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Abstract

Background: Hydatidosis, caused by Echinococcus granulosus, is a neglected zoonotic disease with significant public health implica-
tions in endemic regions, such as in Cusco, Peru. Genetic factors influencing susceptibility to infection and responses to albendazole, the
primary treatment, remain unclear. Thus, this study aimed to investigates genetic polymorphisms associated with hydatidosis suscepti-
bility and albendazole metabolism in the Cusco region. Methods: Hence, a cross-sectional study was conducted using 20 individuals
from endemic areas. Peripheral blood samples were collected for genomic DNA extraction, followed by single-nucleotide polymorphism
(SNP) genotyping using the Illumina Global Screening Array. Polymorphisms in genes related to immunity (interleukin 10 (/L70), inter-
leukin 17A (IL17A4), vitamin D receptor (VDR), interferon gamma (/FNG), forkhead box P3 (FOXP3), interleukin 4 (/L4), tumor necrosis
factor (TNF), toll-like receptor 4 (TLR4), cytotoxic T-lymphocyte antigen 4 (CTLA4), mannose-binding lectin 2 (MBL?2), interleukin 12B
(IL12B), and transforming growth factor-beta 1 (TGFB1)) and drug metabolism genes (cytochrome P450 family 3 subfamily A member 4
(CYP3A44), cytochrome P450 family 2 subfamily B member 6 (CYP2B6), cytochrome P450 family 1 subfamily A member 2 (CYP1A42),
ATP-binding cassette subfamily B member 1 (4BCB1), solute carrier organic anion transporter family member 1B1 (SLCOIBI), and
cytochrome P450 family 2 subfamily E member 1 (CYP2EI)) were analyzed. Results: High-frequency alleles were identified in six
SNPs associated with susceptibility to Echinococcus granulosus: IL10 rs1800896 (77.5%), IL17A4 1s2275913 (97.5%), IFNG 152779249
(92.5%), FOXP3 1511568821 (97.5%), TGFBI 151800469 (80.0%), and VDR 1s2228570 (87.5%). Likewise, elevated allele frequen-
cies were observed for two SNPs potentially involved in albendazole metabolism: CYP3A44 rs2740574 (87.5%) and CYP2B6 152266780
(97.5%). A comparative analysis with other populations revealed significant differences in SNP frequencies in the Cusco population, both
in SNPs related to susceptibility (/L174 1s2275913, VDR 1rs2228570, and TGFBI rs1800469; p < 0.001) and pharmacogenetic-related
SNPs (CYP2B6 152266782, SLCO1B1 rs4149056, and CYP2E1 1s8330; p < 0.05), suggesting the existence of unique local genetic pat-
terns. Conclusion: These findings underscore the importance of pharmacogenetic screening to optimize albendazole therapy and support
precision medical approaches for hydatidosis management in endemic regions. Further studies with larger cohorts are required to confirm
these associations.
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1. Introduction bendazole, the primary pharmacological treatment, demon-
strates variable efficacy across individuals, which has been
linked to genetic factors influencing drug metabolism and
immune response [5]. Studies have highlighted the role
of genetic predisposition in both susceptibility to infection
and response to pharmacological therapy [6]. Genome-
wide association studies (GWAS) have identified several
candidate genes involved in immune modulation and drug
metabolism, providing insights into inter-individual differ-
ences in disease susceptibility and treatment efficacy [7].

Hydatidosis is a zoonotic parasitic disease caused by
Echinococcus granulosus, a cestode that leads to the forma-
tion of hydatid cysts in various organs, primarily the liver
and lungs [1]. This disease presents a significant public
health burden, particularly in regions where livestock farm-
ing and close human-animal interactions facilitate its trans-
mission [2]. Endemic areas, such as Cusco, Peru, continue
to report high infection rates due to environmental, socioe-
conomic, and cultural factors that sustain the parasite’s life

cycle [3].

Despite advances in diagnosis and treatment, hydati-
dosis remains a major cause of morbidity, often requir-
ing complex medical or surgical interventions [4]. Al-

This genetic susceptibility may influence the host’s re-
sponse to infection, determining the severity of the clinical
presentation and the effectiveness of treatment in hydatido-
sis. Among the genes implicated in modulating the immune
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response to this disease are interleukin 10 (IL10), IL17A4, tu-
mor necrosis factor (TNF), toll-like receptor 4 (TLR4), cy-
totoxic T-lymphocyte antigen 4 (CTLA4), mannose-binding
lectin 2 (MBL2), vitamin D receptor (VDR), interferon
gamma (IFNG), Forkhead box P3 (FOXP3), and transform-
ing growth factor-beta 1 (TGFBI), all of which are involved
in inflammatory pathways and immune tolerance mecha-
nisms [8—11].

