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Abstract

Kidney disease is a growing public health problem globally. Multiple or repeated acute injuries to the kidney due to chronic exposure to
toxicants promote the development of chronic kidney disease (CKD), an irreversible disease for which there is no current treatment. Renal
fibrosis, characterized by glomerulosclerosis and tubulointerstitial fibrosis, is a well-known pathological stage during the progression of
acute kidney injury (AKI) to CKD. Over the years, tremendous progress has been made in understanding the regulatory molecules
involved in kidney fibrosis; however, there are currently no effective therapies for treating renal fibrosis. The mechanism involved in
the transition of AKI to fibrosis and its progression to CKD involves various pathological changes, including cellular remodeling. At
the molecular level, these pathological features are mediated by changes in the expression of genes and signaling pathways that control
cellular dedifferentiation. Meanwhile, the generation of oxidative stress is a common feature of nephrotoxicants. Thus, the kidneys are
highly susceptible to oxidative stress-induced injury, and accumulating evidence suggests that oxidative stress plays a causative role in
the development of kidney disease. Oxidative stress has been shown to modulate various signaling pathways associated with AKI and
fibrogenic changes in the kidney. Accumulating evidence suggests that targeting oxidative stress through antioxidants and/or inhibitors of
reactive oxygen species (ROS)-regulated pathways holds promise for the clinical management of this disease, for which there is currently
no effective therapy. This review summarizes the research development that provides a mechanistic perspective on the role of oxidative
stress in regulating of target genes and signaling pathways associated with AKI and CKD. Additionally, recent reports highlighting the
clinical significance of targeting oxidative stress for the treatment of CKD are discussed.

Keywords: acute kidney injury (AKI); fibrosis; chronic kidney disease (CKD); oxidative stress; end-stage renal disease (ESRD); my-
ofibroblast; cell signaling

1. Introduction provides insight into (a) the role of oxidative stress in ini-
tiation of acute kidney injury (AKI) and it’s transition to
fibrotic kidney that ultimately progresses to chronic kidney
disease, (b) dysregulation of molecular signaling pathways
associated with initiation and transition of AKI to CKD, (¢)
current therapeutic approaches for the treatment of kidney
disease, and (d) promise and potential of target molecules
dysregulated by oxidative stress during development of kid-

ney disease.

Chronic kidney disease (CKD) is a growing public
health problem globally, with rising incidence and preva-
lence. In the United States alone, it is estimated that ap-
proximately 808,000 people are living with end-stage re-
nal disease (ESRD), out of which 69% on dialysis and 31%
with a kidney transplant [1]. The annual mortality of ESRD
patients approaches 9% per year, which is 10- to 20- fold
higher than that in the general population. Multiple or re-
peated acute injuries to kidney due to chronic exposure to
toxicants lead to the development of CKD, an irreversible
disease for which there is no current treatment. Renal fi-
brosis, characterized by glomerulosclerosis and tubuloint-

2. Oxidative Stress Plays a Causative Role in
AKI and Its Progression to Kidney Fibrosis
and CKD

erstitial fibrosis, is a well-known pathological stage in kid-
ney and is frequently observed in various forms of progres-
sive CKD. Over the years, tremendous progress has been
made in understanding the regulatory molecules of kidney
fibrosis, however, currently there are no effective therapies
for treatment of renal fibrosis. This review summarizes
progress made in the field of kidney disease research and

Acute kidney injury is defined as a sudden decline of
kidney function along with structural and functional dete-
rioration [2]. Kidney injury starts with inflammation and
immune cell infiltration into the injury site to resolve the
damage [3]. A characteristic feature of AKI is to increase
serum creatinine by 0.3 mg/dL within 48 hours, 1.5 fold
increase in serum creatinine levels in 7 days, or decrease

Copyright: © 2025 The Author(s). Published by IMR Press.
BY This is an open access article under the CC BY 4.0 license.

Publisher’s Note: IMR Press stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.


https://www.imrpress.com/journal/FBS
https://doi.org/10.31083/FBS38963
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-9180-8088
https://orcid.org/0000-0001-5086-3910
https://orcid.org/0000-0002-5731-6781

in urine volume to less than or equal to 0.5 mL/kg/h for
6 hours. Based on the severity of the outcomes, kidney in-
jury is classified as stages 1, 2 and 3 according to the kidney
disease: improving global outcomes (KDIGO) staging cri-
teria [4]. Acute kidney injury accounts for 10-15% of the
hospitalized patients in the general medicine wards and ex-
ceeds up to 50% of the patients in the intensive care units
[5,6]. There are several risk factors associated with the on-
set of acute kidney injury, including hypoperfusion, car-
diorenal syndrome, nephrotoxin exposure, sepsis, signifi-
cant surgery-associated fluid depletion, intrabdominal hy-
pertension, rapidly progressive glomerulonephritis, acute
interstitial nephritis and intrarenal or extrarenal obstruc-
tion [7]. AKI patients have a significantly higher risk of
developing chronic kidney disease and ESRD [8]. More-
over, AKI has systemic consequences such as encephalopa-
thy, lung injury, liver dysfunction, heart failure, intestinal
and microbiota disruptions, and bone marrow and immune
system effects [9,10]. There are various biomarkers for
tubular injury, such as, kidney injury molecule-1 (KIM-
1), interleukin-18 (IL-18), neutrophil gelatinase-associated
lipocalin ( NGAL), liver-type fatty acid-binding protein (L-
FABP), tissue inhibitor of metalloproteinase-2 (TIMP-2),
insulin-like growth factor-binding protein 7 (IGBFP-7), and
glomerular filtration (Cystatin C), which are shown to be
present and increased within 672 hours post injury [11].
Based on the severity of the injury, damages to kidney
injury might proceed to different pathophysiological out-
comes. When AKI is mild, the kidney tries to recover,
and the long-term outcome is full recovery of the nephron.
Whereas moderate to severe AKI results in a partial to sig-
nificant reduction in glomerular filtration rate (GFR) along
with the increased risk of CKD, cardiovascular disease
(CVD), and kidney cancer [10]. Management of damage
to acute kidney injury mainly relies on discontinuation of
nephrotoxic drugs, normovolemia, treatment of electrolyte
disturbance and stability of hemodynamics. However, there
is no treatment to support kidney function or reversal of the
damage to the kidney.

In animal models, kidney injury induced by ischemia
or nephrotoxins results in permanent damage to the renal
microvascular and compromised renal structure and func-
tion by activating the inflammation and fibrotic signaling
pathway and ultimately leading to the reduction in GFR
[12,13]. Kidney fibrosis is an intermediate pathological
stage during persistent AKI to CKD transition character-
ized by excessive extracellular matrix (ECM) deposition,
thereby replacing the functional parenchymal cells. Kid-
ney fibrosis is a common pathological outcome after acute
kidney injury to repair the damage [14]. Chronic kidney
disease is characterized by structural and functional dam-
age to the kidney due to the collective damage that progres-
sively arises from various conditions. Various risk factors
facilitate the progression of kidney disease, which include
acute kidney injury, genetic background, gender, ethnicity,

age, low birth weight, obesity, exposure to nephrotoxins,
and chronic conditions such as diabetes and hypertension
[15]. CKD has an estimated prevalence between 11-13%
globally and all age mortality of CKD has increased by
41.5% between 1997 and 2017 [16,17]. CKD is defined
by the reduction in the function characterized by the re-
duction in eGFR to less than 60 mL/min or the presence
of marker of kidney damage such as albuminuria hema-
turia or characterized by persistent structural abnormalities
seen in pathological laboratory or imaging test for at least
3 months [18]. Staging of the CKD is based on eGFR (G1,
G2, G3a, G3b, G4 and G5) and albuminuria (A1, A2, A3)
where G5 and A3 are considered as nephrotic and kidney
failure [19]. Various risk factors facilitate the progression
of kidney disease, which include acute kidney injury, ge-
netic background, gender, ethnicity, age, low birth weight,
obesity, exposure to nephrotoxins, and chronic conditions
such as diabetes and hypertension [15].

