Revieu

A Review of Advances in the Surgical Treatment of Coronary Heart Disease and Lung Cancer

Yang Hong¹, Shixiong Wei¹, Mingbo Tang¹, Wei Liu^{1,*}

¹Department of Thoracic Surgery, The First Hospital of Jilin University, 130021 Changchun, Jilin, China

Submitted: 24 June 2023 Revised: 17 September 2023 Accepted: 27 September 2023 Published: 30 October 2023

Abstract

Lung cancer is currently the most prevalent and fatal malignant tumor in China. Additionally, the incidence of coronary heart disease is steadily increasing. Both diseases exhibit a higher risk of mortality with age, particularly among elderly patients. Moreover, these diseases are interconnected and share common risk factors. However, the treatment options for patients suffering from both lung cancer and coronary heart disease lack clarity and standardized criteria. This article critically examines the literature on surgical interventions for patients with lung cancer complicated by coronary artery disease during the period from January 2021 to December 2022. It summarizes the safety and effectiveness of these interventions and highlights the various surgical options available for different patient profiles.

Keywords

coronary heart disease; lung cancer; surgical treatment

Introduction to CABG, PCI, and Lung Cancer Resection

According to the data in the 2019 China Health Statistics Yearbook report, the mortality rate for lung cancer was 49.15 per 100,000 urban residents in 2018, while the mortality rate for coronary heart disease was 120.18 per 100,000 people. The prevalence of coronary heart disease is also increasing annually. Both diseases have a higher risk of death with advancing age, particularly among individuals over 80 years old [1-3]. The combined incidence of lung cancer and coronary heart disease is on the rise, with lung cancer patients being more susceptible to developing coronary heart disease. Additionally, the presence of coronary heart disease can impact the prognosis of lung cancer patients. These two diseases often coexist in middle-aged and elderly individuals [4–7]. They share common risk factors such as smoking, obesity, dietary habits, hormone levels, and lifestyle [8,9]. Common treatments for coronary heart disease include CABG (Coronary Artery Bypass Grafting) and PCI (Percutaneous Coronary Intervention).

PCI refers to the placement of a metallic stent at the location of a coronary artery lesion, with the aim of providing vascular wall support through balloon expansion. This procedure effectively maintains arterial patency, prevents the occurrence of local inflammatory response, thrombosis, or blockage resulting from excessive lining hyperplasia [10].

On-pump CABG involves distal vascular anastomosis using a cardiopulmonary bypass machine while the heart is in cardiac arrest. This technique offers a clearer surgical field of vision, facilitating easier exposure of the coronary artery. Extracorporeal circulation ensures more comprehensive blood circulation reconstruction [11]. Moreover, on-pump CABG simplifies the procedure and requires a shorter learning period, making it easily adoptable by clinicians [12].

In contrast, off-pump coronary artery bypass grafting (OPCABG) is usually performed on a non-beating heart. This technique significantly reduces the risks of cancer spread, intraoperative bleeding, systemic inflammatory response syndrome (SIRS), and pulmonary edema. Consequently, OPCABG effectively minimizes mortality and the incidence of complications [13]. As a result, OPCABG is increasingly becoming a preferred surgical approach for coronary artery bypass grafting.

The surgical management of coronary heart disease in patients with lung cancer primarily involves three approaches: (1) staged PCI followed by lung cancer resection; (2) two-stage CABG followed by lung cancer resection; (3) simultaneous CABG and lung cancer resection, which encompasses both on-pump CABG and off-pump CABG. Previous studies have indicated a higher postoperative mortality risk for patients who undergo PCI prior to lung cancer surgery compared to those in the non-PCI group [14]. Performing surgery in two stages can result in two wounds and increase pain and pressure on patients. Among these three approaches, simultaneous CABG combined with pneumonectomy is widely considered both feasible and effective [15], although certain studies have highlighted a higher risk of postoperative complications with combined surgery [16]. Therefore, the selection of the appropriate surgical approach should be based on the individual needs of the patients.

^{*}Correspondence: 1 w01@jlu.edu.cn (Wei Liu)

Lung Cancer Resection after PCI

Compared to the general population, patients undergoing PCI after lung cancer resection experience a progressively higher incidence of death, stroke, and myocardial infarction over time [17,18]. Additionally, the frequency of stent-related complications also increases over time. Discontinuation of antiplatelet therapy following PCI is associated with major adverse cardiovascular events (MACE) and other complications after lung cancer resection. On the other hand, resuming antiplatelet therapy after PCI may elevate the risk of bleeding. While the risk of cancer-related mortality decreases over time following surgery, the risk of cardiovascular disease-related mortality increases [19–21]. Performing lung cancer resection after PCI can reduce the occurrence of adverse events, such as myocardial infarction, during the perioperative period of lung cancer surgery. Nonetheless, since PCI patients require dual antiplatelet therapy (DAPT) and subsequent cessation of DAPT, there is a heightened susceptibility to stent thrombosis. To ensure patient safety, it is advisable to delay additional tumor treatment for several months after PCI [22]. There is currently no standardized protocol for the optimal timing of tumor treatment surgery. P.G. Chassot recommended a minimum delay of 3 months between PCI and pneumonectomy, allowing for the completion of the 6-week high-risk period and the 3-month medium-risk period. This delay ensures full endothelialization of the stent surface. However, it is important to note that lung cancer may progress and worsen during this 3-month period [23-26]. According to the guidelines provided by the American College of Cardiology/American Heart Association (ACC/AHA), patients can undergo lung cancer resection 30 days after the implantation of a bare metal stent (BMS) [27]. However, if a drugeluting stent (DES) is used, it is recommended to delay lung cancer surgery for 365 days to avoid stress reactions during the perioperative period, which could lead to intravascular thrombosis. In emergency situations, when the risk of delaying surgery outweighs the risk of ischemia and thrombosis, the waiting period can be shortened to 180 days after careful assessment [27-30]. Fernandez et al. [19] demonstrated that stent placement within 12 months before pneumonectomy increased the occurrence of MACE and mortality within the first 30 days after surgery. Additionally, it heightened the risk of perioperative thrombosis and myocardial infarction. In light of these findings, Marcucci et al. [31] recommend prioritizing balloon dilation over stenting for preoperative revascularization, with PCI performed after the patient has sufficiently recovered from lung cancer surgery. The 2022 PCI consensus of the Japanese Association for Cardiovascular Intervention (CVIT) also supports this approach, explaining that it helps avoid exacerbating the risk of reinfarction or ischemia associated with stent implantation [32,33]. If vascular reconstruction is accomplished using balloons rather than stents prior to lung cancer

surgery, the minimum interval between the two procedures should be 14 days [27].