Pharmacogenetics has emerged as a crucial field
in understanding how genetic variations influence drug
metabolism, efficacy, and toxicity [12]. Enzymes such
as cytochrome P450 family 3 subfamily A member 4
(CYP3A4) and CYP2CI19 are essential to albendazole
metabolism, influencing its bioavailability and therapeu-
tic impact [13]. Genetic polymorphisms in these enzymes
have been associated with altered drug response, poten-
tially leading to treatment failure or adverse effects [14].
Likewise, polymorphisms associated with the metabolism
of albendazole, the main drug used in the treatment of hy-
datidosis, have been reported. Genes such as CYP344,
CYP1A42, CYP2B6, CYP2El, ATP-binding cassette sub-
family B member 1 (4BCB]I), and solute carrier organic an-
ion transporter family member 1B1 (SLCO1B1) have been
linked to the bioavailability, therapeutic efficacy, and tox-
icity profile of albendazole [13,15]. By investigating the
pharmacogenetic profile of individuals receiving albenda-
zole, this study aims to contribute to the optimization of
treatment regimens, minimizing variability and improving
clinical outcomes [16].

The prevalence of genetic variations that may be
linked to albendazole metabolism and hydatidosis suscep-
tibility in people from endemic areas in Cusco, Peru, is
examined in this exploratory investigation. The goal of
the study is to find biologically significant variations that
might merit more research in subsequent association stud-
ies, even though no phenotypic or clinical outcome data
were gathered. Through single nucleotide polymorphism
(SNP) genotyping using the [llumina Global Screening Ar-
ray, we aim to identify genetic markers that may influence
both disease susceptibility and therapeutic response [17].
This research has implications for the development of per-
sonalized medicine strategies, which could lead to more ef-
fective disease management in endemic populations.

2. Materials and methods
2.1 Study Design and Population

This study employed a cross-sectional design to inves-
tigate the prevalence of genetic susceptibility to hydatido-
sis and pharmacogenetic response to albendazole. Partici-
pants were recruited from three endemic localities in Cusco,
Peru, with a study population of 20 individuals selected
from regional healthcare centers and the local community.
Participants were between the ages of 18 and 60, lived in
Cusco’s endemic districts, and gave written informed con-
sent. Exclusion criteria included current or prior antipar-

asitic treatment, chronic infections (e.g., HIV or tubercu-
losis), autoimmune diseases, or refusal to provide a blood
sample.

2.2 Sample Collection and DNA Extraction

Peripheral blood samples (3 mL) were collected in
ethylenediaminetetraacetic acid (EDTA) tubes and stored at
—80 °C until processing. Genomic DNA was extracted us-
ing the PureLink Genomic DNA Mini Kit (K182001, Invit-
rogen, Carlsbad, CA, USA), following the manufacturer’s
protocols. DNA purity and concentration were evaluated
using a NanoDrop Lite spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA), and DNA integrity was
assessed by agarose gel electrophoresis.

2.3 Genotyping and SNP Selection

Genome-wide SNP genotyping was performed us-
ing the Illumina Global Screening Array (GSA) (Illu-
mina Inc., San Diego, CA, USA), which includes phar-
macogenetically relevant and disease-associated polymor-
phisms. SNPs selected for analysis focused on genes in-
volved in immune regulation, inflammation, pathogen de-
fense, and immune tolerance (IL10, IL4, IL17A, TNF,
TLR4, CTLA4, VDR, TGFBI1, MBL2, IFNG, FOXP3 and
IL12B) and drug metabolism (CYP344, CYPIA2, CYP2B6,
ABCBI1, SLCOIBI and CYP2EI). This study also presents
a comparative analysis of risk allele frequencies among the
Cusco population and other populations, including Peru,
Colombia, Mexico, and global data. Allele frequency in-
formation for external populations was obtained from the
1000 Genomes Project and the Ensembl Genome Browser
(GRCh37/hg19 release). Data analysis was conducted us-
ing whole-genome association analysis toolset (PLINK)
v1.9 (Center for Human Genetic Research, Massachusetts
General Hospital, Boston, MA, USA). Standard QC lim-
its were met by all individual samples, with call rates over
98% and no heterozygosity outliers found. Concordance
rates could not be determined since duplicate genotyping
was not carried out due to the small sample size. There
were no differences in the distribution of genotypes by sex.
Less than 2% of SNPs were eliminated because of poor call
rates, and none were eliminated because of deviation from
Hardy-Weinberg Equilibrium (p < 0.05). These exclusions
had little bearing on the study of the target polymorphisms.