Kidneys are highly susceptible to oxidative stress-
induced injury [20,21] and increased levels of oxidative
stress have been implicated in the development of chronic
kidney diseases [22,23]. Environmental nephrotoxicants
(cigarette smoking, heavy metals, PAHs) are major risk fac-
tors for chronic kidney diseases. Generation of oxidative
stress is the most common property of these environmen-
tal toxicants. Inflammation caused by both exogenous and
endogenous factors is another important source for the in-
creased oxidative stress in patients with kidney diseases. In
addition to the exogenous sources of oxidative stress, the
endogenous factors or basic characteristics of renal patients
such as advanced age, diabetes and renal hypertension can
also predispose individuals to increasing levels of oxidative
stress compared with the general population. Molecular ev-
idence suggests that oxidative stress due to disturbances in
the formation and degradation of reactive oxygen species
(ROS) is involved in the common fibrotic pathway, includ-
ing renal fibrosis [24,25]. Hypoxia-inducible factor 1-alpha
(HIF-1«)-mediated hypoxia and NADPH oxidase-derived
ROS [26] have been shown to be associated with kidney fi-
brosis. Oxidative stress has also been shown to be involved
in the fibrotic process through activation of transforming
growth factor beta 1 (TGF-£1) [27,28]. Accumulating evi-
dence suggests the role of oxidative stress in kidney fibro-
sis, however, the mechanism for oxidative stress-induced
fibrosis is still poorly understood.

Oxidative stress is defined as a disturbance between
the generation of reactive species and antioxidant defenses,
thereby leading to potential damage [29]. Under nor-
mal physiological conditions ROS/reactive nitrogen species
(RNS) is produced in different physiological processes to
carry out normal cellular events. However, a supraphysio-
logical level of ROS/RNS leads to adverse effects on cel-
lular components such as lipids, protein, and DNA due to
an inadequate counteractive antioxidant defense to main-
tain the physiological balance [30]. Molecular fragments
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with one or more unpaired electrons in molecular orbitals
give rise to reactive species known as free radicals [31].
Oxygen-derived free radicals mainly account for the to-
tal free radicals in the form of ROS in living organisms.
Oxygen can react with other molecules and generate sec-
ondary ROS [32]. ROS is mainly produced in mitochondria
through escaped electrons during energy transduction via
the mitochondrial electron transport chain [33]. Reactive
nitrogen species is a molecule with one unpaired electron
and is therefore considered a free radical [34]. RNS has var-
ious physiological roles, such as regulating blood pressure,
neurotransmission, defense mechanism, smooth muscle re-
laxation and immune response regulation. RNS such as NO
has a very short half-life of a few seconds, and ROS such
as hydroxyl radical has a half-life of about 10~ seconds
[34,35]. An imbalance between antioxidant and ROS/RNS
generation leads to the generation of oxidative stress. Thus,
generated oxidative stress and free radicals interact with
biomolecules and this results in structural and functional
deterioration of the biomolecules, leading to altered cellu-
lar function and structure. Antioxidants act to scavenge or
neutralize the effect of free radicals, including ROS/RNS.
Antioxidants need to be taken from external sources known
as exogenous or synthesized by the body as endogenous an-
tioxidants [36]. Antioxidants act by neutralizing the effect
of oxidants through enzymatic and non-enzymatic activi-
ties. Antioxidant enzymes such as superoxide dismutase,
catalase, and glutathione peroxidase play a crucial role in
neutralizing the effects of oxidants. Superoxide dismutase
is a primary detoxification enzyme that acts by the dismuta-
tion of superoxide anion into hydrogen peroxide and molec-
ular oxygen, reducing free radicals’ toxicity. Superoxide
dismutase requires metal ions to activate, such as iron (Fe),
zinc (Zn), copper (Cu), and Manganese [37-39]. Various
isoforms of superoxide dismutase (SOD) have been iden-
tified, namely SOD1, SOD2, and SOD3. SODI requires
Cu/Zn to activate SOD1, whereas SOD2 needs Mn for ac-
tivation. SOD3, also known as the extracellular antioxi-
dant. Catalase is a common antioxidant that neutralizes the
generation of ROS by reducing hydrogen peroxide to wa-
ter and molecular oxygen using co-factors such as iron or
manganese. Catalase is mainly located in the peroxisomes;
however, it is absent in mitochondria in mammalian cells
except in the hearts of rats [38,40]. Similarly, glutathione
peroxidase (GPx) is located in mitochondria and cytosol.
GPx mainly acts by reducing hydrogen peroxide to wa-
ter and molecular oxygen. Moreover, GPx is a protective
barrier to the lipid peroxide by converting it to respective
ethanol [38].

The following sections summarizes (a) the role of ox-
idative stress in initiation of AKI and their transition to fi-
brotic kidney that progresses ultimately to chronic kidney
disease, (b) dysregulation of molecular signaling pathways
associated with initiation and transition of AKI to CKD, (¢)
current therapeutic approaches for the treatment of kidney
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disease, and (d) promise and potential of target molecules
dysregulated by oxidative stress during development of kid-
ney disease.

2.1 Role of Oxidative Stress in Acute Kidney Injury and
Fibrosis

Oxidative stress plays a role in initiating acute kid-
ney injury by activating the pro-apoptotic pathways, even-
tually leading to cell death and releasing chemokines and
cytokines, further exacerbating the injury by recruiting the
immune cells [41]. Oxidative stress induced by cyclophos-
phamide leads to the peroxidation of lipids and oxidation of
proteins, along with a decrease in antioxidant activity evi-
denced by histological damage in kidney tissue [42]. More-
over, increased levels of oxidative stress through the induc-
tion of inflammation are evidenced by the increase in crit-
ical proinflammatory cytokines in the bacterial endotoxin
lipopolysaccharide (LPS) induced model of kidney injury
[43,44]. Moreover, mitochondria are a major cellular or-
ganelle of interest in acute kidney injury, as shown by sev-
eral studies. In human and rodent AKI, studies on the mito-
chondrial structure of proximal tubular epithelial cells sug-
gests alteration in the function and ultrastructure of mito-
chondria [45,46]. Function of the mitochondria was shown
to be altered in nephrotoxic and ischemia-reperfusion in-
juries in the kidneys due to fragmentation of the mitochon-
dria. The inhibition of mitochondrial fission in the AKI
rodent model ameliorated apoptosis, tubular epithelial cell
damage, and injury to renal tissue [47].

Increased oxidative stress from nephrotoxicants in-
cluding nicotine, arsenic, and folic acid has also been shown
to alter fibrogenic genes in kidney epithelial cells [48,49].
An increase in oxidative stress was found to be correlated
with inflammation and kidney fibrosis [50]. Oxidative
stress has been shown to promote inflammation and re-
lease of profibrotic factors, which promote the progression
of kidney fibrosis [51]. Persistent elevated levels of ROS
lead to epithelial to mesenchymal transition (EMT) in dia-
betic kidney injury. Progression to EMT is also mediated
through oxidative stress from ferroptosis and endoplasmic
reticulum stress [52]. Although various mechanisms have
been proposed for AKI induced by prooxidant chemicals
and the progression towards fibrosis, the exact role of ox-
idative stress in this disease is still not fully understood.

Kidney injury proceeds through various cellular pro-
cesses, including oxidative stress, inflammation, hypoxia,
ferroptosis, pyroptosis, necroptosis, G2/M cell cycle ar-
rest, and autophagy. Injury to the epithelial cells leads to
cytokine secretion, which activates inflammatory response
and the secretion of profibrotic cytokines [53]. Increased
oxidative stress leads to damage to the cellular component,
leading to cell cycle arrest in AKI, further leading to apopto-
sis in AKI. Oxidative stress play role in multiple pathologi-
cal states, such as inducing apoptosis by activating the phos-
phoinositide 3-kinase (PI3K)/protein kinase B (Akt) signal-
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ing pathway [54]. This necroptosis is due to decreased mi-
tochondrial respiration, which results in oxidative stress and
inflammation [55]. Moreover, the necroptosis mediated
through tumor necrosis factor alpha (TNF-«) is observed in
AKI. A prolonged increase in the ROS in the kidney results
in the activation of TGF-//small mother against decapenta-
plegic (Smad) signaling and leads to the deposition of ECM
proteins, including collagen, fibronectin, and plasminogen
activator inhibitor-1 as well as reduced expression of ECM
degradation factors [56].

