective ef-
fect of DNP treatment, in small quantities, is such that can
minimize the harmful effects of reactive oxygen species and
is aimed at improving the oxidative status of sperm during
cryopreservation [40].

The genetic basis of sperm cryodamage and, al-
ternatively, preservation after freezing-thawing in male
chickens (Gallus gallus; GGA) is, however, still poorly
understood. Genome-wide association studies (GWAS),
nonetheless, represent a powerful instrument for identify-
ing loci (genes) associated with traits of interest (e.g., [41—
43]). GWAS can be carried out using both single-nucleotide
polymorphism (SNP) chip technology and whole-genome
resequencing, which takes into account hundreds of thou-
sands or even millions of SNPs and other polymorphisms
in the genome [44,45].

Previously, using an [llumina 60K chip, we identified
some genes associated with sperm motility before and after
freezing—thawing [46,47]. The present study is a more de-
tailed analysis of genomic associations using a higher den-
sity chip of 600K SNPs. The aim of the current study was
to identify a larger number of genetic markers for cryore-
sistance in rooster sperm through a more detailed search for
related candidate genes. In doing so, the ultimate objective
was to glean a greater insight into impaired sperm—egg in-
teraction mechanisms caused by cryopreservation. Specifi-
cally, the present investigation aimed to seek genome-wide
associations with ejaculate quality and sperm membrane in-
tegrity using samples from the inhouse collection of the in-
stitutional Cryobank of Generative and Germ Cells from
Rare and Endangered Breeds of Chickens and Other An-
imal Species created at the Russian Research Institute of
Farm Animal Genetics and Breeding (RRIFAGB; Pushkin,
Russia) [48,49]. To search for these associations, we se-
lected an appropriate suite of sperm quality and membrane
integrity indicators after freezing—thawing. The results of
this study will, we expect, provide important information
for understanding the genetic factors of fertility preser-
vation/impairment traits after thawing of frozen semen in
roosters.

2. Material and Methods
2.1 Experimental Animals

The study was conducted using a total of 96 males
from 16 chicken breeds (see the breed list in Table 1)
maintained in the RRIFAGB bioresource collection enti-
tled Genetic Collection of Rare and Endangered Breeds of
Chickens (GCREBC, Pushkin, Russia) [47,50-52], which
is a part of the national Network Bioresource Collection of
Farm Animals, Birds, Fish and Insects [53].
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Table 1. Descriptive quality indicators* of rooster semen by breed (mean =+ standard error).

Breed N FPM, % FDM, % CR

Pushkin 6 1883 +£3.06 3392+ 11.90 1.72+0.31
Leningrad Golden Gray 10 39.90 +5.03 73.77 £ 9.43 1.37 +0.28
Orloff Mille Fleur 13 4238 +4.74 70.96 +9.88  1.84 £ 0.40
Poltava Clay 4 3875+ 1143 52,13 +£22.62 1.60+0.35
Pantsirevka Black 3 66.67 + 6.01 9133 +£1.59  1.00 £ 0.00
Tsarskoye Selo 14 3850 +4.34 68.82+£9.44 229 +0.50
Australorp Black/Black Speckled 5 32,60+ 10.67 1570 +£2.38  1.08 £ 0.07
Leghorn Light Brown (or Italian Partridge) 1 55.0 91.00 1.00

Frizzle 3 35.00 £+ 7.64 87.08 £4.57 1.13+0.13
Kuchino Jubilee 2 65.00+15.00 40.19 +£28.19 3.21+1.58
Pervomai 3 50.00 +18.03 43.00 +24.17 1.15+0.15
Uzbek Game 5 43.00 +£6.80 50.74 +17.17 1.26 +£0.20
Russian Crested 3 4133 +£240 59.13+26.74 3.53+228
Czech Golden 3 20.67 +4.26 87.50 £4.77 2.11 £ 1.11
Yurlov Crower Golden/Silver 5 36.60 £7.97 6380+ 15.15 1.16 £0.11
Minorca Black 8 5038 £4.16 7519+ 11.65 1.28+0.14

* N, number of roosters per breed; FPM, forward progressive motility; FDM, frequency of damaged

membranes; CR, cell respiration rate determined using dinitrophenol (DNP) induction.

To assess the quality of sperm, roosters of the same
age were selected. The keeping, feeding, lighting, tempera-
ture conditions and other environmental factors conformed
to the regulations for the maintenance of breeder roosters
and were not expected to have an effect, since all the birds
were housed in the same premises under the same condi-
tions. The roosters chosen for the experimental group were
characterized by good health and sperm production qual-
ity corresponding to the GCREBC requirements [52,54], so
that no differences would be observed between breeds, al-
though correction for breed affiliation was carried out (see
section 2.4). Nevertheless, we assumed that the genetic
loci identified in this study did not include markers that de-
pend on breed affiliation and that there was no need to in-
clude environmental factors in the analysis, as well. The se-
lected animals were kept in individual cages, and the roost-
ers’ peritoneum was regularly massaged to stimulate sperm
production. To obtain sperm samples suitable for evalua-
tion and examination, a preliminary control of the sperm
quality and the health condition of the birds was carried out
to meet the data homogeneity assumption. This was pos-
sible because the semen quality before freezing was ade-
quate (as roosters were selected that produced sperm that
met the standards for freezing) and there were no differ-
ences between breeds. In particular, sperm quality require-
ments in the preliminary control analysis were as follows:
minimum volume of 0.2 mL, concentration not less than 2
billion/mL, total motility not less than 70%, and progressive
motility not less than 50%. The acceptable health condi-
tions were: well-developed red comb, good plumage, legs
corresponded to the breed standard, general health factors in
accordance with standards for keeping roosters, and assess-
ment of the general health condition that was determined
by a veterinarian. The appropriate biological material (i.e.,
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semen and blood) collected from experimental groups of
roosters was used for the subsequent analyses.