2.4 Statistical Analysis

For genotypic and allelic frequencies, 95% confidence
intervals were calculated. Data analysis was carried out us-
ing Stata 15 program (StataCorp. 2016. Stata Statistical
Software: Release 15. College Station, TX, USA).

3. Results

The allele frequency analysis of genetic variants
related to hydatidosis susceptibility and albendazole
metabolism in the Cusco population (Table 1) showed that
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Table 1. Allele frequencies of gene polymorphisms associated with susceptibility to hydatidosis and albendazole metabolism in a

Cusco population.

Gene SNP Position Substituted aminoacid Allele frequency (95% CI)
Susceptibility IL10 rs1800896  —1082 A/G - 0.775 (0.645-0.904)
rs1800871 -819 T/C - 0.275 (0.136-0.413)
rs1800872 —592 A/C - 0.275 (0.136-0.413)
1.4 12243250 -590 C/T - 0.375 (0.224-0.525)
IL174 rs2275913 -197 G/A - 0.975 (0.926-1.023)
TNF rs1800629 -308 G/A - 0.025 (0.023-0.073)
TLR4 rs4986790 +896 A/G D299G 0.000
rs4986791  +1196 C/T T3991 0.000
CTLA4 rs231775 +49 A/G T17A 0.250 (0.115-0.384)
MBL?2 rs1800450 +230 G/A G54D 0.375 (0.224-0.525)
rs1800451 +239 A/G G57E 0.000
rs5030737 +221 C/G R52C 0.000
VDR 12228570 +2 C/T MII 0.875 (0.772-0.977)
rs731236 +352 T/C - 0.100 (0.007-0.192)
rs1544410 intron 8 - 0.100 (0.007-0.192)
rs7975232 intron 8 - 0.250 (0.115-0.384)
IFNG rs2779249  -1616 T/C - 0.925 (0.843-1.006)
FOXP3 rs11568821 —3279 A/C - 0.975 (0.926-1.023)
TGFBI1 rs1800469 -509 C/T - 0.800 (0.676-0.923)
IL12B rs3212227  +1188 A/C - 0.475 (0.320-0.629)
Pharmacogenetic CYP344 rs2740574 392 A>G - 0.875 (0.772-0.977)
rs2242480 298 G>A - 0.400 (0.248-0.551)
CYPIA2 rs762551 -163 C>A - 0.225 (0.095-0.354)
CYP2B6 1rs2266780 516 G>T Q172H 0.975 (0.926-1.023)
1s2266782 785 A>G K262R 0.100 (0.007-0.192)
ABCBI1 rs1045642  3435C>T - 0.325 (0.179-0.470)
rs1128503 1236 C>T - 0.425 (0.271-0.578)
rs2032582 2677 G>A A893T 0.325 (0.179-0.470)
SLCOIBI  rs4149056 521 T>C V174A 0.325 (0.179-0.470)
CYP2EI rs8330 -333 T>C - 0.100 (0.007-0.192)

ABCBI, ATP-binding cassette subfamily B member 1; CTLA4, cytotoxic T-lymphocyte antigen 4; FOXP3, forkhead box
P3; IFNG, interferon gamma; /L]0, interleukin 10; MBL2, mannose-binding lectin 2; SLCOIBI, solute carrier organic

anion transporter family member 1B1; SNP, single nucleotide polymorphism; 7GFBI, transforming growth factor-beta 1;
TLRA4, toll-like receptor 4; TNF, tumor necrosis factor; VDR, vitamin D receptor; CYPI1A42, cytochrome P450 family 1
subfamily A member 2; CYP3A44, cytochrome P450 family 3 subfamily A member 4; CYP2B6, cytochrome P450 family 2

subfamily B member 6; CYP2E 1, cytochrome P450 family 2 subfamily E member 1.