Coronary Artery Bypass Grafting and Lung Cancer Resection by Stages

Staged surgery, which involves two separate surgeries for CABG and lung cancer resection, presents certain drawbacks in terms of patient outcomes, healthcare costs, and overall treatment efficiency. This approach necessitates the administration of two general anesthetics and results in two surgical incisions, thereby increasing the length of hospital stay. Consequently, patients experience heightened levels of preoperative pressure and postoperative pain, leading to an overall increase in treatment expenses. Moreover, staged surgery is associated with various complications arising from multiple anesthesia administrations, potential disease progression due to delayed treatment, patient anxiety, elevated treatment costs, and prolonged hospitalization [34]. In cases where staged surgery is deemed necessary, it is generally recommended to prioritize cardiac surgery before pulmonary surgery. To ensure the efficacy of anticoagulation, it is advised to perform pulmonary surgery within 3–6 weeks following cardiac surgery [35–37]. According to the clinical conditions of individual patients, the surgery interval should be personalized. When patients are in a favorable condition, the interval can be appropriately shortened, with the recommended minimum interval being 1-2 weeks [38,39]. However, due to the demanding nature of the staged operation method, which involves two separate surgeries, increased psychological pressure, and an extended hospital stay, it is challenging to persuade patients to undergo another surgery within a relatively short timeframe. Conversely, simultaneous treatment of both diseases can eliminate the need for a second operation, reduce perioperative pressure and discomfort, and yield economic benefits by minimizing treatment and hospitalization costs. In comparison to staged surgery, concurrent surgery offers potential advantages such as a single anesthesia induction, reduced psychological pressure, shorter overall hospital stays, lowered treatment costs, and no delay in lung cancer treatment. Nonetheless, concurrent surgery carries a higher risk of perioperative mortality and complications compared to staged surgery, and presents technical difficulties in exposing both lungs and removing mediastinal lymph nodes. Therefore, the selection of surgical methods should be determined based on the patient's condition and requirements.

Concurrent Coronary Artery Bypass Grafting Combined with Lung Cancer Resection

Combined surgery refers to the simultaneous performance of cardiac surgery and pulmonary surgery. Patients who exhibit unstable symptoms of coronary artery disease, inadequate response to medication, or have experienced failure or infeasibility of PCI may opt for combined surgery.

In contrast to staged surgery, combined surgery employs one or two surgical incisions under general anesthesia, effectively avoiding delays in lung cancer treatment and minimizing the risks associated with undergoing multiple operations. Existing studies have indicated a higher incidence of postoperative complications in simultaneous surgery compared to staged surgery. However, the difference in longterm survival between the two approaches is not statistically significant. Therefore, it is widely accepted that combined surgery is the appropriate procedure for certain patient populations and is considered safe for both younger and older patients [40–46]. It is recommended to select either staging or combined surgery based on a comprehensive personalized evaluation of patients in advance [16]. Coronary artery bypass grafting encompasses on-pump CABG and OPCABG.

Adverse Reactions of On-Pump CABG

On-pump CABG is an effective treatment for coronary heart disease. However, the use of cardiopulmonary bypass (CPB) can also give rise to various adverse reactions. CPB has been found to elevate levels of interleukin-10 (IL-10) and transforming growth factor- β (TGF- β). These cytokines possess immunosuppressive properties, potentially promoting tumor growth and metastasis. Performing lung tumor resection under cardiopulmonary bypass may facilitate the dissemination of tumor cells throughout the body. Additionally, CPB can result in incomplete neutralization of heparin overdose by Cichlidin sulfate, as well as platelet dysfunction, leading to hemorrhage [47]. CPB is associated with numerous side effects. It can increase the permeability of pulmonary capillaries, leading to pulmonary edema. Additionally, it can cause an imbalance in the ventilationperfusion ratio, resulting in postoperative hypoxemia. CPB has also been linked to multiple organ dysfunction, including dysfunction of the brain, lungs, and kidneys. It may induce respiratory symptoms such as acute respiratory distress syndrome. Moreover, CPB can inhibit lymphocytes, neutrophils, polymorphonuclear cells, and natural killer cells, thereby compromising the body's immune response and triggering SIRS [41,48-57]. Studies have demonstrated that compared to patients not subjected to CPB, those undergoing CPB have a significantly higher incidence of cerebral vascular embolism. Furthermore, in the short term (less than 2–3 months), these patients experience greater neurocognitive decline [58].

Advantages of OPCABG Selection

The poor prognosis following CABG is attributed to endothelial activation and systemic inflammatory reactions during the perioperative period. These phenomena can be mitigated by utilizing OPCABG [59]. When considering the bleeding risk associated with combined surgery, lung cancer resection alone does not significantly increase

the risk of thoracic bleeding during cardiovascular surgery. However, when CPB is combined with pneumonectomy, surgical bleeding becomes more pronounced, potentially leading to respiratory failure. OPCABG procedures can reduce systemic blood coagulation disorders and minimize bleeding in areas relevant to lung surgery. However, they may also introduce additional complications, such as mediastinitis, postoperative bleeding necessitating reoperation, perioperative tension pneumothorax, early postoperative acute respiratory distress syndrome, arrhythmia, and others [13,60–63].

Indications for Simultaneous Operation

According to the scholarly paper, the suggested criteria for concurrent procedures indicate that patients with operable non-small cell lung cancer (ranging from stage IA to stage IIIA, stage N0 or N1) are considered suitable candidates. Additionally, these patients should not have a recent history of myocardial cancer infiltration but should have a history of myocardial infarction, PCI failure, or infeasible unstable angina. For patients, particularly those unable to undergo a second operation, the combined procedure is deemed secure, yielding positive outcomes and a favorable prognosis [14,42,64–66].

In patients diagnosed with stage N2, where the longterm efficacy of surgical treatment is generally unsatisfactory, it is advised to avoid surgery and prioritize neoadjuvant chemotherapy to prevent metastasis and minimize the burden of a subsequent operation. If concurrent surgery is deemed necessary, caution should be exercised when dealing with the internal mammary artery (IMA), and it is crucial to use saphenous vein grafts with adequate blood flow, particularly in patients with poorly differentiated lung cancer [36,65]. Furthermore, certain patient profiles are not suitable for concurrent surgery, including those with (1) tumors in close proximity to the descending aorta or esophagus; (2) concomitant tumors in other organs (e.g., esophagus) or tumors encroaching on the pleura or diaphragm wall; (3) extensive and severe chest adhesions; (4) indications for complex total pneumonectomy; (5) heart failure necessitating high doses of catecholamines; and (6) patients with hemodynamic instability and a propensity for severe hemorrhage [61,67–70].

Indications of On-Dump CABG

The advantages of on-pump CABG over OPCABG can be summarized as follows: (1) On-pump CABG leads to a more thorough vascular regeneration process, resulting in improved integrity of myocardial hemotransfusion reconstruction. (2) The use of extracorporeal circulation allows for a better surgical field of view, facilitating the creation of distal anastomoses. (3) On-pump CABG is a preferred choice in emergency situations. (4) OPCABG,

E658 Heart Surgery Forum

on the other hand, places a lower cardiac load on ischemic hearts and has higher rates of hemotransfusion reconstruction. Therefore, the use of extracorporeal circulation in CABG becomes more justifiable during emergencies. (5) The utilization of extracorporeal CABG has demonstrated a reduction in angina recurrence rates and a decrease in rehospitalization frequency. Thus, on-pump CABG is a more reasonable approach.