2.2 Sperm Quality Assessment after Cryopreservation

To evaluate potentially impaired fertility traits, a to-
tal of 258 ejaculates were obtained from 96 roosters that
had been also subject to genotyping. Diluted semen sam-
ples were equilibrated from 18 °C to 5 °C for 40 min. Af-
ter cooling, dimethylacetamide (DMA; Sigma Aldrich, St.
Louis, MO, USA) was added to each sample at a final con-
centration of 6%. After adding DMA, the samples were
incubated at 5 °C for 1 min. The ejaculates were frozen
into pellets by directly dripping the semen into, and stored
in, liquid nitrogen at —196 °C. The Leningrad Cryoprotec-
tive Medium [55] was used for semen freezing that had the
following components supplied by Dia-m (Moscow, Rus-
sia) (per 100 mL of distilled water): monosodium gluta-
mate, 1.92 g (114 mM); fructose, 0.8 g (44 mM); potas-
sium acetate, 0.5 g (51 mM); polyvinylpyrrolidone, 0.3 g
(8.3 uM); protamine sulfate, 0.032 g (3.27 uM) [56]. Be-
cause not all roosters produced sufficient semen volume to
be examined, suitable samples from 88 roosters (Table 1)
remained in the analysis after freezing, storage and thawing.
These sperm samples were assessed for forward progressive
motility (FPM), frequency of damaged membranes (FDM)
index, and sperm CR rate after post-frozen DNP (Dia-m)
treatment as described elsewhere [17,57].

Sperm FPM was explored using a computer-assisted
sperm analysis (CASA, ArgusSoft Ltd., St. Petersburg,
Russia; [58]). CASA settings were properly configured to
identify rooster sperm; the respective identification mode
was preliminarily calibrated using several relevant videos
and fixed in the program settings. The membranes were as-
sessed for integrity vs. damage using the Viability module
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of the CASA software. Damage to the plasma membranes
of spermatozoa was detected using the Sperm VitalStain
dye (Nidacon International AB, Mdlndal, Sweden) [57].
Staining was carried out in Eppendorf tubes (50 pL sperm
mixed with 50 uL dye) and smears were then made on glass
slides. The preparations were viewed at x 1000 magnifica-
tion with oil immersion, counting at least 200 cells in each
sample in six fields of view. The evaluation was carried out
using an Axio Imager microscope (Carl Zeiss Microscopy
GmbH, Jena, Germany) [57]. FDM was calculated as the
percentage of damaged membranes after freezing, i.e., the
number of sperm cells with damaged membranes divided by
the total number of cells viewed and multiplied by 100%.

Respiratory activity of the sperm cells was evaluated
using the DNP test substance [38], with the final concentra-
tion of 0.025 mM/L DNP [17]. The appropriate procedure
included use of the Expert-001MTX ion meter and a Clarke
electrode (Econix-Expert Research and Production Com-
pany, Moscow, Russia) to measure the CR rate [17,59]. Af-
ter adding 1 mL of 11% lactose and 100 pL semen to the
chamber, the rate at which the oxygen content decreased
was recorded; 10 pL DNP was then added. The CR rate in
response to DNP divided by the CR rate without DNP was
calculated as a measure of CR induction and its disruption
in the frozen—thawed sperm samples. The resultant ratio
was equal to one (1) or more and was considered a respi-
ratory response to the addition of DNP [17]. Herewith, the
value of this indicator equal to 1 characterized the absence
of CR induction due to the destructive (suppressing) effect
of freezing—thawing on the respiratory chain of the sperm
cells. The higher this indicator was, the less the process of
oxidative phosphorylation in sperm experienced a destruc-
tive (suppressing) effect due to freezing—thawing.

Sperm quality parameters were estimated within
breeds and SNP genotypes as means (+ standard error of
the mean). The significance of difference between two
means were calculated using Student’s z-test built in the
GraphPad online calculator https://www.graphpad.com/qui
ckcalcs/ttest]1/?format=SEM [60]. Initial observations (i.e.,
sperm quality data) were then used in the association analy-
sis based on the appropriate functionalities built in the EM-
MAX (efficient mixed-model association eXpedited; Uni-
versity of Michigan, Ann Arbor, MI, USA) software [41].

2.3 Genotyping of Samples and Quality Control

Blood samples from experimental roosters were taken
from a wing vein. For genome-wide genotyping, a total of
96 DNA samples were isolated. A high density SNP chip
for chicken, i.e., the 600K Affymetrix® Axiom® (Thermo
Fisher Scientific Inc., Waltham, MA, USA) genotyping ar-
ray [61], was employed for genotyping. All samples passed
quality control and were suitable for further research. In
particular, DNA samples with the genotyping quality con-
forming to more than 95% SNP loci were selected. As a
result, a total of 86 samples fit the required genotyping qual-

ity and were thus included in the examined dataset sub-
ject to the GWAS analysis. The GWAS was carried out
on all chromosomes using the PLINK 1.9 program (Purcell
Lab, Brigham & Women’s Hospital, Boston, MA, USA)
[62] and Ensembl chicken (red jungle fowl) genome as-
sembly GRCg6a [63,64]. The following parameter set-
tings for filtering SNPs suitable for the further analysis were
used: minor allele frequency (MAF) >0.05, and a thresh-
old of the Hardy-Weinberg equilibrium (HWE) errors at p <
0.0001. As a result of quality control, polymorphisms that
had low frequency of occurrence, poor genotyping qual-
ity, and HWE abnormalities were excluded, with a total
of 484,640 SNPs being advanced to the next analysis step
for conducting a genome-wide search. Additionally, we
took into consideration the respective population structure
that was previously determined using a principal compo-
nent analysis (PCA) and presented in the work by Demen-
tieva et al. [65].

2.4 GWAS for Sperm Quality and Cryostability Traits

At this stage, the respective calculations were carried
out using the EMMAX software [41]. The GWAS pro-
cedure in EMMAX was performed using identity-by-state
(IBS) kinship matrices to search for the influence of genetic
factors on cryostability of rooster semen using the appropri-
ate EMMAX in-built statistical tests to confirm the respec-
tive association p-values. The standard models for GWAS
implemented in the EMMAX program, including usage of
relative trait values (percentages), were used that are widely
employed in similar EMMA X-assisted GWAS experiments
(e.g., [66,67]). Because roosters of various breeds were in-
cluded in the analysis (Table 1), we implemented a breed-
adjusted GWAS in the EMMAX model. Accordingly, the
following mathematical model was used to calculate the ef-
fect of SNPs on sperm motility:

Y =Xb+u+ Br+e,

in which Y is a vector of phenotypes, b is the effect of n
SNPs, X is a matrix of SNP genotypes, u is a vector of ad-
ditive genetic effects considered to follow a normal distri-
bution with a mean equal to zero and (co)variance 02aG,
with o2a being the additive genetic variance and G being
the matrix of genomic relationships, Br represents a breed
effect, and e is the vector of random residual effects.