the IL10 151800896 (—1082 A/G) polymorphism had a G al-
lele frequency of 0.775 (95% CI: 0.645-0.904), while the
IL17A4 12275913 (=197 G/A) polymorphism exhibited an
A allele frequency of 0.975 (0.926-1.023). Other poly-
morphisms evaluated included VDR rs2228570 (M11 C/T),
which presented a T allele frequency of 0.875 (95% CI.
0.772-0.977), and IFNG rs2779249 (-1616 T/C), where the
C allele was observed at a frequency of 0.925 (95% CI:
0.843-1.006). Additionally, FOXP3 rs11568821 (-3279
A/C) showed a high C allele frequency of 0.975 (95% CI:
0.926-1.023), and TGFBI rs1800469 (-509 C/T) exhib-
ited a T allele frequency of 0.800 (95% CI: 0.676—0.923).
The CYP2B6 152266780 (Q172H G>T) polymorphism ex-
hibited a T allele frequency of 0.975 (95% CI: 0.926—
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1.023), while the CYP344 1s2740574 (-392 A>G) poly-
morphism showed a G allele frequency of 0.875 (95% CI:
0.772—0.977); both polymorphisms are involved in drug
metabolism.

The genotypic distribution of the studied polymor-
phisms is summarized in Table 2. The most frequently
observed heterozygous genotype was CYP3A44 rs2242480,
with a GA frequency of 0.600 (95% CI: 0.360-0.799).
This was followed by MBL2 rs1800450, IL12B rs3212227
and ABCBI 151045642, each with genotype frequencies
of 0.550 (95% CI: 0.317-0.762) for the GA, AC, and
CT genotypes, respectively. Non-heterozygous genotypes
was observed in TLR4 (rs4986790, rs4986791) and MBL2
(rs1800451, rs5030737). In terms of non-wild type homoz-
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Table 2. Frequencies of immune-related and pharmacogenetic gene polymorphisms associated with susceptibility to hydatidosis and albendazole metabolism in a Cusco population.

Gene SNP Position Wild-type frequency (proportion, 95% CI)  Heterozygote frequency (proportion, 95% CI)  Homozygote frequency (proportion, 95% CI)

o)

2,

(i

4

Susceptibility IL10 rs1800896 1082 A/G AA:0.050 (0.005-0.322) AG: 0.350 (0.164-0.595) GG: 0.600 (0.360-0.799)
151800871 819 T/C TT: 0.600 (0.360-0.799) TC: 0.250 (0.099-0.502) CC:0.150 (0.043-0.403)
rs1800872 -592 A/C AA: 0.600 (0.360-0.799) AC: 0.250 (0.099-0.502) CC:0.150 (0.043-0.403)

L4 1s2243250 -590 C/T CC: 0.400 (0.200-0.639) CT: 0.450 (0.237-0.682) TT: 0.150 (0.043-0.403)
IL174 1s2275913 -197 G/A GG: 0.000 GA: 0.050 (0.005-0.322) AA:0.950 (0.677-0.994)
TNF rs1800629 -308 G/A AA:0.950 (0.677-0.994) GA: 0.050 (0.005-0.322) GG: 0.000
TLR4 rs4986790 +896 A/G AA:1.000 AG: 0.000 GG: 0.000
rs4986791  +1196 C/T CC: 0.000 CT: 0.000 TT: 1.000
CTLA4 1s231775 +49 A/G AA:0.550(0.317-0.762) AG: 0.400 (0.200-0.639) GG: 0.050 (0.005-0.322)
MBL2 rs1800450 +230 G/A GG: 0.350 (0.164-0.595) GA: 0.550 (0.317-0.762) AA:0.100 (0.001-0.230)
151800451 +239 A/G GG: 1.000 GA: 0.000 AA: 0.000
1rs5030737 +221 C/G GG: 1.000 GA: 0.000 AA: 0.000
VDR 1s2228570 +2C/T CC: 0.000 CT: 0.250 (0.099-0.502) TT: 0.750 (0.497-0.900)
1s731236 +352 T/C TT: 0.800 (0.546-0.930) TC: 0.200 (0.069-0.453) CC: 0.000
rs1544410 intron 8 TT: 0.800 (0.546-0.930) TC: 0.200 (0.069-0.453) CC: 0.000
1s7975232 intron 8 TT: 0.650 (0.404-0.835) TC: 0.200 (0.069-0.453) TT: 0.150 (0.043-0.403)
IFNG 152779249  -1616 T/C TT: 0.000 TC: 0.150 (0.043-0.403) CC: 0.850 (0.596-0.956)
FOXP3 rs11568821 3279 A/C AA:0.000 AC: 0.050 (0.005-0.322) CC:0.950 (0.677-0.994)
TGFBI rs1800469 -509 C/T CC: 0.000 CT: 0.400 (0.200-0.639) TT: 0.600 (0.360-0.799)
ILI2B 1s3212227  +1188 A/C AA:0.250 (0.099-0.502) AC: 0.550(0.317-0.762) CC:0.200 (0.069-0.453)