Furthermore, a study conducted by Darwazah *et al.* [71] confirms that the use of cardiopulmonary bypass during emergencies reduces the rate of angina recurrence, alleviates symptoms of heart failure, and decreases the frequency of rehospitalization [72].

Indications of OPCABG

When comparing the selection between on-pump CABG and OPCABG, opting for OPCABG offers several distinct advantages by eliminating the need for CPB: (1) Compared to conventional CABG, OPCABG offers a significant reduction in surgical mortality and postoperative complication rates. (2) OPCABG has demonstrated the potential to ameliorate blood coagulation disorders, thereby reducing the likelihood of reoperation, intraoperative bleeding, and the need for blood transfusions. (3) OPCABG holds promise in safeguarding patients against potential nervous system complications, including stroke or coma. (4) To ameliorate the immunosuppressive effects of CPB on the body and mitigate SIRS. (5) Patients who undergo OP-CABG experience significant reductions in the duration of mechanical ventilation, postoperative hospital stay, length of stay in the intensive care unit (ICU), incidence of perioperative myocardial infarction, and occurrence of new atrial fibrillation. (6) To minimize the risk of cancer metastasis, it is recommended to avoid the utilization of CPB. (7) Decrease the occurrence of pulmonary insufficiency, pulmonary failure, renal failure, and multiple organ failure. (8) Minimize the necessity of utilizing an intra-aortic balloon pump (IABP) during the perioperative period. (9) Reduce the hospitalization costs [13,41,63,73–75]. (10) In elderly patients, the On-pump CABG group demonstrates higher rates of bleeding, blood transfusion, stroke, prolonged respiratory failure, as well as increased durations of ICU and hospital stay compared to the OPCABG group. These findings suggest that OPCABG surgery may offer greater benefits for elderly patients [76,77]. (11) In patients with severe atherosclerosis, the use of CPB is associated with higher incidence of stroke and mortality. On the other hand, OP-CABG has shown to be effective in reducing complications, stroke, and hospital mortality in these patients. Therefore, OPCABG may be a preferable surgical approach for patients with severe atherosclerosis [78,79]. (12) According to studies, the mortality rate among female patients undergoing on-pump CABG is higher compared to male patients. However, this risk can be mitigated by avoid-

ing the use of CPB. As a result, OPCABG may be more beneficial for female patients. (13) Research has shown that on-pump CABG is associated with the formation of more cerebral microemboli, which can lead to reduced cerebral perfusion in various regions of the brain, including the thalamus, cerebellum, anterior cuneiform lobe, bilateral occipital region, and left temporal lobe after surgery. In contrast, OPCABG has been found to result in almost unchanged cerebral perfusion compared to on-pump CABG. OPCABG has also been shown to significantly reduce the likelihood of brain microemboli formation when compared to on-pump CABG. This suggests that OPCABG may be a preferable surgical approach to mitigate the risk of cerebral complications and preserve cerebral perfusion, potentially leading to improved neurological outcomes for patients undergoing CABG surgery. (14) Patients with multiple comorbidity factors before surgery are indeed considered high-risk patients. These risk factors include a recent history of myocardial infarction, left ventricular dysfunction, left main disease, multiple organ failure, previous stroke, shock, unstable angina pectoris, heart failure, female gender, ejection fraction <0.5, IABP, New York Heart Association (NYHA) class IV cardiac function, three-vessel disease, chronic obstructive pulmonary disease, elderly patients, or emergency surgery [80-87]. In the surgical selection of high-risk patients with multiple complications, OPCABG has been found to have lower mortality and incidence rates compared to other surgical approaches. Therefore, OPCABG can be considered a reasonable and feasible surgical strategy for patients with these high-risk factors. (15) For patients with acute myocardial infarction, research suggests that the mortality rate is significantly higher in the on-pump CABG group compared to the OPCABG group. However, it is important to note that most of the deaths in the on-pump CABG group occurred within 2 days of the myocardial infarction. On the other hand, there was no significant difference in mortality among patients who underwent surgery more than 2 days after the myocardial infarction. Based on this information, it can be concluded that OPCABG is more beneficial for emergency patients who undergo surgery within the first 2 days of experiencing symptoms of myocardial infarction [88].

Operation Sequence

According to the literature, there exists a general consensus regarding the optimal surgical sequence involving OPCABG and lung cancer resection. This sequence is primarily based on two key reasons: Firstly, to mitigate any potential complications during the lung cancer resection procedure, it is essential to guarantee a sufficient supply of blood to the myocardium. Consequently, it is recommended that OPCABG be conducted prior to lung cancer resection [63,89]. Secondly, the incisions made during CABG surgery (referred to as type 1 incisions) and lung

cancer resection (known as type 2 incisions) differ in nature. Opening the pleura during the latter procedure may compromise the sterile environment of the mediastinum. Given the grave consequences associated with chest infections, maintaining strict sterility during surgical operations becomes imperative. Therefore, it is crucial to prioritize bypass surgery before proceeding with radical lung cancer surgery [4].

Surgical Approach

Median sternotomy is the preferred surgical approach for heart procedures, particularly in cases of right pneumonectomy and left upper lobe pneumonectomy. Research conducted by Urschel and Razzuk [34] demonstrated that patients who underwent lung cancer resection via median sternotomy experienced several advantages over those who underwent lateral thoracotomy, including reduced operation time, postoperative pain, complications, and hospital stay [4,90]. Furthermore, median sternotomy facilitates the creation of bronchial stumps, minimizes pulmonary dysfunction, and exhibits high tolerance [91]. This approach is highly effective in accessing the upper mediastinal lymph nodes, particularly the lower carina lymph nodes. Additionally, compared to standard thoracotomy, median sternotomy enables a more thorough dissection of bilateral para-esophageal lymph nodes. However, it should be noted that median sternotomy offers limited visual field assistance during lung cancer resection. In the case of left pneumonectomy and left lower lobectomy, a simple median sternotomy is not the conventional approach due to the obscured intraoperative view caused by the heart. Cardiac retraction is often necessary, but it can result in arrhythmias, hemodynamic instability, and technical challenges [61]. Alternatively, a standard left anterolateral thoracotomy can be safely combined with bypass surgery [54]. However, this technique limits the surgeon to establishing a distal anastomosis solely on the side of the heart where the left anterior descending branch is located. While combining a double incision with a left anterolateral open thoracotomy and a median sternotomy is an option, it is associated with postoperative complications such as pulmonary atelectasis and infection. Hence, most surgeons prefer performing simultaneous surgery through a single incision. However, when a single incision is deemed insufficient for the procedure, it is feasible to add a lateral thoracotomy to the median sternotomy or extend the median sternotomy into the intercostal space [41,61,89,92]. Intraoperative care should prioritize protecting the myocardial bridge, minimizing compression and traction on the cardiopulmonary tissues, and attending to the relationship between the pulmonary artery and the bronchi to avoid accidental injury [93]. In various aspects such as hospital stay, postoperative pain, retention of lung function, and postoperative complications, thoracoscopic lung cancer resection demonstrates superiority over thoracotomy. As a result, it can be considered a feasible and effective surgical approach [94,95]. However, the existing research on the simultaneous operation of CABG combined with thoracoscopic lung cancer resection remains incomplete, and further investigation is warranted to determine the optimal choice between thoracoscopy and thoracotomy for combined surgery.