2.2 Oxidative Stress-Dependent Mechanism for
Progression of AKI to CKD

Mechanism for AKI to fibrosis progression involves
various pathological changes. Tubular epithelial cells
damage resulting in loss of tubules, cellular plasticity of
EMT or partial EMT contributing to the origin of fibrob-
last, production of fibrogenic cytokines, activation and
proliferation of myofibroblast and overproduction as well
as accumulation of extracellular matrix (ECM) are some
of the important biological changes associated with fi-
brogenic process. These pathological features of fibro-
sis are mediated at molecular level by events contribut-
ing to origin and activation of fibroblast through changes
in expression of genes controlling cellular differentiation
by EMT, mesothelial-to-mesenchymal transition (MMT),
endothelial-to-mesenchymal transition (EndMT), activa-
tion of fibrogenic genes and developmental signaling path-
ways (TGF-S, wingless integration site (Wnt), Notch,
Hedgehog), aberrant expression of ECM regulating genes
(inactivation of matrix metalloproteinases (MMPs), activa-
tion of TIMPs). Some of the examples for the role of ox-
idative stress in various signaling pathways associated with
AKI and its progression to CKD are summarized in Table 1
(Ref. [57-87]) and described below.

2.3 Oxidative Stress Modulates Signaling Pathways
Associated With Acute Kidney Injury (AKI)
2.3.1 Oxidative Stress and JAK/STAT Signaling in Kidney
Injury

Activation of immune response Janus tyrosine kinase
(JAK) and signal transducer and activator of transcription
(STAT) signaling play pivotal roles in acute kidney in-
jury. STAT acts through cytokine-mediated cell mobility,
survival, differentiation, and apoptosis [88]. In AKI in-
duced by Ischemia-reperfusion (I/R), the injury was shown
to activate JAK/STAT signaling pathways. Increased lev-
els of ROS in I/R injury result in the phosphorylation of the
STAT3 and the activation of the JAK/STAT pathway, which
occurs via cytokine production in I/R injury [89]. More-
over, activation of the JAK/STAT pathway in the unilateral
ureteral obstruction (UUO) model of kidney injury is ev-
idenced by the activation of STAT1 and STAT3. It leads
to the macrophage polarization towards the M1 and M2
phenotype in kidney injury. Empirical evidence suggests

that the activation of the JAK-STAT pathway induces apop-
tosis during AKI in toxicant-induced injury or Ischemia-
reperfusion injury [90]. Moreover, activation of the JAK-
STAT pathway is regulated by the suppressor of cytokine
signaling-3 (SOCS-3) [91]. SOCS-3 enhancement is medi-
ated by cyclic adenosine monophosphate (Epac-1) and Ras-
related protein-1 (Rap-1) [92].

Oxidative stress plays a significant role in the pro-
gression of acute kidney injury through activation of the
JAK/STAT pathway and the initiation of inflammation in
I/R injury. Antioxidants have been shown to have reno-
protective effects by scavenging ROS. For example, Ellagic
acid is a naturally occurring polyphenol compound found
in many fruits and vegetables and has antioxidant property.
Ellagic acid has been shown to have reno-protective effect
by reducing oxidative stress, inflammation, and apoptosis
in renal tissue. At the molecular level, the reduced level of
NOX4, which is known to be the driver of oxidative stress
and triggers the JAK/STAT pathway, results in the reduced
phosphorylation of JAK1, JAK2, and STAT1 and reduced
damage to the renal tissue [93]. Furthermore, inhibition
of JAK?2 by selective inhibitor AG490 protects endothelial
cells and tubular cells from oxidative stress and reduces the
expression of inflammatory cytokines in cisplatin-induced
kidney injury [94]. ROS generation occurs through the
activation of JAK/STAT and the mitogen-activated pro-
tein kinase (MAPK) pathways, which leads to damage in
DNA and proteins and promotes the mitochondrial apop-
totic pathway induced by chlorpyrifos in hepatic cells [95].

2.3.2 Oxidative Stress and Nrf-2 Signaling in Kidney
Injury

Nuclear factor E2-related factor 2 (Nrf2) is mostly
present in the cytoplasm under normal conditions. Nrf-2
is a transcription factor that is involved in platelet and ery-
throid development. Nrf-2 is involved in the resistance to
oxidative stress and induction of drug-metabolizing path-
way [96]. When there is an increased level of oxidative
stress, Nrf-2 complexed with Kelch-like epichlorohydrin-
associated protein 1 (KEAP1) escapes from proteasomal
degradation and translocate to the nucleus and induce the
expression of heme-oxygenase 1 (HO-1). HO-1 is a phase
IT antioxidant enzyme induced by stress and acts as an
anti-inflammatory, antioxidant, antithrombotic, and anti-
inflammatory. HO-1 has been shown to protect oxidative
stress-induced endothelial cell injury through antioxidant
activity [97,98]. Induction of the Nrf-2/HO-1 signaling
pathway was shown to be induced in the AKI mice model
induced by toxicant or I/R injury through the induced ROS
to protect from oxidative stress-induced damage [92,99].

Nrf-2 is a natural antioxidant defense for renal tubules.
Oxidative stress-induced prolonged activation of Glycogen
synthase kinase (GSK) 33 inhibits nuclear accumulation of
Nrf-2 and thereby its diminished antioxidant activity result-
ing in progression of acute kidney injury to the chronic kid-
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Table 1. Signaling pathways dysregulated by oxidative stress in kidney disease.

Signaling pathway Altered proteins Effect of oxidative stress Models of kidney injury Reference
TGF-B/Smad Increased Nox-4 and p-Smad-3 Smad-3 activation of NOX-4 Streptozotocin (STZ) induced diabetic kidney injury models; [62,63]
expression Ischeamia repurfusion injury (IRI) models in C57BL/6
TGF-B/Smad Increased expression of Smad-2/Smad-3 Increased collagen deposition Male long Evan rats with nephrectomy injected with FCA and a [64]
1% salt (NaCl) solution to induce hypertension
TGF-B/Smad Increased expression of p-Smad Activation of Smad-3 signaling Male C57BL/6 mice as UUO and Folic acid induced kidney [65]
Increased Nox4 expression, a-SMA, Fibronectin and collagen injury model
TGF-B/Smad Increased expression of p53 and smad3 Binding of pS3 and Smad3 UUO model of kidney fibrosis and HK-2 human proximal tubular [66]
Increased PAI and fibronectin expression epithelial cells treated with TGF-£1
TGF-B/Smad Increased expression of NUAK 1 Induce YAP and Smad signaling and promoting expression of ~ Wild-type C57BL/6 mice of folic acid and UUO model of kidney [67]
fibrogenic genes fibrosis; normal rat kidney interstitial fibroblasts (NRK49F)
TGF-3/Smad Decreased expression of KP1 Increased fibrotic lesion Male BALB/c mice UIRI or UUO model; Normal rat kidney [68]
Increased expression of Smad2/3 and Increased fibronectin, collagen I and a-SMA expression interstitial fibroblasts (NRK-49F) and human proximal tubular
p-Smad2/3 epithelial cells (HKC-8) after 24 h of TGF-31 treatment
TGF-B/Smad Increased ratio of p-Smad2/3 to Smad2/3  Increased expression of slug, Vimentin, CTGF and a-SMA UUO model of kidney injury in Male swiss albino mice [69]
TGF-B/Smad Decreased expression of Smad7 Increased activation of TGF-41/Smad signaling C56BL/6 male mice injected with aristolochic acid (AA) i.p. [70]
Increased deposition of collagen injections at 5 mg/kg body weight
Decreased Nrf2 expression
Notch signaling Increased expression of Notch1 Activation of Notch/Hes-1 signaling Sprague-Dawley rats injected with Gentamicin (GM) i.p. at [71]
and HES1 Increased expression of cleaved caspase 3 100 mg/kg body weight
Decreased HO-1 expression
Notch signaling Increased expression of Notch1, Jagged-1 Activation of Notch/Jagged pathway Male Sprague—Dawley rats were fed a mixture of adenine (0.1 [72]

Nrf-2 signaling

Increased TGF-8 R1, collagen I and a-SMA expression

Decreased expression of Nrf-2 Decreased expression of GPx4
Morphological damage to mitochondria

Increased Renal tubular injury and ECM deposition

g/kg) and potassium oxonate (1.5 g/kg) daily for 3 weeks; Rat
renal interstitial fibroblasts (NRK-49F) were exposed to uric acid
(800 pmol/L) for 36 hrs
Diabetes was induced by injecting glucose to male C57BL/6 i.p.
injections of 50 mg/kg/day for 5 days HK-2 cells were treated with
high levels of glucose

[61]
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Table 1. Continued.