Pharmacogenetic =~ CYP344 rs2740574 392 A>G AA:0.050(0.005-0.322) AG: 0.150 (0.043-0.403) GG: 0.800 (0.546-0.930)

1s2242480 298 G>A GG: 0.300 (0.130-0.549) GA: 0.600 (0.360-0.799) AA:0.100 (0.001-0.230)
CYPIA2 18762551 -163 C>A CC: 0.550 (0.317-0.762) CA: 0.450 (0.237-0.682) AA:0.000

CYP2B6 1s2266780 516 G>T GG: 0.000 GT: 0.050 (0.005-0.322) TT: 0.950 (0.677-0.994)
1s2266782 785 A>G AA:0.800 (0.546-0.930) AG: 0.200 (0.069-0.453) GG: 0.000

ABCBI rs1045642  3435C>T CC: 0.400 (0.200-0.639) CT: 0.550 (0.317-0.762) TT: 0.050 (0.005-0.322)

rs1128503 1236 C>T CC: 0.350 (0.164-0.595) CT: 0.450 (0.237-0.682) TT: 0.200 (0.069-0.453)

1s2032582 2677 G>A GG: 0.500 (0.276-0.723) GT: 0.350 (0.164-0.595) TT: 0.150 (0.043-0.403)

SLCOIBI  rs4149056 521 T>C TT: 0.450 (0.237-0.682) TC: 0.450 (0.237-0.682) CC: 0.100 (0.001-0.230)
CYP2E] rs8330 -333T>C TT: 0.800 (0.546-0.930) TC: 0.200 (0.069-0.453) CC: 0.000
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ygous genotypes, TLR4 154986791 had all TT fre-
quency (100%), followed by IL17A4 rs2275913, FOXP3
rs11568821 and CYP2B6 rs2266780, each with genotype
frequencies of 0.950 (95% CI: 0.677-0.994) for the AA,
CC, and TT genotypes, respectively.

Table 3 presents a comparative analysis of risk allele
frequencies between the Cusco population and other popu-
lations, including Peru, Colombia, Mexico, and global data
from the 1000 Genomes Project. The TGFBI rs1800469 T
allele frequency in Cusco (80.0%) was notably higher than
in Peru (57.06%), Colombia (43.62%), Mexico (39.84%)
and global population (36.80%) (p < 0.001). The VDR
rs2228570 T allele frequency in Cusco (87.5%) was con-
siderably higher than the reported frequencies for Peru
(69.41%), Colombia (40.96%), Mexico (48.44%), and the
global population (32.85%) (p < 0.001). In contrast, the
IL17A4 152275913 G allele frequency in Cusco (2.5%) was
the lowest among all populations analyzed (p < 0.001),
highlighting a potential distinctive immune-related genetic
profile in this high-altitude population. In case of impact
drug metabolism, CYP2B6 152266782 G allele frequency
in Cusco (90.0%) was slightly upper than the reported fre-
quencies for Peru (70.00%), Colombia (71.81%), and Mex-
ico (67.19%) and global population (65.22%) (p = 0.003).
The SLCOIBI (1s4149056) and CYP2E! (rs8330) allele
frequency varied among these populations (p = 0.001 and p
=0.041 respectively).

4. Discussion

This study provides crucial insights into the genetic
basis of hydatidosis susceptibility and the pharmacogenet-
ics of albendazole treatment. The identification of high-
prevalence SNPs in IL10, IL17A, VDR, IFNG, FOXP3, and
TGFBI highlights the role of immune and metabolic path-
ways in infection outcomes. Similar to findings in other
parasitic diseases, /L0 polymorphisms influence immune
suppression and parasite persistence, while /L17A4 variants
impact inflammatory responses and resistance to infection
[18,19]. Studies from different regions confirm the role
of VDR polymorphisms in modulating macrophage activ-
ity and parasite clearance, while /FNG variants have been
linked to immune activation and disease severity [20,21].