Scope of Lymph Node Dissection

Lymph node dissection is a crucial component in accurately staging lung cancer and improving postoperative survival rates. However, there exists a significant controversy regarding the extent of lymph node dissection. While thorough systematic lymph node dissection is generally deemed beneficial, some studies question the survival advantage compared to more limited dissection [14]. Furthermore, systematic lymph node dissection prolongs operation time and increases the postoperative incidence rate [96]. Therefore, although systematic lymph node dissection is recommended, selective lymph node dissection is also regarded as an acceptable choice for lung cancer surgery, particularly for stage 1 and stage 2 tumors, as it effectively clears the tumor. Selective lymph node dissection offers the advantage of reducing hospital stays, but its reliability and applicability remain uncertain [97,98].

Evaluation of Postoperative Survival of Patients

Yoon's [14] research has demonstrated the utmost importance of accurately assessing pathological staging and conducting preoperative evaluations in patients. Common causes of mortality following combined surgery include distant metastasis and local recurrence of tumors, both of which significantly impact long-term survival rates in postoperative patients [99,100]. Conversely, the progression of heart disease does not pose a risk factor for postoperative mortality or incidence rates [101]. Therefore, a thorough preoperative evaluation of factors potentially affecting postoperative outcomes is crucial in determining whether combined surgery or staged surgery should be performed. These factors can be categorized as preoperative predictors, such as gender, age, presence of chronic obstructive pulmonary disease (COPD), congestive heart failure (CHF), kidney disease, any tumor diagnosis within five years prior to lung cancer surgery, and the clinical stage of the tumor. Additionally, postoperative predictors, including the type of resection and pathological stage of lung cancer, serve as more precise indicators of long-term survival rates following surgery [45,102].

Postoperative Management of Patients

Following lung cancer resection, patients experience diminished cardiopulmonary function, impeding the physiological recovery of the lungs and elevating the risk of

E660 Heart Surgery Forum

respiratory complications. Moreover, patients with multiple comorbidities such as diabetes mellitus, renal failure, and hyperglycemia face additional challenges during recovery, necessitating preoperative interventions to mitigate severe postoperative complications [93,99]. Increased levels of cytokines including TNF- α , IL-6, and IL-10 have been observed in patients with coronary artery disease, and the use of high tidal volume (Vt) mechanical ventilation after lung cancer surgery can result in cytokine-mediated pneumonitis. Therefore, postoperative patients should receive ventilation with a reduced Vt and positive end-expiratory pressure (PEEP) to minimize the duration of mechanical ventilation, thereby preventing lung injury and reducing the risk of infection [103]. Excessive fluid infusion during the perioperative period may lead to postoperative pulmonary edema and other pulmonary injuries. Hence, the intraoperative infusion rate should not exceed 7-8 mL/kg/h, and the postoperative infusion rate should not exceed 1–2 mL/kg/h. Additionally, maintaining a positive fluid balance of no more than 1.5 liters per day can effectively reduce the incidence of postoperative complications [104]. In younger patients (\leq 70 years) and older patients (\geq 70 years), postoperative morbidity is influenced differently. In younger patients, morbidity is notably associated with histological cell type and extent of lung resection, whereas in older patients, it is also related to hypertension, elevated serum creatinine levels, reduced DLCO (diffusing capacity of the lungs for carbon monoxide), and smoking [105]. Hence, managing the elderly population requires meticulous care to minimize postoperative morbidity.

Problems Still Faced

It was hypothesized that OPCABG would eliminate the adverse effects of CPB, resulting in improved survival rates and reduced complications. However, several studies have indicated that hospital survival is not significantly influenced by factors such as age, gender, cardiac or pulmonary pathology, or the utilization of CPB. While it was initially thought that the use of cardiopulmonary bypass increased the occurrence of ischemic brain injury, numerous studies have failed to demonstrate that extracorporeal circulation is superior to CPB in preventing brain damage. Therefore, the anticipated association between CPB and hospital survival remains unconfirmed, necessitating further investigation [106,107].

Summary

In recent years, there has been an increasing number of patients diagnosed with both lung cancer and coronary heart disease. However, a standardized approach for managing these two coexisting conditions is yet to be established. This article aims to summarize and compare various surgical methods available for patients with lung cancer and coronary heart disease, including their respective advantages and disadvantages.

Simultaneous cardiopulmonary surgery carries the risk of intraoperative bleeding due to anticoagulation therapy. Staged surgery, on the other hand, offers the benefit of reducing postoperative mortality and perioperative complications. However, it has the drawback of subjecting patients to additional trauma and economic burden, as well as an increased risk of lung cancer progression during the interval between operations. Currently, combined procedures such as on-pump CABG and OPCABG combined with lung cancer resection are widely performed. The decision to use CPB during surgery depends on the patient's condition and specific requirements.

The advantage of CPB lies in its ability to ensure complete reconstruction of myocardial blood supply and provide a broader surgical field, facilitating distal vascular anastomosis. It is particularly suitable for emergency cases and relatively straightforward to perform. However, the use of CPB is associated with SIRS, multiple organ failure, increased bleeding, and potential promotion of tumor growth and metastasis, among other complications.

By contrast, OPCABG can mitigate the inflammatory response caused by CPB, effectively avoiding these associated complications and has shown superior efficacy, especially for elderly patients, those with severe atherosclerosis, women, and high-risk patients.

In general, for patients with both coronary heart disease and lung cancer, performing cardiopulmonary surgery simultaneously is recommended if the overall condition permits. The decision regarding the use of CPB should be based on individual patient factors and needs.

Several limitations exist in this study. Firstly, variations in statistical methodology and clinical data collection among the included studies may have resulted in heterogeneity in the overall conclusions. Secondly, the majority of included studies were retrospective observational studies conducted at single centers, warranting the need for prospective studies to validate these findings. Thirdly, most of the included studies primarily focused on perioperative outcomes, with limited data available on long-term survival rates for postoperative patients. Further investigations are required to determine the impact of different surgical approaches on long-term patient survival. Lastly, the number of articles comparing combined and staged surgeries is limited, highlighting the need for additional research in this area.

Author Contributions

WL and MT contributed to the design and analysis, YH and SW contributed to the interpretation of data for the work. All authors contributed to editorial changes in

the manuscript. All authors read and approved the final manuscript. All authors have participated sufficiently in the work to take public responsibility for appropriate portions of the content and agreed to be accountable for all aspects of the work in ensuring that questions related to its accuracy or integrity.

Ethics Approval and Consent to Participate

Not applicable.

Acknowledgment

Not applicable.

Funding

This research received no external funding.

Conflict of Interest

The authors declare no conflict of interest.