Next, Manhattan plots were generated using the
GWAS results and the qgman package in R software (ver-
sion4.3.2; The R Project for Statistical Computing, R Foun-
dation for Statistical Computing, Institute for Statistics and
Mathematics, Vienna University of Economics and Busi-
ness, Vienna, Austria) [68]. The resultant significant and
suggestive SNPs were localized, with significant and sug-
gestive levels for an SNP effect being set as Bonferroni cor-
rection to exclude false positive results at p = 1.031694 x
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Fig. 1. Manhattan plots of the GWAS results for the studied sperm quality traits. (A) forward progressive motility, (B) frequency
of damaged membranes, and (C) sperm cell respiration rate. The analysis displays the distribution of single trait SNPs in rooster chromo-
somes in relation to the thresholds for the genome-wide nominal significance level (—logio (p)), based on estimated probability values of

P <2.0633887 x 107 (lower line) and p < 1.031694 x 10~" (upper line). Just to show chromosomal separation, points are color-coded.
GWAS, genome-wide association studies.
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Table 2. SNP AX-75329814 and candidate genes on GGAL1 associated with forward progressive motility (FPM) after
cryopreservation, SNP genotypes, and their respective FPM values (mean + standard error).

SNP position (bp) p-value Alleles SNP location Candidate genes Genotype  n* FPM
CcC 50 33.70 £2.29°
168,850,183 1.54 x 1076 C/T ENSGALGO0000029931 IncRNA™ CT 30 47.00 £ 2.93°
U ' exons ENSGALG00000029931 ’ ’
TT 6 6550 +4.56°

* n, number of roosters per genotype. ** IncRNA, long non-coding RNA. *P¢ Pairwise significance of difference (a-b, b—c, and a—)

for FPM genotypes at p < 0.05. SNP, single-nucleotide polymorphism; GGA1, chromosome 1 of the chicken (Gallus gallus).

Table 3. SNPs and candidate genes associated with frequency of damaged membranes (FDM) after cryopreservation, SNP

genotypes, and their respective FDM values (mean + standard error).

SNP Chromosome SNP p-value Alleles  SNP location  Candidate genes  Genotype  n* FDM
position
(bp)
CcC 23 2674 £ 5.61°
:6);722 GGA2 26,182,792  2.61 x 1077 T/C intron PHF14 CT 39 74.07 & 4.88b¢
TT 23 7836 +5.35°
AXT6 AA 42 78.40 +4.19*
495998 GGA3 51,262,693  1.93 x 1076 A/G intron ARIDIB AG 31 5491 £ 6.95%¢
GG 12 36.83 +5.34¢

* n, number of roosters per genotype. “>< Pairwise significance of difference (a—b, b—c, and a—c) for FDM genotypes at p < 0.05.

1077 (0.05/484640) and 2.063387 x 106 (1/484640), re-
spectively. The relevant candidate genes were identified
and annotated using the appropriate Ensembl and NCBI
genomic browsers and databases based on the GRCgb6a
genome assembly [63,64,69].

3. Results

We examined a few characteristics of sperm quality
(Table 1) that represent the most important reproductive
traits when breeding poultry in small populations and/or
preserving the gene pool [70—73]. A total of 31 quantitative
trait nucleotides (QTNs) with significant effects on frozen—
thawed sperm quality traits were detected on chicken chro-
mosomes GGA1l, GGA2, GGA3, GGA4, GGAS, GGAT,
GGA9, GGA15, GGA17, and GGA21 as will be detailed
below.

3.1 Ascertainment of Sperm Quality in Roosters after
Cryopreservation

In Table 1, the measured breed-specific values are
shown for the indices of sperm FPM, FDM, and CR rate af-
ter DNP treatment post freezing—thawing. Evaluation of the
rooster sperm quality showed high individual variability for
all three main studied indicators. In addition, the volume of
an individual ejaculate varied from 0.4 to 1.4 mL, cell motil-
ity before freezing from 20 to 95%, and after freezing from
5 to 80%. The amount of membrane damages depended
significantly on a particular animal and ranged from 3 to
96%. The magnitude of sperm CR induction in roosters by
DNP essentially ranged from 1.00 to 8.09, with an average

of 1.66 £ 0.114. high concentration of 0.025 mM/L DNP
led to a reduced sperm CR rate after thawing. If the respi-
ratory chain in sperm cells was significantly damaged, we
observed almost no response to DNP. That is, there were
samples with no change in CR and samples with a high rate
of increase in respiratory activity.

3.2 GWAS for FPM after Freezing—Thawing

One potential SNP, AX-75329814, associated with
FPM was identified on GGA1 and is presented in Table 2
and Fig. 1A and Supplementary Fig. 1A. This sugges-
tive SNP (p = 1.54 x 107%) was localized in the EN-
SGALG00000029931 long non-coding (Inc) RNA within
exons of its two slice variants according to the Ensembl
Genome Browser [63]. Analysis of FPM phenotypes
revealed significant differences (p < 0.05) between ho-
mozygous and heterozygous genotypes at this SNP AX-
75329814 locus (Table 2).

3.3 GWAS for FDM

Noteworthy SNPs associated with FDM are presented
in Table 3 and Fig. 1B and Supplementary Fig. 1B. Two
suggestive SNPs were found on GGA2 and GGA3. One of
these SNPs, AX-76063628 (p =2.61 x 10~7), was located
on GGA2 in an intron of the PHF 14 (PHD finger protein 14)
gene. The respective genotype analysis for FDM revealed a
significant negative effect of the T allele on the preservation
of sperm membranes at cryopreservation. Hereby, the poly-
morphism observed in this gene may cause the sperm mem-
brane instability related to freeze—thaw in roosters. Another
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Table 4. SNPs and candidate genes associated with cell respiration (CR) rate, SNP genotypes, and their respective CR values (mean =+ standard error).

