

International Journal of Pharmacology

ISSN 1811-7775

ISSN 1811-7775 DOI: 10.3923/ijp.2022.236.247

Research Article Qili Qiangxin as an Adjuvant Treatment with Inotrope for Advanced Heart Failure: Retrospective Analysis

*1,2Jinghai Hua, *1,2Ling Yu, 1,2Wenjun Xiong, 1,2Jianbing Zhu, 1,2Zhiming Gao, 1,2Yaofu Zheng, 1,2Dasong Yi, 1,2Xiaoping Peng and 1,2Zeqi Zheng

Abstract

Background and Objective: Inotropic treatment is generally used for advanced chronic heart failure. However, a single administration of an inotropic agent is insufficient to produce long-lasting results. The objective of the study was to evaluate the clinical impact of adjuvant treatment of Qili Qiangxin capsules on inotropic agents on N-terminal pro-B-type natriuretic peptide (NTproBNP), hospitalization and quality of life of outpatients with advanced chronic heart failure. **Materials and Methods:** Patients who requiring the optimal medical management have received intermittent intravenous infusions of levosimendan plus oral Qili Qiangxin capsules (LN cohort, n = 67) or that of dobutamine plus oral Qili Qiangxin capsules (DB cohort, n = 62) or oral Qili Qiangxin capsules only (QQ cohort, n = 54). **Results:** At 12 weeks after intervention(s) (EL), NTproBNP was significantly decreased in patients of LN cohort than those of DB (p<0.0001, q = 6.555) and QQ (p<0.0001, q = 6.612) cohorts. Patients of LN cohorts had fewer all-cause hospitalization. At EL, only patients of the LN cohort had improved the Euro quality of life five-dimensional-five-level score (0.40 \pm 0.27 vs. 0.52 \pm 0.25, p = 0.019, q = 3.872) and the Kansas City Cardiomyopathy Questionnaire score (39.21 \pm 11.71 vs. 45.81 \pm 12.18, p = 0.004, q = 4.324) and had higher numbers of patients with normal the 6 min walking distance test value (3 vs. 15) as compared to before intervention(s). **Conclusion:** Qili Qiangxin capsules as an adjuvant treatment with intermittent intravenous infusions of levosimendan could be preferred for optimal medical management of advanced chronic heart failure patients to improve prognosis.

Key words: Six min walking distance test, dobutamine, health-related quality of life, heart failure, inotrope, Kansas City Cardiomyopathy Questionnaire, levosimendan, n-terminal pro-b-type natriuretic peptide, Qili Qiangxin

Citation: Hua, J., L. Yu, W. Xiong, J. Zhu and Z. Gao *et al.*, 2022. Qili Qiangxin as an adjuvant treatment with inotrope for advanced heart failure: Retrospective analysis. Int. J. Pharmacol., 18: 236-247.

Corresponding Author: Xiaoping Peng and Zeqi Zheng, Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China Tel: +86-0791-88692501, Fax: +86-791-88623153

Copyright: © 2022 Jinghai Hua *et al.* This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

¹Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China

²Jiangxi Hypertension Research Institute, Nanchang, Jiangxi, 330006, China

^{*}Both Authors contributed equally in this work.

INTRODUCTION

Heart failure has adverse effects on the health care systems and advanced heart failure has a higher risk of hospitalization, poorer health-related quality of life and death than many other chronic diseases^{1,2}. In China, hyperlipidemia, coronary heart disease and hypertension are common than the other developed countries³. The incidence of heart failure in Chinese males and females is 1.0 and 0.7%⁴.

β-blockers with angiotensin-converting enzyme inhibitors (s) are currently used as the first-line treatment in heart failure patients but patients may develop decompensation⁵. Therefore, to improve hemodynamics in heart failure patients, there may require inotropic agents¹. However, intermittent or continuous administration of an inotropic agent has increased the risk of proarrhythmic effects and subsequent mortality. Also, a single administration of it is insufficient to produce long-lasting effects⁵.

Levosimendan is one of the inotropic agents that stabilizes the open conformation of troponin C and the troponin C-calcium-tropomyosin complex and enhances the calcium sensitivity of cardiac myofilaments². Unlike other inotropic agents, the effects of levosimendan are irrespective of cellular or intracellular calcium concentration. Therefore, levosimendan does not increase intracellular calcium concentration and associated arrhythmias¹. Also, it opens adenosine triphosphate-dependent potassium channels and provides vasodilatation⁶. Thus, it increases cardiac output without excessive myocardial oxygen requirements⁷ and its repetitive and intermittent administration is preferred in advanced chronic heart failure patients8. The available studies are also reported that levosimendan reduces the mortality of advanced chronic heart failure patients^{9,10} but the evidence is not uniform in those settings². A pulsed or intermittent administration of levosimendan is a beneficial therapeutic option in advanced chronic heart failure patients^{6,8}. A retrospective analysis¹¹ is reported that levosimendan is increased the risk of bleeding after heart valve surgery but this risk might be due to the dose-dependent antiplatelet effect of levosimendan¹².