References

- [1] Jiang G, Wang D, Li W, Pan Y, Zheng W, Zhang H, *et al.* Coronary heart disease mortality in China: age, gender, and urbanrural gaps during epidemiological transition. Revista Panamericana De Salud Publica. 2012; 31: 317–324.
- [2] Cao M, Chen W. Epidemiology of lung cancer in China. Thoracic Cancer. 2019; 10: 3–7.
- [3] National Health and Health Commission. 2019 China Health and Health Statistics Yearbook. Beijing: Peking Union Medical College Press. 2019.
- [4] Li Z, Liu B, Ge W, Zhang W, Gu C, Liu J, et al. Effect of simultaneous surgical treatment of severe coronary artery disease and lung cancer. The Journal of International Medical Research. 2019; 47: 591–599.
- [5] Herrero Rivera D, Nieto-Guerrero Gómez JM, Cacicedo Fernández de Bobadilla J, Delgado D, Rivin Del Campo E, Praena-Fernández JM, et al. Cardiovascular disease and survival in nonsmall cell lung cancer: a multicenter prospective assessment. Clinical & Translational Oncology: Official Publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico. 2019; 21: 1220–1230.
- [6] Eagle KA, Ginsburg GS, Musunuru K, Aird WC, Balaban RS, Bennett SK, et al. Identifying patients at high risk of a cardiovascular event in the near future: current status and future directions: report of a national heart, lung, and blood institute working group. Circulation. 2010; 121: 1447–1454.
- [7] Ramalho SHR, Shah AM. Lung function and cardiovascular disease: A link. Trends in Cardiovascular Medicine. 2021; 31: 93–98.
- [8] Reicher-Reiss H, Jonas M, Goldbourt U, Boyko V, Modan B. Selectively increased risk of cancer in men with coronary heart disease. The American Journal of Cardiology. 2001; 87: 459– 62, A6.

- [9] Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nature Reviews. Cancer. 2004; 4: 579–591.
- [10] Thukkani AK, Agrawal K, Prince L, Smoot KJ, Dufour AB, Cho K, et al. Long-Term Outcomes in Patients With Diabetes Mellitus Related to Prolonging Clopidogrel More Than 12 Months After Coronary Stenting. Journal of the American College of Cardiology. 2015; 66: 1091–1101.
- [11] Robertson MW, Buth KJ, Stewart KM, Wood JR, Sullivan JA, Hirsch GM, et al. Complete revascularization is compromised in off-pump coronary artery bypass grafting. The Journal of Thoracic and Cardiovascular Surgery. 2013; 145: 992–998.
- [12] Légaré JF, Hirsch G. Off-pump coronary artery bypass graft surgery is standard of care: where do you stand? The Canadian Journal of Cardiology. 2006; 22: 1107–1110.
- [13] Cleveland JC, Jr, Shroyer AL, Chen AY, Peterson E, Grover FL. Off-pump coronary artery bypass grafting decreases risk-adjusted mortality and morbidity. The Annals of Thoracic Surgery. 2001; 72: 1282–1289.
- [14] Yoon DW, Shin DW, Cho JH, Lee JH, Yang JH, Han K, et al. Impact of previous percutaneous coronary intervention on cardiovascular outcomes and mortality after lung cancer surgery: A nationwide study in Korea. Thoracic Cancer. 2020; 11: 2517– 2528.
- [15] Yang Y, Xiao F, Wang J, Song B, Li XH, Li J, *et al.* Simultaneous surgery in patients with both cardiac and noncardiac diseases. Patient Preference and Adherence. 2016; 10: 1251–1258.
- [16] Bablekos GD, Analitis A, Michaelides SA, Charalabopoulos KA, Tzonou A. Management and postoperative outcome in primary lung cancer and heart disease co-morbidity: a systematic review and meta-analysis. Annals of Translational Medicine. 2016; 4: 213.
- [17] Daemen J, Wenaweser P, Tsuchida K, Abrecht L, Vaina S, Morger C, et al. Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study. Lancet (London, England). 2007; 369: 667–678.
- [18] Sedlis SP, Hartigan PM, Teo KK, Maron DJ, Spertus JA, Mancini GBJ, *et al.* Effect of PCI on Long-Term Survival in Patients with Stable Ischemic Heart Disease. The New England Journal of Medicine. 2015; 373: 1937–1946.
- [19] Fernandez FG, Crabtree TD, Liu J, Meyers BF. Incremental risk of prior coronary arterial stents for pulmonary resection. The Annals of Thoracic Surgery. 2013; 95: 1212–1220.
- [20] Groth SS, Rueth NM, Hodges JS, Habermann EB, Andrade RS, D'Cunha J, et al. Conditional cancer-specific versus cardiovascular-specific survival after lobectomy for stage I nonsmall cell lung cancer. The Annals of Thoracic Surgery. 2010; 90: 375–382
- [21] Janssen-Heijnen MLG, van Erning FN, De Ruysscher DK, Coebergh JWW, Groen HJM. Variation in causes of death in patients with non-small cell lung cancer according to stage and time since diagnosis. Annals of Oncology: Official Journal of the European Society for Medical Oncology. 2015; 26: 902–907.
- [22] Powell B, Bolton WD. Management of Lung Cancer with Concomitant Cardiac Disease. Thoracic Surgery Clinics. 2018; 28: 69–79.
- [23] Chassot PG, Delabays A, Spahn DR. Preoperative evaluation of patients with, or at risk of, coronary artery disease undergoing non-cardiac surgery. British Journal of Anaesthesia. 2002; 89: 747-759
- [24] Schoenmakers MCJ, van Boven WJ, van den Bosch J, van Swieten HA. Comparison of on-pump or off-pump coronary artery revascularization with lung resection. The Annals of Thoracic Surgery. 2007; 84: 504–509.