Ssdid dNI

SNP Chromosome SNP position (bp)  p-value  Alleles SNP location Candidate genes Genotype n* CR
GG 4 4854+ 0.66*
AX-75466971 GGAl 50,898,160 1.14x10% C/T KDELRS3 intron, downstream DDX17 KDELR3, DDX17 GT 14 2.38 £0.59°

TT 67 1.38 £0.09°
AA 73 149 £0.10°

AX-75221789 GGA1l 116,157,001 1.94x10% G/A ENSGALG00000056838 intron, downstream DMD IncRNA** ENSGALG00000056838, DMD AG 11 2.2840.62°
GG 2 6.44 £1.65°
CC 1 6.75

AX-75231769 GGA1l 122,024,645 1.77x 106  C/T intron CDKLS5 CT 15 271 +£0.54*

TT 69 1.42+£0.10°
AA 65 1.36 +0.09%
AX-75397985 GGALl 196,966,714 7.73%x10°7  C/T downstream ENSGALG00000064293, upstream DGAT2 ~ IncRNA ENSGALG00000064293, DGAT2 AC 16 2.29 +0.52°
CC 4 4854+ 0.66°
CC 74 147 +0.102
AX-80992139 GGA2 109,830,505 1.89x10%  A/T intergenic (between ST18 and FAM150A4) ST18, FAM150A4 (ALKALI) CT 8 2.87 4 0.85P¢
TT 3 447 +2.05¢
CcC 57 131 +0.092
AX-80778510 GGA4 5,664,389 1.31x107 T/A intergenic (between ENSGALG00000068051 and DIAPH2) IncRNA ENSGALG00000068051, DIAPH2 CT 21 2.06 + 0.40b¢
TT 8 3.57 £ 0.68°
CC 4 4854 0.66*
AX-76705102 GGA4 63,101,468 1.05x10% C/T intron MTMR7 CT 13 2.49 + 0.622P
TT 68 1.38 +0.09¢
CC 78 149 +0.112
AX-76788932 GGAS 1,970,758 526x 10710 C/T intron NAV2 CT 6 3.5540.91b¢
TT 2 4.55+3.54¢
AA 5 5.17 £+ 1.092
AX-76791439 GGAS 19,979,152 1.41x10%  G/A ENSGALG00000066890 intron, upstream RAG2 IncRNA ENSGALG00000066890, RAG2 AG 26 1.71 £0.28>¢
GG 55 1.38 +£0.08¢
AA 4 4854 0.66*
AX-76791443 GGAS5 19,981,011 549x107 G/A same as above same as above AC 14 2.38 4+ 0.59*b
CC 68 1.38 +0.09¢
AA 77 1.47 +£0.102
AX-76791454 GGAS 19,985,728 1.87x10%  G/A same as above same as above AT 9 3.66 + 0.94°
TT 0 -
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Table 4. Continued.

[Tt

2,

4

SNP Chromosome SNP position (bp)  p-value  Alleles SNP location Candidate genes Genotype n* CR
AA 76 143 +0.10?
AX-76791501 GGAS 20,013,308 1.63 x 1076 C/T same as above same as above AG 9  3.65+0.86"
GG 0 -
AA 4  4.85+0.66°
AX-76791503 GGAS 20,014,711 1.18x 107 C/T same as above same as above AG 15 2374 0.55°
GG 66 1.37 £0.09¢
CcC 76 147 £0.10*
AX-76791535 GGAS 20,030,837 1.83 x10°8 C/A same as above same as above CT 8 3.22 4 0.79b¢
TT 4.55 + 3.54¢
AA 3 4884094
AX-76791553 GGAS5 20,037,753 9.94x 10 G/T same as above same as above AG 13 2.48 £+ 0.62
GG 70 1.42 +£0.10°
CC 76 1.50 £0.122
AX-76791570 GGAS 20,046,742 4.04 %108 A/C same as above same as above CT 9 2.67+0.62°
TT 8.09
AA 75 1.50 £0.122
AX-76791596 GGAS 20,057,754 6.20 x 1079 T/C same as above same as above AG 10 2.57 +0.59°
GG 1 8.09
CC 68 1.44 +0.117
AX-76791611 GGAS5 20,066,805 1.83x10% G/T same as above same as above CT 15 2.14 £+ 1.28%b
TT 3 55942220
AA 63 1.36£0.10%
AX-76791629 GGAS 20,079,418 211x10°8  T/G same as above same as above AT 18 2.1040.38°
TT 4.59 + 1.04¢
AA 3.99 + 0912
AX-76791640 GGAS 20,085,610 8.84x 108 C/A ENSGALG00000066890 exon, upstream RAG2 IncRNA ENSGALG00000066890, RAG?2 AG 14 2.38 £ 0.592b
GG 67 1.39 £0.09°
CC 70  1.36 £0.10?
AX-76791651 GGAS 20,089,359 543x10%® C/T  downstream ENSGALG00000066890, upstream RAG2 IncRNA ENSGALG00000066890, RAG2 CT 15 2.884 0.44°
TT 1 8.09
AA 4 4.85+0.66°
AX-76986124 GGA7 15,619,919 1.25x10%  G/A intron PDEI11A AC 18 2224 0.46°
CcC 64 1.36 £ 0.09°
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Table 4. Continued.