Signaling  path- Altered proteins Effect of oxidative stress Models of kidney injury Reference
way
Nrf-2 signaling Decreased expression of Nrf-2 Increased expression of fibrogenic signaling including Wnt-1, High fat diet induced nephrotoxicity in Kunming mice [73]
[B-catenin, TGF-£31, and p-Samd3
Nrf-2 signaling Decreased expression of Nrf-2 Increased Increased collagen deposition and inflammatory response STZ-induced Diabetic Nephritis in male Sprague Dawley rats [74]
expression of NF-kB, TXNIP and NLRP3 Increase in tubular injury
Nrf-2 signaling Decreased expression of Nrf-2 Increased TGF-g, collagen I, collagen IV and Bax expression STZ-induced-Diabetic Nephritis in male C57BL/6 mice [75]
Nrf-2 signaling Increased cytosolic Nrf-2, HO-1 and Increased collagen I and fibronectin production and deposition UUO models of kidney injury in C57BL/6 mice [76]
NF-kB-p65 expression
Decreased expression of nuclear Nrf-2,
SOD?2 and catalase protein
Nrf-2 signaling Decreased Nrf-2 protein translocation  Induced fibrogenic signaling including TGF-/ mediated pathway UUO models of kidney injury in Female Wistar rats [77]
and activity Increased ratio of Bax/Bcl-2 and caspase 3 and PARP expression
JAK/STAT signal- Increased JAK2, STAT3 and Nox4 Increased collagen deposition and tubulointerestitial fibrosis Hypertensive renal injury model in Male Sprague—Dawley rats [78]
ing protein expression development
JAK/STAT signal-  Decreased expression of suppressor of Increased Renal damage and mesangial cell expansion Diabetes induced by STZ injection in ApoE knockout mice and WT [79]
ing cytokine signaling (SOCS1), activation C57BL/6J male mice; Mouse mesangial cells and Mouse kidney
of STAT1/3 proximal tubular epithelial cells
JAK/STAT signal- Increased expression of p-JAK2, Increased expression of TGF-81, Collagen-I, Bax and fibronectin Male inbred Sprague-Dawley (SD) rats fed with [57]
ing p-STAT3 and SOCSI proteins high-glucose-high-fat diet and injected with STZ solution; HK-2 cell
JAK/STAT Increased NOX4 expression Increased collagen deposition Diabetes induced by STZ in ApoE deficient mice [80]
signaling Increase oxidative DNA damage in glomerular and
tubulointerstitial region
JAK/STAT signal-  Increased JAK-2, STAT1 and STAT3 Increase in KIM1 release Human renal PTEC cells exposed to glycated albumin (AGE-BSA) [81]
ing mRNA expression and high glucose
Whnt/B-catenin Increase in B-catenin, Wnt4 and TGF-3 Decreased expression of E-Cadherin, Smad7 and PPAR~y Male Wister rats were exposed to cyclosporine A (CsA) via [58]
Signaling Increased tubular necrosis and protenacious casts gastric gavage
Increase in TGF-£1, caspase3 and p-Smad3 expression
Wnt/3-catenin Increased B-Catenin, Nox2, Wntl, Wnt2, Increased active B-catenin, Fibronectin, Snaill and a-SMA Male C57BL/6 mice were induced podocyte injury by injecting iv [59]
Signaling Wnt 7a and Wnt 9a injection of advanced oxidation protein product (AOPP)
Wnt/3-catenin Increased Wnt 3a and B-catenin Apoptotic cell death, endoplasmic reticulum stress and UUO model at the Male Sprague Dawley rats; HK-2 cell [60]
Signaling expression mitochondrial damage
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Table 1. Continued.

Signaling pathway Altered proteins Effect of oxidative stress Models of kidney injury Reference
MAPK Signaling Increased p-p38, p-ERK expression Activation of Smad3 Male C57BL/6 mice as UUO and Folic acid induced model [65]
Increased Nox4 expression, Alpha-SMA, Fibronectin and
collagen
MAPK Signaling Increased p-ERK1/2, p-p38 and Increased fibrotic lesion Male BALB/c mice UIRI or UUO model; Normal rat kidney [68]
p-JINK expression Increased fibronectin, collagen I and a-SMA expression interstitial fibroblasts (NRK-49F) and human proximal tubular
epithelial cells (HKC-8) after 24 h of TGF-31 treatment
Nrf-2 signaling Increased p-JNK, p-p38 and p-ERK  Increased TGF-S, collagen I, collagen IV and Bax expression STZ-induced-Diabetic Nephritis in male C57BL/6 mice [75]
expression
MAPK and NF-xB Increased expression of p38 Decreased expression of HO-1 and Nrf-2 STZ induced Diabetic mice in male adult Sprague-Dawley (SD) rats [82]
signaling Increased a-SMA and pSmad2/3
MAPK Signaling Increase in MAPK, ERK and p38 Increased expression of fibronectin, «-SMA, and MMP-2 Male ICR mice injected with methylglyoxal-derived [83]
mRNA level hydroimidazolone-1 (MG-H1); HK-2 cell
MAPK Signaling Increase in p-ERK1/2, p-PKCa and Increased NOX4, Fibronectin and a-SMA expression UUO model in Male BALB/c mice; 5/6 nephrectomy (5/6NX) in male ~ [84]
p-p38 expression Increase in PCNA, CyclinD1 STAT3 and p-STAT3 expression CD1 mice; HK-2 cell; NRK-49F cells
MAPK Signaling and Increase in p-ERK1/2, p-38 and Increase in NOX4 and HO-1 expression UUO model of kidney fibrosis in C57BL/6J mice [85]
NF-«B signaling MAPK Increase in BAX, cleaved caspase3, TGF-81, CTGF and
a-SMA expression
MAPK Signaling Increase in p38 and MAPK Increase Smad3 and fibronectin expression DN model in Sprague Dawley rats induced by STZ [86]
expression Decreased Smad7 expression
MAPK Signaling Increase in p-ERK, ERK, p-p38 and TGF-$1 activation and ECM deposition UUO model of Renal fibrosis in Male C57BL/6 mice; HK-2 and [87]
JNK expression NIH-3T3

TGF-p, transforming growth factor-g3; Nox-4, nicotinamide adenine dinucleotide phosphate oxidase 4; Smad, suppressor of mother against decapentaplegic; C57BL/6, C57 black 6 strain of mice; p53, tumor
protein 53; i.p., intraperitoneal; BALB/c mice, Bagg Albino/c strain of mice; UUO, unilateral ureteral obstruction; YAP, Yes-associated protein; NUAK1, NUAK family kinase 1; a-SMA, alpha-smooth muscle
actin; EMT, epithelial to mesenchymal transition; HO-1, heme-oxygenase 1; GPx4, glutathione peroxidase 4; Nrf-2, nuclear factor erythroid 2-related factor 2; ECM, excessive extracellular matrix; NF-xB,
nuclear factor kappa-light-chain-enhancer of activated B cells; MAPK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; JNK, c-JUN N-terminal kinases; STAT3, signal transducer
and activator of transcription; JAK, anus tyrosine kinase. UIRI, unilateral renal ischemia-reperfusion injury; CTGF, connective tissue growth factor; TXNIP, thioredoxin-interacting protein; NLRP3, nucleotide-
binding leucine-rich repeat receptor family pyrin domain containing 3; SOD2, superoxide dismutase 2; ICR, institute of cancer research; PCNA, proliferating cell nuclear antigen; Bax, BCL2 associated X;

CTGF, connective tissue growth factor.
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ney disease [100]. Cisplatin can induce kidney injury by in-
creasing the levels of ROS, and in this model the diminished
Nrf-2 level corresponds to the decreased levels of HO-1,
Catalase, GPx, and SOD [101].