E662 Heart Surgery Forum

- [25] Hollis RH, Graham LA, Richman JS, Deierhoi RJ, Hawn MT. Adverse cardiac events in patients with coronary stents undergoing noncardiac surgery: a systematic review. American Journal of Surgery. 2012; 204: 494–501.
- [26] Albaladejo P, Charbonneau H, Samama CM, Collet JP, Marret E, Piriou V, et al. Bleeding complications in patients with coronary stents during non-cardiac surgery. Thrombosis Research. 2014; 134: 268–272.
- [27] Fleisher LA, Fleischmann KE, Auerbach AD, Barnason SA, Beckman JA, Bozkurt B, et al. 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014; 130: 2215–2245.
- [28] Wijeysundera DN, Wijeysundera HC, Yun L, Wąsowicz M, Beattie WS, Velianou JL, *et al.* Risk of elective major noncardiac surgery after coronary stent insertion: a population-based study. Circulation. 2012; 126: 1355–1362.
- [29] van Kuijk JP, Flu WJ, Schouten O, Hoeks SE, Schenkeveld L, de Jaegere PPT, et al. Timing of noncardiac surgery after coronary artery stenting with bare metal or drug-eluting stents. The American Journal of Cardiology. 2009; 104: 1229–1234.
- [30] Holcomb CN, Hollis RH, Graham LA, Richman JS, Valle JA, Itani KM, et al. Association of Coronary Stent Indication With Postoperative Outcomes Following Noncardiac Surgery. JAMA Surgery. 2016; 151: 462–469.
- [31] Marcucci C, Chassot PG, Gardaz JP, Magnusson L, Ris HB, Delabays A, *et al.* Fatal myocardial infarction after lung resection in a patient with prophylactic preoperative coronary stenting. British Journal of Anaesthesia. 2004; 92: 743–747.
- [32] Ozaki Y, Hara H, Onuma Y, Katagiri Y, Amano T, Kobayashi Y, et al. CVIT expert consensus document on primary percutaneous coronary intervention (PCI) for acute myocardial infarction (AMI) update 2022. Cardiovascular Intervention and Therapeutics. 2022; 37: 1–34.
- [33] Harrison RW, Aggarwal A, Ou FS, Klein LW, Rumsfeld JS, Roe MT, et al. Incidence and outcomes of no-reflow phenomenon during percutaneous coronary intervention among patients with acute myocardial infarction. The American Journal of Cardiology. 2013; 111: 178–184.
- [34] Urschel HC, Jr, Razzuk MA. Median sternotomy as a standard approach for pulmonary resection. The Annals of Thoracic Surgery. 1986; 41: 130–134.
- [35] Peters RM, Swain JA. Management of the patient with emphysema, coronary artery disease, and lung cancer. American Journal of Surgery. 1982; 143: 701–705.
- [36] Terzi A, Furlan G, Magnanelli G, Conti F, Chiavacci P, Petrilli G, et al. Lung resections concomitant to coronary artery bypass grafting. European Journal of Cardio-thoracic Surgery: Official Journal of the European Association for Cardio-thoracic Surgery. 1994; 8: 580–584.
- [37] Ciriaco P, Carretta A, Calori G, Mazzone P, Zannini P. Lung resection for cancer in patients with coronary arterial disease: analysis of short-term results. European Journal of Cardiothoracic Surgery: Official Journal of the European Association for Cardio-thoracic Surgery. 2002; 22: 35–40.
- [38] Voets AJ, Joesoef KS, van Teeffelen ME. Synchroneously occurring lung cancer (stages I-II) and coronary artery disease: concomitant versus staged surgical approach. European Journal of Cardio-thoracic Surgery: Official Journal of the European Association for Cardio-thoracic Surgery. 1997; 12: 713–717.
- [39] Licker M, de Perrot M, Höhn L, Tschopp JM, Robert J, Frey JG, et al. Perioperative mortality and major cardio-pulmonary complications after lung surgery for non-small cell carcinoma. European Journal of Cardio-thoracic Surgery: Official Journal

- of the European Association for Cardio-thoracic Surgery. 1999; 15: 314–319.
- [40] Tourmousoglou CE, Apostolakis E, Dougenis D. Simultaneous occurrence of coronary artery disease and lung cancer: what is the best surgical treatment strategy? Interactive Cardiovascular and Thoracic Surgery. 2014; 19: 673–681.
- [41] Cheng S, Jiang Y, Li X, Lu X, Zhang X, Sun D. Perioperative outcomes of combined heart surgery and lung tumor resection: a systematic review and meta-analysis. Journal of Cardiothoracic Surgery. 2021; 16: 227.
- [42] Prokakis C, Koletsis E, Apostolakis E, Panagopoulos N, Charoulis N, Velissaris D, et al. Combined heart surgery and lung tumor resection. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 2008; 14: CS17–21.
- [43] Patanè F, Verzini A, Zingarelli E, di Summa M. Simultaneous operation for cardiac disease and lung cancer. Interactive Cardiovascular and Thoracic Surgery. 2002; 1: 69–71.
- [44] Oh HC, Han JW, Choi JW, Kim YH, Hwang HY, Kim KB. Concomitant off-pump coronary artery bypass and non-cardiovascular surgery. Journal of Thoracic Disease. 2016; 8: 2115–2120.
- [45] Kanzaki R, Kimura T, Kawamura T, Funaki S, Shintani Y, Minami M, *et al.* Treatment of simultaneously discovered lung cancer and cardiovascular disease: a 20-year single-institution experience. Surgery Today. 2017; 47: 726–732.
- [46] Liu B, Chen C, Gu C, Li Q, Liu J, Pu Y, et al. Combined Coronary Artery Bypass Graft (CABG) Surgery and Lung Resection for Lung Cancer in Patients More than 50 Years-of-Age. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 2018; 24: 3307–3314.
- [47] Danton MH, Anikin VA, McManus KG, McGuigan JA, Campalani G. Simultaneous cardiac surgery with pulmonary resection: presentation of series and review of literature. European Journal of Cardio-thoracic Surgery: Official Journal of the European Association for Cardio-thoracic Surgery. 1998; 13: 667–672.
- [48] Sablotzki A, Welters I, Lehmann N, Menges T, Görlach G, Dehne M, et al. Plasma levels of immunoinhibitory cytokines interleukin-10 and transforming growth factor-beta in patients undergoing coronary artery bypass grafting. European Journal of Cardio-thoracic Surgery: Official Journal of the European Association for Cardio-thoracic Surgery. 1997; 11: 763–768.
- [49] Markewitz A, Lante W, Franke A, Marohl K, Kuhlmann WD, Weinhold C. Alterations of cell-mediated immunity following cardiac operations: clinical implications and open questions. Shock (Augusta, Ga.). 2001; 16: 10–15.
- [50] Byrne JG, Leacche M, Agnihotri AK, Paul S, Bueno R, Mathisen DJ, et al. The use of cardiopulmonary bypass during resection of locally advanced thoracic malignancies: a 10-year two-center experience. Chest. 2004; 125: 1581–1586.
- [51] Cao Z, Huang H, Zhou Y, Li Y, Ma Y, Zhou N. Efficacy of on-pump coronary artery bypass grafting and stent implantation combined with surgery on lung cancer. Journal of B.U.ON.: Official Journal of the Balkan Union of Oncology. 2019; 24: 2253– 2259.
- [52] Partrick DA, Moore EE, Fullerton DA, Barnett CC, Jr, Meldrum DR, Silliman CC. Cardiopulmonary bypass renders patients at risk for multiple organ failure via early neutrophil priming and late neutrophil disability. The Journal of Surgical Research. 1999; 86: 42–49.
- [53] Boyle EM, Jr, Pohlman TH, Johnson MC, Verrier ED. Endothelial cell injury in cardiovascular surgery: the systemic inflammatory response. The Annals of Thoracic Surgery. 1997; 63: 277– 284.
- [54] Tschernko EM, Bambazek A, Wisser W, Partik B, Jantsch U,