SNP Chromosome  SNP position (bp) p-value Alleles SNP location Candidate genes Genotype n* CR
GG 4 4854 0.66*
AX-76986304 GGA7 15,687,930 1.05x10%  A/G  downstream IFT704, intergenic (between IFT70A4 and AGPS) IFT70A4 (TTC30B), AGPS GT 14 2.38 £0.59%P
T 68 138 +0.09¢
CcC 58 1.30 +0.08*
AX-77181439 GGA9 8,463,525 2.68x 107  T/C intron WDFYI CT 20 2.1240.42°
TT 3.93 +0.67°
GG 4.45 4+ 0.83°
AX-75848147 GGAL5 9,143,016 7.44 x 1077 T/C intron DEPDC5 GT 25 1.60 £ 0.23b¢
TT 53 1.3440.08°
CcC 0 -
AX-75873724 GGA17 7,048,201 1.67 x 1076 C/T intron TSC1 CT 12 3.47 +0.69*
T 74 1.42+£0.10°
CcC 67 1.384+0.09*
AX-76244713 GGA21 3,983,187 1.30x10%  A/G upstream CASZ! CASZ1 CT 15 22940.55°
TT 4 4854+ 0.66°
cC 1 8.09
AX-76245698 GGA21 4,201,372 1.97 x 1076 C/T intron PLEKHM?2 CT 20 2.39+0.392
TT 65 1.39+0.10°

* n, number of roosters per genotype. ** IncRNA, long non-coding RNA. »b< Pairwise significance of difference (a-b, a—c and b—) for FDM genotypes at p < 0.05. GGA, chicken (Gallus gallus)

chromosome.
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SNP, AX-76495998 (p = 1.93 x 1075), was located on
GGA3 in an intron of the putative candidate gene ARIDIB
(AT-rich interaction domain 1B).

3.4 GWAS for DNP-Assisted CR Induction in Rooster
Sperm

The results of the performed GWAS for the index of
sperm CR induction in roosters using DNP is shown in Ta-
ble 4 and Fig. 1C and Supplementary Fig. 1C. For exam-
ple, one suggestive SNP AX-80992139 (p = 1.89 x 1079)
was found on GGA2 as an intergenic variant located be-
tween the possible candidate genes S7/8 (ST18 C2H2C-
type zinc finger transcription factor that exhibits a moderate
level of nuclear positivity in seminiferous duct cells; [74])
and FAM150A (family with sequence similarity 150 mem-
ber A) that is also known as ALKALI (ALK and LTK lig-
and 1; [75,76]). On GGAA4, one significant, AX-80778510
(p=1.31 x 1077), and one suggestive, AX-76705102 (p =
1.05 x 1075), SNPs were found. Two respective candidate
genes, DIAPH?2 (diaphanous related formin 2) and MTMR7
(myotubularin related protein 7), were proposed.

One significant SNP, AX-76788932 (p = 5.26 X
10~19), was localized on GGAS in an intron of the NAV2
(neuron navigator 2) gene. On GGAS, there was a block
of the following SNPs, most of them being significant and
the last four suggestive: AX-76791596 (p = 6.20 x 1079),
AX-76791535 (p = 1.83 x 1078), AX-76791611 (p = 1.83
x 1078), AX-76791454 (p = 1.87 x 10~%), AX-76791629
p=2.11 x 1078), AX-76791570 (p = 4.04 x 10~%), AX-
76791651 (p = 5.43 x 1078), AX-76791640 (p = 8.84 x
10~8), AX-76791553 (p = 9.94 x 1078), AX-76791503
(p = 1.18 x 1077), AX-76791443 (p = 5.49 x 1077),
AX-76791439 (p = 1.41 x 1079), and AX-76791501 (p =
1.63 x 107°). The significant SNPs found were located
within, or close to, long non-coding RNA (IncRNA) ENS-
GALG00000066890 and downstream the RAG2 (recombi-
nation activating 2) gene.

In addition, a number of suggestive SNPs were found
on GGA1, GGA7, GGA9, GGA1S5, GGA17, and GGA21,
for which the following candidate genes were proposed:
KDELR3 (KDEL endoplasmic reticulum protein retention
receptor 3), DDX17 (DEAD-box helicase 17), DMD (dys-
trophin), CDKLS5 (cyclin dependent kinase like 5), DGAT2
(diacylglycerol O-acyltransferase 2), PDE11A4 (phosphodi-
esterase 11A), IFT70A4 (intraflagellar transport 70A), AGPS
(alkylglycerone phosphate synthase), WDFYI (WD repeat
and FYVE domain containing 1), DEPDC5 (DEP domain
containing 5), TSCI (TSC complex subunit 1), CASZI
(Castor zinc finger 1), and PLEKHM? (pleckstrin homol-
ogy and RUN domain containing M2).

4. Discussion

Genetic and genomic associations relative to repro-
ductive traits and issues are pivotal for progress in ani-
mal and poultry production and reproduction [77-83]. Se-
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men cryobanks play an important role in conserving the ge-
netic resources of breeds and species of animals, including
birds. Sperm properties are indicators of the reproductive
qualities of roosters, and the appropriate freezing technol-
ogy is the basis for preserving sperm suitable for further
effective fertilization [84—87]. It is well known that use
of cryopreserved rooster sperm has some limitations, sig-
nificantly associated with low sperm motility and reduced
fertilizing ability, due to disruptions in the mechanisms of
sperm—egg interaction (e.g., [88—90]). Cryopreservation
techniques in birds have not yet found widespread use due
to the high incidence of cryotrauma, including damage to
sperm membranes (e.g., [91-94]). In the present GWAS
study, novel phenotypic traits to search for genetic factors
influencing the fertilization process in birds after semen
freezing—thawing have been used, as discussed below.

4.1 FPM-Related Aspects

FPM estimate is the most widely used indicator for
sperm quality assessment [56,95,96]. Here, rooster sperm
quality evaluation resulted in high individual variability in
FPM: from 20 to 95% before freezing and from 5 to 80%
after freezing (data not shown). Previously, we [46] also
noted significant variation in this indicator before freezing
(40-95%) and after thawing (0-75%), with its mean values
being 87.9 £ 0.83 and 45.2 £ 2.2%, respectively. In that
previous study [46], we estimated the heritability of sperm
FPM after cryopreservation in Rhode Island Red roosters
and revealed a relatively high level of heritability for this
trait (42 = 0.40). We assume that the level of heritability
was not high in other breeds either. This was consistent
with another study [97], the results of which showed that
sperm viability, motility, and percentage of sperm defor-
mation exhibit high heritability (A2 = 0.52, 0.85, and 0.60,
respectively).