Additionally, the regulatory functions of FOXP3 and
TGFBI are essential in determining immune tolerance and
inflammation during E. granulosus infection. Polymor-
phisms in FOXP3 affect Treg cell activity, influencing sus-
ceptibility and disease progression, with similar findings re-
ported in Turkish and Indian populations [22,23]. TGFBI
polymorphisms, associated with immune suppression and
tissue remodeling, parallel observations in schistosomiasis
and leishmaniasis, reinforcing the cytokine’s role in modu-
lating helminthic infections [24,25]. These findings empha-
size the genetic complexity of hydatidosis and align with
global studies, supporting the need for personalized treat-
ment approaches.
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For example, because IL17A is involved in neutrophil
recruitment and pro-inflammatory responses to parasites
[26], the low frequency of the /L17A4 rs2275913 A vari-
ant in Cusco (2.5%) may suggest a unique immunological
profile. Similarly, immunological suppression and chronic
infection may be encouraged by the high frequency of the
TGFB1 151800469 T allele, which is associated with higher
TGFBI1 expression. Changes in macrophage activity have
been linked to the common VDR 1rs2228570 T allele [27].
Despite the lack of clinical data, these results point to
population-specific genetic patterns that need more func-
tional research.

Analysis revealed that high-prevalence SNPs in
CYP344 and CYP2B6 could affect albendazole treatment
outcomes. By altering enzyme activity, genetic variations
in CYP3A4, specifically CYP3A4*1B (rs2740574), may
have an impact on albendazole metabolism [28,29]. To
keep things focused, only the variants examined in our
dataset are discussed, even if other variants have been de-
scribed. These results offer a preliminary understanding of
the population’s baseline pharmacogenetic profiles, which
need further functional and clinical verification. These
findings highlight the need for pharmacogenetically guided
dosing to improve albendazole treatment outcomes and
minimize adverse effects.

Polymorphisms in CYP2B6, such as CYP2B66
(rs3745274) and CYP2B69 (rs28399499), affect albenda-
zole metabolism, potentially altering its therapeutic effi-
cacy in hydatidosis [30,31]. Studies on other antiparasitic
drugs suggest that CYP2B6 variants contribute to interindi-
vidual variability in drug clearance, reinforcing the need for
pharmacogenetic screening to optimize albendazole dosing
and enhance treatment response [32,33]. Further research
is needed to establish personalized dosing strategies based
on CYP3A44 and CYP2B6 genetic profiles, ensuring better
therapeutic outcomes and reduced toxicity in hydatidosis
patients.

The genetic variability observed in the Cusco pop-
ulation compared to other Latin American populations
highlights differences in immune regulation and drug
metabolism. The higher TGFBI rs1800469 T allele fre-
quency may influence inflammatory responses, while vari-
ations in VDR 152228570 could affect immune function
and disease susceptibility [34,35]. These findings empha-
size the importance of population-specific genetic stud-
ies to understand disease risk and treatment outcomes [36,
37]. Regarding pharmacogenetics, the elevated CYP2B6
152266782 G allele frequency suggests potential differ-
ences in drug metabolism, impacting albendazole efficacy
and other treatments [38,39]. Variability in SLCOIBI
(rs4149056) and CYP2E1 (rs8330) further highlights the
need for pharmacogenetic screening to optimize drug dos-
ing and minimize adverse effects in this population [40,41].

The variability observed in treatment responses high-
light the necessity for personalized medicine approaches


https://www.imrpress.com

Table 3. Comparison of hydatidosis risk alleles and pharmacogenetically relevant SNPs for albendazole metabolism in the

studied peruvian population and various human populations (percent).

. Population .
Gene SNPs Risk allele All populations  p value*
Cusco Peru  Colombia Mexico