- Kubin K, *et al*. Intrapulmonary shunt after cardiopulmonary bypass: the use of vital capacity maneuvers versus off-pump coronary artery bypass grafting. The Journal of Thoracic and Cardiovascular Surgery. 2002; 124: 732–738.
- [55] Taylor KM. Central nervous system effects of cardiopulmonary bypass. The Annals of Thoracic Surgery. 1998; 66: S20–S28.
- [56] Asimakopoulos G, Smith PL, Ratnatunga CP, Taylor KM. Lung injury and acute respiratory distress syndrome after cardiopulmonary bypass. The Annals of Thoracic Surgery. 1999; 68: 1107–1115.
- [57] Jensen RH, Storgaard M, Vedelsdal R, Obel N. Impaired neutrophil chemotaxis after cardiac surgery. Scandinavian Journal of Thoracic and Cardiovascular Surgery. 1995; 29: 115–118.
- [58] Van Dijk D, Jansen EWL, Hijman R, Nierich AP, Diephuis JC, Moons KGM, et al. Cognitive outcome after off-pump and onpump coronary artery bypass graft surgery: a randomized trial. JAMA. 2002; 287: 1405–1412.
- [59] Onorati F, Rubino AS, Nucera S, Foti D, Sica V, Santini F, et al. Off-pump coronary artery bypass surgery versus standard linear or pulsatile cardiopulmonary bypass: endothelial activation and inflammatory response. European Journal of Cardiothoracic Surgery: Official Journal of the European Association for Cardiothoracic Surgery. 2010; 37: 897–904.
- [60] Brutel de la Rivière A, Knaepen P, Van Swieten H, Vanderschueren R, Ernst J, Van den Bosch J. Concomitant open heart surgery and pulmonary resection for lung cancer. European Journal of Cardio-thoracic Surgery: Official Journal of the European Association for Cardio-thoracic Surgery. 1995; 9: 310–314.
- [61] Yeginsu A, Vayvada M, Karademir BC, Erkılınç A, Tasci AE, Buyukbayrak F, et al. Combined Off-Pump Coronary Artery Bypass Grafting and Lung Resection in Patients with Lung Cancer Accompanied by Coronary Artery Disease. Brazilian Journal of Cardiovascular Surgery. 2018; 33: 483–489.
- [62] Piehler JM, Trastek VF, Pairolero PC, Pluth JR, Danielson GK, Schaff HV, et al. Concomitant cardiac and pulmonary operations. The Journal of Thoracic and Cardiovascular Surgery. 1985; 90: 662–667.
- [63] Saxena P, Tam RKW. Combined off-pump coronary artery bypass surgery and pulmonary resection. The Annals of Thoracic Surgery. 2004; 78: 498–501.
- [64] Canver CC, Bhayana JN, Lajos TZ, Raza ST, Lewin AN, Bergsland J, et al. Pulmonary resection combined with cardiac operations. The Annals of Thoracic Surgery. 1990; 50: 796–799.
- [65] Rosalion A, Woodford NW, Clarke CP, Buxton B. Concomitant coronary revascularization and resection of lung cancer. The Australian and New Zealand Journal of Surgery. 1993; 63: 336–340
- [66] Yokoyama T, Derrick MJ, Lee AW. Cardiac operation with associated pulmonary resection. The Journal of Thoracic and Cardiovascular Surgery. 1993; 105: 912–917.
- [67] Dyszkiewicz W, Jemielity MM, Piwkowski CT, Perek B, Kasprzyk M. Simultaneous lung resection for cancer and myocardial revascularization without cardiopulmonary bypass (offpump coronary artery bypass grafting). The Annals of Thoracic Surgery. 2004; 77: 1023–1027.
- [68] Ma XC, Ou SL, Zhang ZT, Hu YS, Song FQ. Outcomes of combined pulmonary resection and off-pump coronary artery bypass grafting for patients with lung tumor and concurrent coronary heart disease. Zhonghua Yi Xue Za Zhi. 2012; 92: 3134–3136.
- [69] Ma X, Huang F, Zhang Z, Song F, Ou S. Lung cancer resection with concurrent off-pump coronary artery bypasses: safety and efficiency. Journal of Thoracic Disease. 2016; 8: 2038–2045.
- [70] Takahashi T, Nakano S, Shimazaki Y, Kaneko M, Nakahara K, Miyata M, et al. Concomitant coronary bypass grafting and curative surgery for cancer. Surgery Today. 1995; 25: 131–135.
- [71] Darwazah AK, Sham'a RAHA, Isleem I, Hanbali B, Jaber

- B. Off-pump coronary artery bypass for emergency myocardial revascularization. Asian Cardiovascular & Thoracic Annals. 2009; 17: 133–138.
- [72] Ivanov J, Borger MA, Tu JV, Rao V, David TE. Mid-term outcomes of off-pump versus on-pump coronary artery bypass graft surgery. The Canadian Journal of Cardiology. 2008; 24: 279–284.
- [73] Hasegawa S, Otake Y, Bando T, Cho H, Inui K, Wada H. Pulmonary dissemination of tumor cells after extended resection of thyroid carcinoma with cardiopulmonary bypass. The Journal of Thoracic and Cardiovascular Surgery. 2002; 124: 635–636.
- [74] Arom KV, Flavin TF, Emery RW, Kshettry VR, Janey PA, Petersen RJ. Safety and efficacy of off-pump coronary artery bypass grafting. The Annals of Thoracic Surgery. 2000; 69: 704–710.
- [75] Tempe DK, Gandhi A, Virmani S. Resource utilization in on- and off-pump coronary artery surgery: factors influencing postoperative length of stay—an experience of 1746 consecutive patients undergoing fast-track cardiac anesthesia. Journal of Cardiothoracic and Vascular Anesthesia. 2006; 20: 128; author reply 128— 0
- [76] Hoff SJ, Ball SK, Coltharp WH, Glassford DM, Jr, Lea JW, 4th, Petracek MR. Coronary artery bypass in patients 80 years and over: is off-pump the operation of choice? The Annals of Thoracic Surgery. 2002; 74: S1340–S1343.
- [77] Hirose H, Amano A, Takahashi A. Off-pump coronary artery bypass grafting for elderly patients. The Annals of Thoracic Surgery. 2001; 72: 2013–2019.
- [78] Sharony R, Bizekis CS, Kanchuger M, Galloway AC, Saunders PC, Applebaum R, et al. Off-pump coronary artery bypass grafting reduces mortality and stroke in patients with atheromatous aortas: a case control study. Circulation. 2003; 108: II15–II20.
- [79] Sharony R, Grossi EA, Saunders PC, Galloway AC, Applebaum R, Ribakove GH, et al. Propensity case-matched analysis of offpump coronary artery bypass grafting in patients with atheromatous aortic disease. The Journal of Thoracic and Cardiovascular Surgery. 2004; 127: 406–413.
- [80] Puskas JD, Kilgo PD, Kutner M, Pusca SV, Lattouf O, Guyton RA. Off-pump techniques disproportionately benefit women and narrow the gender disparity in outcomes after coronary artery bypass surgery. Circulation. 2007; 116: I192–I199.
- [81] Bittner HB, Savitt MA. Off-pump coronary artery bypass grafting decreases morbidity and mortality in a selected group of high-risk patients. The Annals of Thoracic Surgery. 2002; 74: 115–118
- [82] Ascione R, Reeves BC, Rees K, Angelini GD. Effectiveness of coronary artery bypass grafting with or without cardiopulmonary bypass in overweight patients. Circulation. 2002; 106: 1764–1770.
- [83] Meharwal ZS, Mishra YK, Kohli V, Bapna R, Singh S, Trehan N. Off-pump multivessel coronary artery surgery in high-risk patients. The Annals of Thoracic Surgery. 2002; 74: S1353– S1357
- [84] Gaudino M, Glieca F, Alessandrini F, Nasso G, Pragliola C, Luciani N, et al. High risk coronary artery bypass patient: incidence, surgical strategies, and results. The Annals of Thoracic Surgery. 2004; 77: 574–9; discussion 580.
- [85] Gaudino M, Angelini GD, Antoniades C, Bakaeen F, Benedetto U, Calafiore AM, et al. Off-Pump Coronary Artery Bypass Grafting: 30 Years of Debate. Journal of the American Heart Association. 2018; 7: e009934.
- [86] Puskas JD, Thourani VH, Kilgo P, Cooper W, Vassiliades T, Vega JD, et al. Off-pump coronary artery bypass disproportionately benefits high-risk patients. The Annals of Thoracic Surgery. 2009; 88: 1142–1147.
- [87] Puskas JD, Edwards FH, Pappas PA, O'Brien S, Peterson ED,