One suggestive SNP, AX-75329814, associated with
the FPM index was found on GGA1 (Table 2 and Fig. 1A
and Supplementary Fig. 1A). This was an exonic poly-
morphic variant of the ENSGALG00000029931 IncRNA
gene. It is known that IncRNAs have lengths more than 200
nucleotides and are incapable of encoding protein. They are
found in the cytoplasm and nucleus and are transcribed by
RNA polymerase II [98—100]. There is a connection be-
tween male fertility and noncoding RNA markers. As re-
viewed by Hitit ez a/. [100], IncRNAs play critical functions
in controlling a wide range of biological processes that are
strongly expressed in mature sperm and the testes of mice
and bulls. They are expressed differently in human and
bovine motility phenotypes, suggesting that sperm IncR-
NAs may have functional involvement in fertility. Sperm
bearing RNA was discovered to be conversed among var-
ious species, including stallions, goats, boars, and rams
[100]. Involvement of IncRNAs in the formation of male
germ cells and sperm motility has been demonstrated in
chickens and turkeys [101-104]. Our analysis of the corre-
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sponding FPM phenotypes revealed significant differences
between the ENSGALG0000002993 1 IncRNA genotypes (p
< 0.01). The established substitution of C to T seems to in-
crease significantly the probability of preserving FPM of
spermatozoa after freezing—thawing.

4.2 Exploring Potential Genetic Factors for FDM

An important indicator of semen viability after
freezing—thawing is the degree of damage to the sperm
plasma membranes [105,106]. Membrane rafts are present
on the surface of sperm and play an important role in the
mechanisms of sperm—egg interaction in the fertilization
process [35]. The freezing process significantly deterio-
rates the condition of the sperm plasma membranes. In the
work by Olexikova et al. [107], only about a quarter of the
spermatozoa assessed belonged to quality class I. In our in-
vestigation, the individual FDM values in the studied group
of roosters ranged from 3 to 96% (data not shown).

Suggestive SNPs associated with the FDM index were
found on GGA2 and GGA3 (Table 3 and Fig. 1B and Sup-
plementary Fig. 1B). The candidate PHF 14 gene located
on GGA2 affects cell proliferation. In our study, geno-
type analysis for FDM revealed a significant negative ef-
fect of the T allele in the PHF'14 gene on the integrity of
sperm membranes during cryopreservation. As reported by
Huang et al. [108], knockout of the PHF'14 gene in mice
led to neonatal lethality due to respiratory failure. Patho-
logical analysis revealed severe disturbances in tissue and
cellular structures. PHF14 may be an epigenetic regulator
and play an important role in the development of many or-
gans. PHF14 also reduced the expression of the Cdknla
gene, which in turn controlled the expression level of the
H3K4me3 gene. PHF14 plays an important role in the for-
mation of the germinal center by regulating the proliferation
of germinal center B cells in the spleen [108,109]. In a hu-
man study for the MeCP2-TCF20 complex that plays a criti-
cal role in brain function, a missense mutation in the PHF14
subunit of the TCF20 complex causes neurological symp-
toms due to the abolition of the MeCP2-PHF14-TCF20 in-
teraction [110]. The putative candidate gene ARIDIB lo-
cated on GGA3 is a chromatin regulator, and mutations in
this gene cause neurodevelopmental disorders in humans
[111,112].

4.3 DNP-Assisted Sperm CR Induction

A significant number of factors influence cryodamage
of spermatozoa, with an important role among these factors
being played by oxidative stress. Biochemical processes
that use ATP to generate energy, such as glycolysis and
oxidative phosphorylation, play a major role in the essen-
tial activity of cells. The intensity of energy metabolism is
a very important criterion to assess the sperm quality. A
crucial justification for studying this sperm parameter is its
connection with fertilizing ability. Oxidative phosphoryla-
tion prevails over glycolysis and is the main source of ATP
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synthesis. Therefore, disruption of the oxidative phospho-
rylation process during freezing—thawing of spermatozoa
can be the main reason for the decrease in their fertilizing
ability.

Previously, we showed the identity of responses to
DNP in terms of changes in sperm CR in boars, bulls,
stallions, reindeer and chickens [17]. The only difference
across different animal species is the strength of the re-
sponse to the test substance. After freezing and thawing,
sperm CR induction using DNP declined. It was found that
the sperm CR rate correlates with the pregnancy rate after
fertilization [17]. Thus, the test for an increased CR rate
after the DNP addition can be a good test for the sperm fer-
tilizing ability. That is why we also chose this indicator of
sperm quality after freezing—thawing to search for genome-
wide associations.

The sperm CR induction variability in roosters was
high in the present experiment (Table 1). The coefficient of
variation for FPM ranged from 0.5 to 19%, for FDM from
0.1 to 40%, and for CR from 0.02 to 4.4%. High repro-
ducibility of DNP sperm CR induction in roosters across
samples suggests the presence of certain genetic factors.
Their identification can serve as a biomarker for the selec-
tion of animals whose sperm retains high fertilizing abil-
ity after freezing—thawing. As a result of GWAS for such
factors, five suggestive SNPs were found on GGA1 (Ta-
ble 4) and the following candidate genes were proposed:
KDELR3, DDX17, DMD, CDKLS5, and DGAT2. KDELR3
is responsible for the regulation of cellular processes; in
studies on cows, the KDELR3 gene expression was re-
duced in normally fat cows compared to excessively fat
ones [113]. The adjacent DDX17 gene encoding the RNA
helicase binds and hydrolyzes ATP, altering RNA structures
that affect steroid hormone signaling, including phosphory-
lation of estrogen receptor 1 (ESR1). Gene expression dy-
namics during and after meiosis demonstrated that DDX17
transcript levels grow, while most transcripts decrease or
remain stable, suggesting a role for DDX17 in subsequent
sperm functions, i.e., egg fertilization [114].