2.3.3 Oxidative Stress and NF-xB Signaling in Kidney
Injury

Nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NF-xB) is an inflammatory signal that is ac-
tivated after induced inflammation. Renal injury leads to
the activation of inflammatory response by secreting proin-
flammatory cytokines such as IL-6 and TNF-« through the
activation of NF-xB response [102]. AKI regulates NF-<B
signaling through cAMP-responsive element binding pro-
tein 5 (CREBS) by forkhead box Q1 (FOXQI1) mediated
mechanism [103]. Moreover, in radiation-induced AKI,
the NF-xB signaling pathway activation occurs through the
programmed cell death protein 4 (PDCD4)-mediated up-
regulated FGR proto-oncogene, Src family tyrosine kinase
(FGR) expression [104]. Activation of the NF-xB signaling
pathway leads to macrophage infiltration in kidneys of the
UUO model of kidney injury. In this model, the antioxidant
curcumin has been shown to reduce the kidney injury by
decreasing the activated NF-xB, thereby further suggesting
the role of oxidative stress in activation of NF-xB during
kidney injury [105]. The activation of immune cells occurs
through co-activation of NF-xB and STAT3, resulting in in-
creased expression of inflammatory cytokines such as IL-6,
TNF-q, and COX-2 by CCl4 treatment in mice [106]. Re-
duced activation of Nrf2/ARE activity enhances the activa-
tion of the NF-xB pathway. NF-xB/p65 antagonizes Nrf2-
ARE pathway through decreased binding of CREB binding
protein (CBP) and initiates recruitment of HDACS3, thus re-
ducing the expression of the antioxidant gene [107]. In folic
acid (FA)-induced AKI, an increase in NF-<B and p53 ex-
pression correlates with inflammation and oxidative dam-
age, as well as the reduced antioxidant response [108]. The
selective inhibition of NF-xB by PDTC reduces expression
of p53 and improves renal function, suggesting interaction
between NF-xB and p53 in renal damage and initiation of
apoptosis [108].

2.3.4 Oxidative Stress and MAPK/ERK Signaling in
Kidney Injury

Persistent kidney injury leads to the activation
of MAPK/extracellular signal-regulated kinase (ERK)
through the autophagy-mediated mechanism. This leads to
the induction of transcription factor early growth response
1 (EGRI1). Thus, induced EGR1 binds to the promoter of
fibroblast growth factor 2 (FGF-2) [102]. Additionally, ac-
tivation of the MAPK pathway through the released ATP
from the Pannexin 1 channel ultimately leads to the activa-
tion of ferroptosis. Activation of MAPK/ERK signaling re-
sults in the downregulated expression of heme oxygenase in
AKI[109]. Activation of the ERK/MAPK pathway resulted

in COX-2 synthesis, ultimately leading to increased inflam-
mation in LPS-induced AKI [110]. In cisplatin-induced
AKI, ERK plays a crucial role in inflammation and apopto-
sis, shown by an increased level of phosphorylated ERK1/2
and an increase in the p53 and Bax expression along with
the caspase-3 activation [111]. In LPS-induced kidney in-
jury, oxidative stress plays a crucial role in the pathogenesis
of renal damage. Increased levels of ROS were shown to
induce the activation of p38 MAPK-induced vascular cell
adhesion molecule-1 (VCAM-1) in Human renal mesangial
cells [112]. The expression of inflammatory genes is initi-
ated by ROS-induced activation of MAPK, which subse-
quently activates NF-xB signaling. This activation results
in NF-xB’s translocation into the nucleus, which binds to
the p50/p65 complex and attaches to the promoters of in-
flammatory genes [113].

2.3.5 Oxidative Stress and PTEN Signaling in Kidney
Injury

In nephrotoxic AKI, ischeamia repurfusion injury
(IRI) or hypoxia reperfusion AKI, phosphatase and tensin
homolog (PTEN) is shown to have protective activity dur-
ing the initiation of injury. Decreased expression of PTEN
promotes the process of apoptosis in AKI and results in the
exacerbation of kidney damage [114]. Other reports high-
lighted that the induction of miR-687 through the hypoxia-
inducible factor 1 (HIF-1) takes place in AKI. Thus, in-
duced miR-687 represses the expression of PTEN, which is
shown to activate cell proliferation and differentiation dur-
ing AKI. Since the cells that are actively growing are more
prone to damage and apoptosis. Thus, reduced expression
of PTEN indirectly plays a role in apoptosis in AKI [115].
Increased levels of oxidative stress could activate PTEN in
cardiac cells and have been shown to downregulate the ex-
pression of PI3K/Akt pathway, resulting in apoptosis [116].
Similarly, in cisplatin-induced acute kidney injury, down-
regulation of PI3K/AKT/mTOR is seen. This downregula-
tion of the pathway results in inflammation and apoptosis
during kidney injury [117].

2.3.6 Oxidative Stress and RAAS Signaling in Kidney
Injury

Renin-Angiotensin-Aldosterone System (RAAS) is a
hormone system that plays a vital role in regulating blood
pressure, fluid volume, and electrolyte balance [118]. How-
ever, the overactivation of RAAS signaling and increased
levels of the components of RAAS contribute to kidney dis-
ease including kidney fibrosis through multiple ways. For
example, upregulation of Ang II through angiotensin II re-
ceptor type 1 (AT1R), activates fibrogenic TGF-{ signaling
pathways [119]. Ang II and aldosterone promotes synthe-
sis and deposition of fibrogenic extracellular matrix such
as collagen [120]. The activation of RAAS also causes pro-
gression of renal fibrosis through activation of proinflam-
matory response and EMT [121]. RAAS-mediated activa-
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tion of inflammation further causes increased ROS produc-
tion and consequently further renal damage [121]. Several
studies including clinical trials has shown that RAAS in-
hibitors have renoprotective effect in diabetic nephropathy
[122,123]. In sepsis-induced kidney injury, vasodilation
leads to hypotension, which results in the activation of the
RAAS enzyme. Thus, activated RAAS further leads to acti-
vating inflammatory cytokines, exacerbating kidney injury
[124]. Proinflammatory cytokines, namely TNF-a and IL-
6 produced through Ang II mediation, led to the inflamma-
tory response, further exacerbating the renal damage [125].