Susceptibility IL10 rs1800896 G 22.50 24.71 32.98 32.03 27.22 0.737
rs1800871 T 27.50  37.06 29.79 42.19 43.47 0.131
rs1800872 A 27.50  37.06 29.79 42.19 43.49 0.131
L4 rs2243250 T 37.50 4824 35.64 44.53 46.98 0.404
IL174 rs2275913 G 2.50 11.76 26.06 24.22 29.27 0.000
TNF rs1800629 A 2.50 5.88 6.91 5.47 9.03 0.281
TLR4 rs4986790 G 0 0.59 5.32 3.13 5.99 0.183
rs4986791 T 0 0 6.38 3.13 4.07 0.578
CTLA4 rs231775 G 75.00 62.94 44.68 42.97 42.73 0.001
VDR 1s2228570 T 87.50 69.41 40.96 48.44 32.85 0.000
rs731236 C 10.00 11.76 25.53 20.31 27.66 0.026
rs1544410 G 90.00  87.65 75.00 80.47 70.41 0.016
1s7975232 C 75.00 78.24 49.47 59.38 48.46 0.007
TGFBI rs1800469 T 80.00 57.06 43.62 39.84 36.80 0.000
IL12B rs3212227 C 47.50  45.88 24.47 39.84 35.90 0.286
Pharmacogenetic =~ CYP344 152740574 G 12.50 3.53 10.11 7.03 23.08 0.242
1s2242480 A 60.00  57.65 28.72 39.06 42.17 0.082
CYPIA2 1s762551 A 77.50  86.47 73.40 73.44 62.98 0.147
CYP2B6 152266780 T 97.50 94.12 91.49 91.41 90.85 0.281
1s2266782 G 90.00  70.00 71.81 67.19 65.22 0.003
ABCBI rs1045642 T 32.50  37.65 44.15 47.66 39.52 0.526
rs1128503 T 42.50 32.94 42.55 46.88 41.61 1.000
rs2032582 A 32.50 2941 41.49 40.63 3343 1.000
SLCOIBI 154149056 C 32,50 14.12 18.09 7.81 8.77 0.001
CYP2EI rs8330 C 90.00 78.24 78.19 79.69 74.50 0.041

* Chi square test for Cusco vs All population.

in endemic populations. By integrating pharmacoge-
netic screening into clinical practice, clinicians may op-
timize albendazole dosing and predict treatment efficacy
based on genetic profiles. Personalized medicine strate-
gies have been successfully implemented for other antipar-
asitic drugs, demonstrating improved patient outcomes and
reduced drug resistance [42,43].

The statistical power and precision of allele frequency
estimations are severely limited by the small sample size (n
= 20), despite the fact that this study offers insightful ge-
netic information about the endemic population of Cusco.
These results are quite uncertain, as evidenced by the broad
confidence intervals found, for as for /210 rs1800896 (G
allele frequency: 0.775; 95% CI: 0.645-0.904). These
restrictions hinder the capacity to establish strong genetic
connections and limit the generalizability of our findings.
Consequently, it is appropriate to consider the outcomes as
exploratory and hypothesis-generating. Additionally, gene-
environment interactions should be explored, considering
the impact of dietary, microbiome, and immune factors on
disease progression and drug metabolism [44,45].

This study offers early proof of genetic variability as-
sociated with albendazole metabolism and hydatidosis that

is specific to a group. The results are used to generate hy-
potheses, despite being based only on genotypic data with
no clinical link. In order to enable precision medicine in
endemic settings, future research should investigate multi-
omic techniques and validate these findings in larger co-
horts with phenotypic and pharmacokinetic data.

5. Conclusions

Our study concludes by offering important initial in-
sights into the genetic diversity of candidate genes that may
be connected to albendazole metabolism and hydatidosis
risk. The identification of key SNPs in IL10, IL17A, VDR,
IFNG, FOXP3, and TGFBI reinforces the role of immune
regulation in infection outcomes, with parallels observed
in other parasitic diseases. Additionally, genetic variabil-
ity in CYP3A44 and CYP2B6 highlights the potential impact
of polymorphisms on albendazole metabolism, emphasiz-
ing the need for pharmacogenetic-guided dosing strategies
to enhance therapeutic efficacy and minimize adverse ef-
fects. Differences in allele frequencies between the Cusco
population and other Latin American groups further empha-
size the importance of population-specific genetic studies to
refine treatment approaches.
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As hydatidosis remains a persistent health challenge in
endemic regions, the application of precision medicine ap-
proaches could significantly impact disease management by
enabling more effective and personalized treatment strate-
gies. Future research should focus on expanding genomic
databases, incorporating multi-ethnic populations, and ex-
ploring gene-environment interactions to refine our under-
standing of host-parasite dynamics and optimize therapeu-
tic interventions. These advancements could pave the way
for a more individualized approach to hydatidosis treat-
ment, ultimately improving patient outcomes and contribut-
ing to more efficient disease control efforts in affected re-
gions.
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