The candidate DMD gene is expressed in mitochon-
dria. Its encoded protein forms a component of the
dystrophin-glycoprotein (DGC) complex that connects the
internal cytoskeleton and extracellular matrix. Although
mdx/utrn—/~ mice lacking both dystrophin and its autoso-
mal homolog murine utrophin are infertile, the mechanisms
underlying this phenomenon remain unclear [115]. One
more discovered candidate gene, CDKLS5, encodes a phos-
phorylated protein with protein kinase activity and binds
ATP and nucleotides. CDKLS5 kinase activity is important
for the suppression of gene transcription induced by double-
strand DNA breaks [116]. The DGAT2 gene encodes one of
two enzymes that catalyze the final reaction of triglyceride
synthesis. Accordingly, it can affect glycerol metabolism,
lipid biosynthesis, and lipid metabolism. The methylation
level of the DGAT?2 gene in sperm DNA is critical for fer-
tility and viability of offspring [42].
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On GGAA4, one significant (AX-80778510, p = 1.31
x 1077) and one suggestive (AX-76705102, p = 1.05
x 107%) SNPs were detected. The corresponding can-
didate gene DIAPH?2 may participate in oogenesis, being
involved in the regulation of endosomal dynamics [117].
The candidate gene MTMR?7 encodes a phosphatase that
participates in intracellular signaling pathways associated
with energy processes in the cell. The MTMR7 gene is
exclusively located in early germ cells. MTMR?7 defi-
ciency in neonatal testes caused excessive cell proliferation,
which was associated with activation of phosphoinositide 3-
kinase/alpha serine/threonine-protein kinase (PI3K/AKT)
signaling [118].

One of the two candidate genes on GGAS that we iden-
tified was the NAV2 gene. This gene encodes a member
of the neuronal navigator gene family, which may play a
role in cell growth and migration [119], although its role
remains largely unknown. Next, a large region containing
a cluster of significant and putatively significant SNPs was
found on GGAS. They were located in the vicinity of the
RAG?2 gene. A protein that is produced by this gene plays
a role in the development of B- and T-cells [120]. Muta-
tions in this gene lead to immunodeficiency diseases, and
RAG?2 knockout is used in genome editing during transplan-
tation [121,122]. Previously, other researchers discovered
in human sperm cells that RAG1 and RAG2 are required
for immunoglobulin G (IgG) synthesis. Anti-IgG antibod-
ies were found to be able to prevent sperm penetration into
zona pellucida-negative hamster eggs. It is suggested that
IgG can be produced by human sperm and may play a role
during fertilization [123]. RAG?2 has also been suggested
to be involved in pre-B cell decisions between apoptosis
vs. DNA repair and cell cycle progression after DNA dam-
age [124]. We speculate that this gene’s polymorphisms
are linked to fertilization selectivity and that the gene’s ef-
ficiency is related to ATP-dependent remodeling of ATPase
subunits. The significant SNPs found (Table 4) confirm the
association of RAG2 polymorphic variants with the sperm
response to DNP-mediated blockade of ATP production.

Two significant SNPs were found on GGA7. One
of the respective candidate genes was PDEIIA. By con-
trolling the intracellular concentration of the cyclic nu-
cleotides, i.e., cyclic adenosine monophosphate (cAMP)
and cyclic guanosine monophosphate (cGMP), phosphodi-
esterase 11A, which is expressed by this gene, contributes to
signal transduction. It channelizes the hydrolysis of cAMP
and cGMP to 5'-AMP and 5'-GMP, respectively [125]. All
these facts support the possible influence of polymorphic
variants of the PDEIIA gene on the stability of cellular
processes in frozen-thawed semen. To increase sperm vi-
ability, various substances that interact with phosphodi-
esterase are used, e.g., thiophylline and IBMX (3-isobutyl-
I-methylxanthine) [126—128]. The study of the effect of
stimulants that improve semen quality on various PDE11A
genotypes has the potential for practical use to increase the
fertilizing ability of sperm after freezing—thawing and to
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form the composition of sperm extenders. Another gene,
IFT70A (or TTC30B, i.e., tetratricopeptide repeat domain
30B), encodes a protein involved in the intraflagellar trans-
port machinery and ciliogenesis [ 129]. Herewith, sperm tail
production is impacted by genetic abnormalities in motile
cilia that causes male infertility [130]. Another potential
candidate on GGA7, AGPS, is known to cause male steril-
ity when mutated in mice [131].

A candidate gene WDFY! found on GGA9 encodes
the phosphatidylinositol-3-phosphate-binding protein re-
quired for spermatogenesis and male fertility, particularly
in mice [132]. The candidate gene DEPDCS) that is located
on GGAI15, with a molecular function to activate GTPase,
was identified as influencing male infertility in yak-cow hy-
brids (cattleyaks) [133]. The 7SC! gene located on GGA17
controls cell growth, proliferation, and size [134,135]. In a
complex with TSC complex subunit 2 (TSC2) in mammals,
it inhibits the phosphorylation of S6K1 and EIF4EBP1 by
regulating signaling to the mechanistic target of rapamycin
complex 1 (mTORC1) [136]. In particular, this candidate
gene in mice positively plays an inhibitory role in the func-
tioning of mMTORC]1, a central regulator of cell growth, pro-
liferation, and differentiation, including in the process of
the proliferation and differentiation of spermatogonia. In
the TSC1 knockout mice, there were abnormalities in tes-
ticular development, partial spermatogenic arrest, reduced
sperm count, excessive loss of germ cells, and subfertility
[137]. Another important candidate gene on this chromo-
some is PLEKHM? encoding a kinesin-related protein that
is putatively associated with male factor infertility [138].

In addition, we identified several IncRNAs (EN-
SGALG00000056838, ENSGALG00000064293, ENS-
GALG00000068051, and ENSGALG00000066890), but
their possible roles in spermatogenesis and egg fertilization
activity require further study. The distinct ncRNAs found
in male sperm that consistently exhibit fertility phenotypes
have the potential to be effective fertility biomarkers
[98,100].

Thus, the present study delivers a theoretical basis for
understanding the factors regulating the fertilizing ability
of rooster sperm after freeze—thaw and provides further in-
sights into the molecular mechanisms for semen selection
during cryopreservation. In Fig. 2 (Ref. [37,139]), we
provided an overview of a number of positional candidate
genes identified in our study, alongside their biological in-
fluence on functional molecular mechanisms that may con-
tribute to the fertilization process (i.e., sperm—egg fusion
[140]). Many of the discovered candidate genes are in-
volved in the mechanisms of interaction of the Kyoto En-
cyclopedia of Genes and Genomes (KEGG) signaling path-
ways in preparation for egg fertilization (Fig. 2).