2.4 Oxidative Stress Modulates Signaling Pathways
Associated With Kidney Fibrosis

2.4.1 Oxidative Stress and TGF-8/Smad Signaling in
Kidney Fibrosis

TGF-£1/Smad signaling pathway is one of the key
pathways during the development and progression of kid-
ney fibrosis. There are 3 ligands of TGF-$ which includes
TGF-S1, TGF-32, and TGF-/33, which have comparable
activity, including cell death, differentiation, and prolifer-
ation. Binding of TGF-£ to the receptor of TGF-3 (com-
monly TGF-SR2) and signal transduction occurs by recruit-
ment and phosphorylation of the TGF-gR1. This further
phosphorylates Smad2 and Smad3 and forms complexes
with the Smad4. This complex then translocates to the nu-
cleus and promotes the expression of downstream fibro-
genic genes [126]. Smad2 has protective effects, whereas
Smad3 is pathogenic during kidney fibrosis development.
Smad?7 is also known to be the inhibitor of the TGF-J sig-
naling pathway, which acts by ubiquitination of TGF-3 R1
through the recruitment of E3 ligases SMURF1, SMURF2,
NEDD4-2, or WWPI1. During kidney fibrosis, loss of the
inhibitory Smad (Smad7) leads to the dysregulation of the
Smad signaling pathway [127]. The secreted phosphopro-
tein 1 (Sppl) is crucial in activating the TGF-/3/Smad sig-
naling pathway, which results in the differentiation of the
fibroblast to myofibroblast [128]. On the other hand, bone
morphogenetic proteins (BMP), a group of cytokines, have
a crucial role in embryonic development and maintenance.
BMP-3, a protein known to have antifibrotic properties, in-
teracts with TGF-/3, leading to modulation of fibroblast re-
sponse to Smad3 phosphorylation and inhibits the develop-
ment of fibrosis. Loss of BMP-3 is commonly observed in
fibrotic disease [129].

Increased oxidative stress plays a crucial role in the
induction of TGF-$, which results in the onset of renal
disease [130]. In renal tubular epithelial cells, treatment
with the TGF-51 was shown to induce ROS production
and induced the process of EMT. Activation of Smad2 by
phosphorylation takes place through the ROS, evidenced by
the reversal of TGF-£1-induced phosphorylation of Smad2
by antioxidants [131]. Activation of Smad2 takes place
through the induction of ERK activity. Thus, induced ERK
also binds to the collagen promoter region and aids the
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production of ECM in renal mesangial cells [132]. The
endothelial-to-mesenchymal transition (EndMT) induced
by H2O5 through activation of Smad3 involving TGF-31
activated activin receptor-like kinase 5 (ALKS) results in
the expression of fibrotic marker. It diminishes the expres-
sion of endothelial markers [133].

Moreover, TGF-31 also induces the differentiation of
cardiac fibroblast to myofibroblast. This process is driven
by the upregulated expression of NOX4, which facilitates
the production of ROS and the expression of alpha-smooth
muscle actin (@-SMA). Nox4 elicits prolonged phospho-
rylation and activation of Smad 2/3 [134]. In the kidneys
of diabetic mice, a reduction in the cytoplasmic antioxi-
dant NAD(P)H quinone oxidoreductase 1 (NQO1) was ob-
served, accompanied by an increase in proinflammatory cy-
tokines and collagen deposition. Overexpression of NQO1
through an adeno-associated virus led to decreased ROS
levels, reduced ECM deposition, and inhibition of TGF-
B/Smad signaling, resulting in an improved fibrotic out-
come in the diabetic mouse kidney. This suggests that ele-
vated ROS levels and fibrosis in diabetic mice kidneys are
driven by activation of the TGF-3/Smad pathway [135].

2.4.2 Oxidative Stress and JAK/STAT Signaling in Kidney
Fibrosis

The Janus tyrosine kinase (JAK)-STAT signaling
Pathway is crucial for cellular function, including tissue
repair, hematopoiesis, immune function, inflammatory re-
sponse, and apoptosis [46]. JAK2/STAT3 activation oc-
curs through the binding of the TGF-51 and PDGFR-0.
TGF mediates the activation of JAK-2 leading to phospho-
rylation of STAT3 and translocation into the nucleus [136].
Activation of JAK-2 regulated pathway in human diabetic
nephropathy was observed and this process leads to the de-
velopment of glomerulosclerosis, fibrosis ultimately lead-
ing to renal failure. However, a similar kind of JAK-2-
mediated response was not observed in the mice model of
diabetic nephropathy, resulting in less severe tubulointer-
stitial fibrosis [137]. Activating the JAK/STAT pathway
through angiotensin II promotes the expression of extracel-
lular matrix components such as TGF-{, collagen-IV and
fibronectin and promotes the development of renal fibrosis
[137]. The activation of STAT3 plays a role in the pres-
ence of TGF-$ in the UUO model of kidney fibrosis. Ac-
tive STAT3 is shown to significantly increase in interstitial
cells. Presumably myofibroblasts play a role in the produc-
tion of ECM [138]. Inhibition of the STAT3 using specific
inhibitor S31-201 resulted in inhibiting fibronectin and a-
SMA expression, implying the inhibition of myofibroblast
proliferation. Moreover, this inhibition of STAT3 results in
the deposition of ECM and the recruitment of proinflamma-
tory cytokines in the UUO model of kidney fibrosis, imply-
ing that STAT3 plays a role in kidney fibrosis by recruiting
inflammatory response and activation of fibroblast [139].
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An increased level of intracellular ROS is shown to
activate the JAK/STAT pathway through phosphorylation
[57,140]. Thus, phosphorylated and activated JAK/STAT
translocate to the nucleus, resulting in activation of proin-
flammatory factors such as intercellular adhesion molecule
1 (ICAM-1) and IL-6 along with the pro-fibrotic genes [57].
In diabetic kidney disease, STAT1 activation was observed,
and the expression of the Forkhead box O1 (FoxO1) was
decreased. Overexpression of FoxO1 results in less fibrosis
development and inhibits tubular cells through the antioxi-
dant activity of FoxO1 [141].

2.4.3 Oxidative Stress and Wnt/3-Catenin Signaling in
Kidney Fibrosis

Wnt/[3-catenin is an evolutionary pathway that takes
part in organ development and repair. It is a canonical
pathway that, under normal conditions, remains in inac-
tive states. This inactive state of Wnt signaling is main-
tained by phosphorylating 3-catenin by APC-Axin-GSK-
33 complex, ultimately leading to the degradation of -
catenin. During AKI progressing toward fibrotic condi-
tion, Wnt binds to the cellular surface receptor, disrupting
the phosphorylation and degradation of 5-catenin. This re-
sults in the accumulation of the S-catenin in the cytoplasm,
which eventually passes into the nucleus. [S-catenin inter-
acts with the transcription factor T cell factor/lymphoid en-
hancer factor (TCF/LEF), eventually leading to increased
expression of -catenin target genes such as MMP-7 [142].
MMP-7 acts as a surrogate marker of kidney injury and is
involved in the pathogenesis of kidney fibrosis by activating
the [3-catenin signaling pathways. The pathogenic media-
tion of the MMP-7 is due to promoting EMT and compro-
mising integrity by altering the adherence receptor [142].
Indirect regulation of 3-catenin activity and stability by NF-
xB 1in kidney fibrosis takes place by promoting the degra-
dation of -catenin. Translocation of S-catenin enhanced
by inhibitor of nuclear factor kappa-B kinase subunit al-
pha (IKKc«) further enhances the expression of fibrosis-
associated genes such as fibronectin and fibronectin, -
SMA, and cyclin D1 [143]. Moreover, the activation of the
Whnt/f-catenin leads to the activation of fibroblast to myofi-
broblast, proliferation, and differentiation of myofibroblast
through the TGF-3/Smad dependent pathway leading to fi-
brosis [130]. The binding of the 8-catenin and p65 to the
fibronectin promoter, along with the decreased expression,
results in the activation of fibronectin [144]. Activation
of the Wnt/(-catenin leads to the increased expression of
genes in the Renin-angiotensin system (RAS), which pro-
motes the initiation and progression of kidney fibrosis in
Glycogen storage disease type la (GSD-Ia) mice [145].

Elevated levels of oxidative stress drive the activa-
tion of the Wnt/$-catenin signaling pathway. This is
demonstrated by improved renal injury, oxidative stress,
inflammation reduction and restoration of (3-catenin and
Wnt-4 expression following geraniol treatment in cy-
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closporin A-induced renal injury model [58]. Activation
of the [-catenin signaling occurs through the induction
of RAAS, which results in the oxidative, inflammatory,
and fibrosis-associated pathways accompanied by oxida-
tive stress [146]. In advanced oxidation protein prod-
ucts (AOPPs)-induced kidney injury it results in the Nox
(NADPH oxidase) induced generation of ROS. Thus, the
ROS induces NF-xB and downstream targets such as
Wnt/3-Catenin, resulting in podocyte injury. This results in
the subsequent phenotype alteration by expressing desmin,
fibronectin, MMP9, Snaill, and proteinuria [59]. Activa-
tion of Wnt3a/f-catenin further triggers ROS production
and promotes chronic inflammation [60].