- Kilgo P, *et al.* Off-pump techniques benefit men and women and narrow the disparity in mortality after coronary bypass grafting. The Annals of Thoracic Surgery. 2007; 84: 1447–1456.
- [88] Locker C, Mohr R, Paz Y, Kramer A, Lev-Ran O, Pevni D, et al. Myocardial revascularization for acute myocardial infarction: benefits and drawbacks of avoiding cardiopulmonary bypass. The Annals of Thoracic Surgery. 2003; 76: 771–777.
- [89] Ahmed AA, Sarsam MA. Off-pump combined coronary artery bypass grafting and left upper lobectomy through left posterolateral thoracotomy. The Annals of Thoracic Surgery. 2001; 71: 2016–2018.
- [90] Omran N, Habal P, Mandak J, Chek JL. Broncho-pleural fistula following vacuum-assisted closure therapy. Journal of Cardiac Surgery. 2013; 28: 397–398.
- [91] Peters RM, Wellons HA, Jr, Htwe TM. Total compliance and work of breathing after thoracotomy. The Journal of Thoracic and Cardiovascular Surgery. 1969; 57: 348–355.
- [92] Al-Attar N, Salvi S, Sebbag U, Nataf P. Combined left pneumonectomy and off-pump coronary artery bypass through left thoracotomy. European Journal of Cardio-thoracic Surgery: Official Journal of the European Association for Cardio-thoracic Surgery. 2001; 19: 226–228.
- [93] Wang Z, Guo F, Li J, Sun D. Safety and efficacy of lobectomy combined with off-pump coronary artery bypass grafting for lung cancer. Journal of Thoracic Disease. 2021; 13: 4438–4447.
- [94] Onaitis MW, Petersen RP, Balderson SS, Toloza E, Burfeind WR, Harpole DH, Jr, *et al.* Thoracoscopic lobectomy is a safe and versatile procedure: experience with 500 consecutive patients. Annals of Surgery. 2006; 244: 420–425.
- [95] Paul S, Altorki NK, Sheng S, Lee PC, Harpole DH, Onaitis MW, et al. Thoracoscopic lobectomy is associated with lower morbidity than open lobectomy: a propensity-matched analysis from the STS database. The Journal of Thoracic and Cardiovascular Surgery. 2010; 139: 366–378.
- [96] Izbicki JR, Thetter O, Habekost M, Karg O, Passlick B, Kubuschok B, et al. Radical systematic mediastinal lymphadenectomy in non-small cell lung cancer: a randomized controlled trial. The British Journal of Surgery. 1994; 81: 229–235.
- [97] Howington JA, Blum MG, Chang AC, Balekian AA, Murthy SC. Treatment of stage I and II non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013; 143: e278S–e313S.
- [98] Han H, Chen H. Selective lymph node dissection in early-stage non-small cell lung cancer. Journal of Thoracic Disease. 2017; 9: 2102–2107.
- [99] Kaku R, Teramoto K, Ishida K, Igarashi T, Hashimoto M, Kita-

- mura S, *et al*. Simultaneous resection of pulmonary tumor following cardiovascular surgery. Asian Journal of Surgery. 2017; 40: 123–128.
- [100] Dyszkiewicz W, Jemielity M, Piwkowski C, Kasprzyk M, Perek B, Gasiorowski L, et al. The early and late results of combined off-pump coronary artery bypass grafting and pulmonary resection in patients with concomitant lung cancer and unstable coronary heart disease. European Journal of Cardiothoracic Surgery: Official Journal of the European Association for Cardio-thoracic Surgery. 2008; 34: 531–535.
- [101] Mishra PK, Pandey R, Shackcloth MJ, McShane J, Grayson AD, Carr MH, et al. Cardiac comorbidity is not a risk factor for mortality and morbidity following surgery for primary non-small cell lung cancer. European Journal of Cardio-thoracic Surgery: Official Journal of the European Association for Cardio-thoracic Surgery. 2009; 35: 439–443.
- [102] Birim O, Kappetein AP, Waleboer M, Puvimanasinghe JPA, Eijkemans MJC, Steyerberg EW, *et al.* Long-term survival after non-small cell lung cancer surgery: development and validation of a prognostic model with a preoperative and postoperative mode. The Journal of Thoracic and Cardiovascular Surgery. 2006; 132: 491–498.
- [103] Liu W, Huang Q, Lin D, Zhao L, Ma J. Effect of lung protective ventilation on coronary heart disease patients undergoing lung cancer resection. Journal of Thoracic Disease. 2018; 10: 2760– 2770.
- [104] Tsubochi H, Shibano T, Endo S. Recommendations for perioperative management of lung cancer patients with comorbidities. General Thoracic and Cardiovascular Surgery, 2018; 66: 71–80.
- [105] Takamochi K, Oh S, Matsuoka J, Suzuki K. Risk factors for morbidity after pulmonary resection for lung cancer in younger and elderly patients. Interactive Cardiovascular and Thoracic Surgery. 2011; 12: 739–743.
- [106] Puskas JD, Williams WH, Duke PG, Staples JR, Glas KE, Marshall JJ, et al. Off-pump coronary artery bypass grafting provides complete revascularization with reduced myocardial injury, transfusion requirements, and length of stay: a prospective randomized comparison of two hundred unselected patients undergoing off-pump versus conventional coronary artery bypass grafting. The Journal of Thoracic and Cardiovascular Surgery. 2003; 125: 797–808.
- [107] Knipp SC, Matatko N, Wilhelm H, Schlamann M, Massoudy P, Forsting M, et al. Evaluation of brain injury after coronary artery bypass grafting. A prospective study using neuropsychological assessment and diffusion-weighted magnetic resonance imaging. European Journal of Cardio-thoracic Surgery: Official Journal of the European Association for Cardio-thoracic Surgery. 2004; 25: 791–800.