4.4 Limitations and Prospects for Further Research

For discussion purposes, we acknowledge that there
may have been limitations in our study that were associated
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Fig. 2. Mechanisms of interaction of KEGG signaling pathways in preparation for egg fertilization based on positional candidate
genes identified by GWAS for sperm parameters post freeze—thaw. Such genes as MTMR7, WDFYI, and AGPS encode structural
membrane components and are elements of intracellular signaling pathways, mediating membrane trafficking and autophagy. One of the
main signaling pathways involved in sperm motility is the cAMP-dependent pathway. The PDE11A gene metabolites play a role in signal
transduction by regulating the intracellular concentration of cyclic nucleotides cAMP and cGMP that act as second messengers, including
indirect effects on tyrosine phosphorylation proteins (A-kinase anchor proteins, or AKAPs). AKAPs are a group of structurally diverse
scaffolding proteins that bind to protein kinase A. Their interaction affects the genes DMD, DIAPH2, TTC30B (IFT704), and DEPDCS,
causing a reorganization of the sperm cytoskeleton during capacitation [37,139]. This presumably leads to changes in flagellar curvature
that modify the amplitude of the tail wave, which directly affects sperm fertility. The activity of the protein kinase encoded by the
CDKLS5 gene is regulated by several events (e.g., DNA damage), along with chemical signals in the cAMP-dependent pathway, including
cAMP, cGMP and Ca? ions, which trigger exocytosis and serve as transmitters of various cellular signals, thereby being sensors of
this process. WDFY1, WD repeat and FYVE domain containing 1; MTMR7, myotubularin related protein 7; AGPS, alkylglycerone
phosphate synthase; PDE11A, phosphodiesterase 11A; CDKLS5, cyclin dependent kinase like 5; DIAPH2, diaphanous related formin 2;
DMD, dystrophin; DEPDCS, DEP domain containing 5; KEGG, Kyoto Encyclopedia of Genes and Genomes; cAMP, cyclic adenosine
monophosphate; cGMP, cyclic guanosine monophosphate; TTC30B, tetratricopeptide repeat domain 30B.

with the selection of roosters for obtaining sperm. In ideal
world, we would have needed a larger flock of birds with
high-quality semen. Roosters produce an average of 0.25
mL of semen per ejaculation that should be assessed before
each ejaculate is frozen and after freezing. This procedure
would require significant effort and semen volume given
that low-quality samples should be rejected before freezing.
In the main flocks used in this study, roosters are normally
not tested and selected for semen quality, since they are used
for natural mating. Artificial insemination, due to its labor
intensity, can only be used on a limited scale within these
flocks.

Our associative studies of the whole genome and traits
associated with the processes of fertilizing ability of cryop-
reserved rooster sperm after freezing—thawing provide im-
portant information for understanding the genetic basis of
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sperm fertility. Further studies of polymorphic variants of
candidate genes are necessary to develop a strategy for se-
lecting high-quality biological material that retains fertility
after freezing—thawing. This is especially important for pre-
serving valuable genetic resources [141-147].

In the present study, we have focused on seeking the
relevant candidate genes in the chicken genome that is iden-
tical in all cells. Our research objective did not include gene
expression analysis in the sperm (in this case, there may be
differences between the studied DNA sources, i.e., blood
and semen). Because of that, it was not necessary to use
spermatozoa for DNA extraction. Therefore, our associa-
tion studies of the entire genome and traits associated with
fertilizing ability of cryopreserved rooster sperm are piv-
otal for providing important information for understanding
the genetic factors of, and potent markers for, sperm fertil-
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ity and related impairments [19,148—151]. However, if one
additionally aims to study expression of genes in spermato-
z0a, this approach could provide further information in this
regard.

In addition, further research of polymorphic variants
of candidate genes are necessary to develop a strategy for
selecting high-quality biological material that retains fer-
tility after freezing—thawing. This is especially important
for depositing valuable genetic resources in semen cry-
obanks. Research on how different gene variants (e.g.,
those of PDE11A [126—128]) are affected by certain stimu-
lating compounds that enhance semen quality may be use-
ful in developing sperm extenders and improving sperm’s
capacity to fertilize after freezing—thawing. The issue of
cryoadditives requires more in-depth studies on the expres-
sion of candidate genes in the sperm of birds with different
genotypes for candidate genes.

5. Conclusions

This study sought to identify genome-wide correla-
tions between characteristics associated with spermatozoa’s
capacity to fertilize following cryopreservation. We exam-
ined 96 roosters’ ejaculates, totaling 258 samples. Using a
denser 600K SNP chip, this study was an extension of our
earlier GWAS investigations [46,47]. This led to the iden-
tification of more candidate genes and a greater number of
rooster sperm cryoresistance markers, which increased the
study’s depth. Following cryopreservation, FPM, FDM,
and sperm CR induction by DNP were evaluated. We
identified 26 potential genes after 31 statistically signif-
icant/suggestive SNPs were discovered for the three pa-
rameters under study. For the FPM trait cryopreservation,
one candidate gene, ENSGALG00000029931 IncRNA, was
found; for the FDM indicator, the PHFI4 and ARIDIB
genes; and for the DNP sperm CR induction, KDELR3,
DDX17, DMD, CDKLS5, DGAT?2, ST18, FAM1504 (AL-
KALI), DIAPH2, MTMR7, NAV2, RAG2, PDE11A, IFT704
(TTC30B), AGPS, WDFYI1, DEPDCS5, TSCI1, CASZI1, and
PLEKHM? genes. The relationship between several de-
tected IncRNAs and the studied structural and functional
features of spermatozoa remains unclear.

The loci revealed in this GWAS can be used for breed-
ing work aimed at increasing the cryotolerance of rooster
sperm. The study of the candidate genes resulted from the
sperm CR enhancer application, i.e., under the influence of
DNP, is especially important since they are assumed to be
associated with the fertilizing ability of semen. Our find-
ings offer crucial data for further research and comprehen-
sion of the mechanisms underlying sperm—egg interactions,
the genetic basis and characteristics of sperm membrane in-
tegrity, and the maintenance of fertility in roosters follow-
ing the thawing of frozen sperm.
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