2.4.4 Oxidative Stress and Notch Signaling in Kidney
Fibrosis

Notch signaling is a conserved pathway mainly in-
volved in cell-cell communication for various functions, in-
cluding cell fate decision, cell lineage specification, and sta-
bilization. At the cellular level, there are four Notch recep-
tors, namely Notchl, Notch2, Notch3, and Notch4 [139].
Notch receptors have several ligands, such as Jaggedl
(Jagl), Jagged2 (Jag2), Delta-like 1 (DIl 1), Delta-like 3
(DIl 3) and Delta-like 4 (DIl 4). Notch signaling has a
vital role in the development of the kidney and mutation
in the notch receptor leads to developmental abnormalities
in the kidney [147]. The notch signaling pathway is in-
volved in renal fibrosis, evidenced by increased expression
of Notchl associated with tubulointerstitial fibrosis in hu-
man renal biopsies and the decreased estimated GFR. The
expression of Notch2 was observed to have an inverse re-
lationship with the level of tubulointerstitial fibrosis, sug-
gesting Notchl and Notch2 have distinct roles in disease
progression [148]. Additionally, Notch3 seems to have a
role in the progression of renal fibrosis, which is evidenced
by the knockout of Notch3 shown to have protective effects
on fibrosis development with the smaller number of alpha
SMA staining cells. Notch3 promotes fibrosis through the
recruitment of the inflammatory cells [149].

An increased level of ROS activates Nrf2, which fur-
thers the Notch signaling pathway for the proliferation of
the airway epithelium [9]. Upregulating Notchl mediated
oxidative stress and inflammatory response generation in
uric acid treated in human umbilical vein endothelial cells
(HUVEQC) [150]. Moreover, in HUVEC cells, Notch sig-
naling was associated with the H,O-induced oxidative
damage, and inhibition of the Notch signaling pathway was
shown to be protective by manifesting improved cell viabil-
ity and reduced apoptotic marker [151]. Conversely, other
reports highlight the antioxidant role of Notch1 through in-
teraction with Nrf2. The emodin, known to cause nephro-
toxicity, induced oxidative stress and ferroptosis by down-
regulating the activity of Notch1/Nrf2/glutathione peroxi-
dase 4 (GPX4) [152]. Activation of Notch signaling re-
sults in the generation of oxidative stress and progres-
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sion toward pulmonary fibrosis, suggesting a crucial role
of oxidative stress and Notch signaling in pulmonary fi-
brosis [139,153]. Oxidative stress-induced activation of
Notchl/ADAM?7 through ~y-secretase and TGF-§ activa-
tion leads to uterine fibrosis in mice exposed to polystyrene
microplastics (PS-MP). Inhibition of the TLR4/NOX2 re-
sults in reduced ROS and consequential outcome of fibro-
sis through the inhibition of Notch1 and TGF-/ activation
[154].

2.4.5 Oxidative Stress and MAPK Signaling in Kidney
Fibrosis

MAPK signaling pathway consists of a group of
serine-threonine proteins, which include MAPK, extracel-
lular signal-regulated kinase, and c-JUN N-terminal ki-
nases (JNK). MAPK signaling is involved in response to
cellular stress by extracellular stimuli, neurotransmitters,
and cytokines, resulting in cell proliferation, differentia-
tion, metastasis, and apoptosis. MAPK signaling pathway
is shown to be activated in both acute kidney injury and
chronic kidney disease. It works alongside the TGF-(1; ac-
tivation of MAPK occurs in the presence of TGF-31 while
activated MAPK further promotes expression of TGF-/1
in different kidney cells during the development of kidney
fibrosis [155]. TGF-induced activation of p38 MAPK in-
duces EMT, promoting ECM deposition by inhibiting the
degradation of ECM. Inhibition of the TGF-31/p38 MAPK
pathway by its selective inhibition with SB203580 has been
shown to reduce the level of fibrosis [156]. Activation of
p38 MAPK regulates the expression of PDZK1 through in-
creased mitochondrial ROS, resulting in EMT and renal fi-
brosis. Inhibiting p38 MAPK or PI3K/AKT restored the
expression and subsequently alleviated the progression of
kidney fibrosis in the UUO or Adenine-induced kidney in-
jury model [157].

Previous reports suggest that ROS and particularly the
mitochondrial ROS regulate TGF-3/MAPK signaling dur-
ing kidney disease development. For example, ROS pro-
duction induced by NOX4 activation and mediated by TGF-
(1 results in the activation of the p38/MAPK pathway caus-
ingmitochondrial damage. This further leads to the acti-
vation of mitophagy and consequently the EMT and fibro-
genic process [ 158]. In liver fibrosis, the activation of hep-
atocyte stem cells is shown to be activated by ROS through
a p38-mediated mechanism [159]. Accumulation of mito-
chondrial ROS results in the activation of the MAPK signal-
ing pathway, which contributes to inflammation and fibro-
sis in idiopathic pulmonary fibrosis. This process is gov-
erned by the translocation of activated p38 MPAK to the
nucleus and regulates the expression of genes involved in
inflammation, cell proliferation, and ECM [160]. Inhibi-
tion of Nox1/4 has been shown to be reno-protective by
inhibiting oxidative stress and activation of ERK1/2 and
MAPK in diabetic renal injury [161]. Taken together, these
reports suggest that ROS play a critical role in activation
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of TGF-S/MAPK signaling during myofibroblast activation
and proliferation in kidney fibrosis as well as its progression
to CKD.

2.4.6 Oxidative Stress and Sonic Hedgehog Pathway in
Kidney Fibrosis

The Sonic hedgehog signaling pathway (Shh) is in-
volved during organ development. Shh is a morphogen se-
creted extracellularly. During development of the kidney,
Shh plays a regulatory role in cell cycle regulation and tis-
sue patterning [162]. In a normal kidney, Shh remains inac-
tive and has base-level expression in the kidney. Zhou et al.
[163] show that the expression of Shh is induced in differ-
ent animal models, including UUO, IRI, adriamycin (ADR)
nephropathy, 5/6 nephrectomy, and human CKD samples.
Moreover, the induced expression of Shh promotes intersti-
tial fibroblast proliferation and transition to myofibroblast.
This, in turn, results in the development of fibrosis. Inter-
estingly, the inhibition of Shh controls the proliferation of
fibroblasts and alleviates kidney fibrosis [163].

Oxidative stress-induced injury has been shown to
play a crucial role in the increased expression of SHH pro-
tein without mRNA expression alteration. This secretion of
SHH from the injured cell is a reparative response to oxida-
tive damage and TGF-/S—induced remodeling in idiopathic
lung disease [164]. A recent report by Kim ef al. [165]
demonstrated that hyperglycemia-induced Shh and TGF-/3
pathway activation leads to the fibrogenic phenotype in re-
nal proximal tubular epithelial cell line.

3. Oxidative Stress-Dependent Programmed
Cell Death as Emerging Mechanism for AKI
and CKD

In addition to apoptosis, additional programmed cell
death processes such as necroptosis and ferroptosis have
also emerged as mechanisms for oxidative stress-induced
various forms of kidney disease including AKI and CKD
[166]. Mitochondrial ROS (mtROS) can induce necroptosis
through autophosphorylation of receptor-interacting serine-
threonine kinase 1 (RIPK1) which is required for other fac-
tors to form necrosome for necroptosis [167]. Necropto-
sis has been shown to be involved in the animal model of
AKI [168]. Free radicals can also react with cellular lipid
components resulting in oxidized form of lipids a process
known as “lipid peroxidation”. Iron-dependent lipid per-
oxidation is one of the known mechanisms for ferroptosis.
Role of mitochondria in ferroptosis has also been reported
[169]. There are conflicting reports on the role of ferrop-
tosis in kidney disease. For example, Martin-Sanchez et
al. [170] demonstrated that ferroptosis, but not necroptosis,
is the major cause of cell death in folic acid-induced AKI.
However, a rat I/R kidney injury model revealed that miR-
182-5p and miR-378a-3p could bind GPX4 and SLC7A11
mRNAs to inhibit their expression, which in turn activated
ferroptosis to reduce I/R kidney injury suggesting a pro-
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tective effect of ferroptosis in AKI [171]. Mitochondria-
specific autophagy or mitophagy is an autophagic response
that selectively targets impaired, permeabilized, and dys-
functional mitochondria thereby eliminating their harmful
effects in the cell such as inflammation. Damaged or dys-
functional mitochondria has been shown to cause oxida-
tive stress associated with various forms of kidney diseases.
Mitophagy mediated recycling of damaged mitochondrial
components thereby is considered as a cytoprotective pro-
cess in AKI and CKD [172]. Contrary to these protective
effects of mitophagy in kidney disease, another study sug-
gests that excessive mitophagy can actually cause kidney
disease. For example, dynamin-related protein 1 (Drpl)-
dependent induction of mitophagy has been shown to be
associated with renal I/R injury [173].

These reports suggest that cellular context-dependent
and mitochondria-dependent multiple mechanisms exist for
programmed cell death during AKI and its progression to
other forms of kidney disease.

4. Current and Emerging (Clinical Trials)
Therapeutic Approaches for Kidney Disease

In a clinical trial Empagliflozin, a known sodium glu-
cose cotransporter 2 (SGLT?2) inhibitor, has shown promise
in reducing the progression of kidney disease [174]. An-
other SGLT2 inhibitor, Dapagliflozin, has also demon-
strated effective results in clinical trials, indicating a re-
duced risk of developing chronic kidney disease and death
from renal failure, regardless of the presence of diabetes
[175]. Similarly, canagliflozin has been associated with
a reduced risk of kidney failure in patients with diabetic
kidney disease [176]. Reno-protective effects of SGLT2
inhibitors are thought to be mediated by their ability to
reduce renal oxidative stress and ROS signaling associ-
ated with kidney disease [177,178]. Additionally, the di-
abetes drug semaglutide acts as a GLP-1 receptor ago-
nist and has been shown to have protective effects on kid-
ney function in patients with both kidney disease and di-
abetes [179]. Its renoprotective effects are primarily at-
tributed to its capacity to reduce inflammation, oxidative
stress, and fibrosis [180,181]. Renoprotective effect of the
nonsteroidal selective mineralocorticoid receptor antago-
nist Finerenone was evaluated in patients with advanced
CKD and type 2 diabetes. It showed a reduction in the
progression of chronic kidney disease and improved cardio-
vascular outcomes [182]. On the other hand, the endothe-
lin and angiotensin antagonist, Sparsentan, has been shown
to have protective effects on the kidneys by reducing pro-
teinuria and preserving kidney function in patients with I[gA
nephropathy [183].

In addition to the above-mentioned clinical trials with
drugs for kidney disease, several other Food and Drug Ad-
ministration (FDA)-approved drugs for diabetes have also
shown promising results in inhibiting or slowing the pro-
gression of kidney disease in animal models. For example,
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linagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor and
FDA-approved glucose-lowering drug for type 2 diabetes,
have shown reno-protective effects in rodent models of both
non-diabetic as well as diabetic kidney disease [184]. Em-
pagliflozin, a SGLT2 inhibitor, significantly reduced kid-
ney fibrosis by inhibition of EMT in diabetic mice model
[185]. Similarly, the renoprotective effects of inhibitors
of angiotensin-converting enzyme (ACEi), angiotensin re-
ceptor blocker (ARB), and Mineralocorticoid Receptor An-
tagonists (MRASs) have also been shown in animal models
[186]. Although these therapeutics have shown promising
results in slowing the progression of kidney disease, as of
now there is no drugs available to cure kidney fibrosis and
CKD.

5. Clinical Relevance of Targeting Oxidative
Stress to Prevent Progression of Kidney
Disease

Considering the significant causative role of oxida-
tive stress in AKI and its progression to CKD, numerous
clinically relevant therapeutic strategies targeting oxidative
stress have been developed for the treatment of this disease.
The aims of these antioxidant-based therapies are to either
reduce the levels of ROS and its adverse effects in kidney
or enhance the levels of antioxidants that can help in slow-
ing the progression of kidney damage to CKD by mitigat-
ing oxidative stress. For example, N-acetyl cysteine has
been shown to protect against diabetic nephropathy by al-
leviating mitochondrial damage and ferroptosis through the
activation of the SIRT3-SOD2-Gpx4 signaling pathway in
beagle dogs with diabetic nephropathy induced via strep-
tozotocin (STZ) [187]. N-acetylcysteine has demonstrated
protective effects against kidney injury during AKI caused
by contrast-induced nephrotoxicity, emphasizing the role
of oxidative stress in renal damage [188]. Metformin is
an oral antihyperglycemic drug that targets mitochondria
and inhibits complex I [189]. Metformin was shown to
prevent the progression of chronic kidney disease in an
adenine-enriched diet model of chronic kidney disease in
rats [190]. The SGLT2 inhibitor empagliflozin has been
shown to alleviate diabetic nephropathy by restoring the ex-
pression of peroxiredoxin 3 (Prdx3) and reducing the lev-
els of ROS and mitochondrial ROS in a diabetic (db/db)
mouse model [191]. Empagliflozin restores SIRT3 levels,
thereby inhibiting kidney fibrosis through the prevention of
EMT [185]. Atorvastatin is a cholesterol-lowering drug that
inhibits 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-
CoA) reductase. It has been shown to protect against kid-
ney fibrosis in both diabetic and hypertensive rat models of
renal injury. This protective effect is attributed to its abil-
ity to reduce oxidative stress and inflammation [61,192].
Resveratrol is a naturally occurring flavonoid recognized
for its ability to scavenge reactive oxygen species (ROS).
Research has demonstrated that it protects against the pro-
gression from AKI to CKD by reducing tubular damage,
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restoring oxidative balance, repairing mitochondrial dam-
age, and modulating profibrotic signaling during ischemia-
reperfusion injury [193]. Green tea polyphenol epigallo-
catechin gallate (EGCG), known for its antioxidant activ-
ity, has been shown to restore fibrogenic changes in kidney
epithelial cells [194]. Similarly, EGCG exhibits a renopro-
tective effect on diabetic nephropathy by inhibiting ROS-
induced TGF-B upregulation and preventing apoptosis in
STZ-induced diabetic rats [195]. Autophosphorylation of
apoptosis signal-regulating kinase 1 (ASK1) triggered by
ROS leads to inflammatory response in diabetic kidney dis-
ease (DKD) [196]. ASKI inhibitors, GS-444217 and GS-
4997 have been shown to have a renoprotective effect in
several in vivo animal models of kidney disease and are cur-
rently in clinical trials for treatment of DKD [197].

6. Conclusion and Future Direction

As mentioned above, over the years, tremendous
progress has been made in understanding the molecular reg-
ulators of kidney fibrosis. However, currently there are no
effective therapies for treatment of renal fibrosis, a com-
monly observed pathological stage during CKD develop-
ment. Accumulating evidence suggests the role of oxidative
stress in regulation of genes and signaling pathways associ-
ated with CKD. However, further research is needed to elu-
cidate the precise mechanism underlying oxidative stress-
induced kidney fibrosis and CKD. Recent reports suggest
that several profibrotic genes and pathways are altered in
kidney fibrosis through epigenetic dysregulation. There-
fore, future research on identifications of epigenetic mod-
ifications and the target genes affected by those modifica-
tions can further explain the molecular basis for fibroblast
activation and kidney fibrosis and CKD. As there are no
effective therapeutics for the cure of kidney fibrosis and
CKD, identification of oxidative stress-triggered and epi-
genetically regulated target molecules associated with CKD
will be of tremendous significance in clinical management
of this disease.
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