Qili Qiangxin capsules are traditional Chinese medicine extracts of 11 herbs¹³ and are approved by the China Food and Drug Administration for the treatment of heart failure in 2004⁴ but there is no study available to compare Qili Qiangxin capsules as an adjuvant treatment with inotropic agents for the optimal medical management of patients with advanced chronic heart failure except one randomized trial that compares Qili Qiangxin capsules against inotropic agent⁴ and lack of high-quality literature for assessment of Qili

Qiangxin capsules as adjuvant treatment in patients with advanced chronic heart failure¹³.

The objectives of the non-randomized retrospective study were to evaluate the clinical impact of intermittent intravenous infusions of levosimendan plus oral Qili Qiangxin capsules, intermittent intravenous infusions of dobutamine plus oral Qili Qiangxin capsules and oral Qili Qiangxin capsules only on the level of N-terminal pro-B-type Natriuretic Peptide (NTproBNP), hospitalization, health-related quality of life, social quality of life, physical quality of life and the adverse events of Chinese outpatients with advanced chronic heart failure.

MATERIALS AND METHODS

Study area: The study was carried out at the Department of Cardiology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China and Jiangxi Hypertension Research Institute, Nanchang, Jiangxi, China from 14 January, 2017-30 November, 2019.

Ethics approval and consent to participate: The designed protocol (20203097 dated 13 January, 2017) was approved by the Human Ethics Committees of the First Affiliated Hospital of Nanchang University. Also, the protocol was approved by the Nanchang University and the Chinese Society of Cardiology. The study reporting adheres to the law of China and the V2008 Declarations of Helsinki. The informed consent form was signed by care givers of all enrolled patients regarding intervention(s), pathology and publication of anonymized information of patients in the form of the article before the start of the intervention(s). As being retrospective study the registration in the Chinese Clinical Trial Registry is waived by the institutes.

Inclusion criteria: A total of 183 patients (age>18 years) with advanced chronic heart failure (diagnosed as per the Chinese guidelines for the diagnosis and management of chronic heart failure ¹⁴), <35% of the left ventricular ejection fraction (history of 6-months) and who were requiring the optimal medical management included in the analysis.

Exclusion criteria: Among those patients who were put on amrinone, enoximone, dopamine or milrinone but not put on levosimendan or dobutamine or Qili Qiangxin capsules were excluded from the analysis.

Cohort: A total of 67 patients had received 0.2 µg/kg/min intravenous levosimendan (Simenda, Lupin Ltd., Baltimore,

MD, USA) for 6 hrs. The same cycle was repeated at 15 days. These patients had received a total of 6 cycles. If patients were reported hypotension (systolic blood pressure less than 90 mmHg without symptoms or less than 100 mmHg with symptoms) the dose of intravenous levosimendan was reduced to 0.1 µg/kg/min¹. These patients have also received 4 capsules (0.3 g per capsule) of Qili Qiangxin (Shijiazhuang Yiling Pharmaceutical Co., Ltd., Shijiazhuang, Hebei, China) per day for 12 weeks¹⁵. These patients were included in the LN cohort. A total of 62 patients have received 10 μg/kg/min intravenous dobutamine (Dobutrex, Abbott Laboratories, Chicago, Illinois, USA) for 6 hrs. The same cycle was repeated at 15 days. These patients had received a total of 6 cycles¹⁶. These patients have also received 4 capsules of Qili Qiangxin per day for 12 weeks. These patients were included in the DB cohort. A total of 54 patients had received 4 capsules of Qili Qiangxin per day for 12 weeks only⁴. These patients were included in the QQ cohort. Besides, usual care and medications (angiotensin-converting enzyme inhibitors, angiotensin-receptor blockers, β-blockers (except those who received dobutamine), digoxin, diuretics, mineralocorticoid receptor antagonists, hydralazine-nitrate combination, antiplatelet, anticoagulant, implantable cardioverter-defibrillator or cardiac resynchronization therapy) those prescribed by cardiologists were also taken by patients. All interventions were given under the supervision of cardiologists.

Data regarding clinical history, physical examinations, hospitalization, mortality and adverse events were retrospectively collected from the institutional medical records of patients and analyzed.

N-terminal pro-B-type natriuretic peptide: Immunoassay based on chemiluminescence (Elecsys® method, Roche Diagnostics, Rotkreuz, Switzerland) was used for the evaluation of the serum concentration of NTproBNP. Pathologists (minimum 3 years of experiences) of institutes were evaluated NTproBNP before intervention(s) (BL) and 12 weeks after intervention(s) (EL). Decrease (%) of NTproBNP (% NTproBNP) at EL was calculated as per Eq.²:

$$\Delta N_{T_{proBNP}} \text{ at } EL(\%) = \frac{NTproBNP_{BL} - NTproBNP_{EL}}{NTproBNP_{BL}} \times 100 \tag{1}$$

Where:

 Δ_{ntproBNP} at EL (%) = Percentage decrease in NTproBNP 12 weeks after intervention(s)

 $NtproBNP_{EL}$ = NTproBNP at 12 weeks after

intervention(s)

 $NtproBNP_{BI}$ = NTproBNP before intervention(s)

Table 1: Chinese utility value set for the Euro quality of life five-dimensional-fivelevel health status

icverricular status		
Dimension	Mobility	0.345
	Self-care	0.253
	Usual activities	0.233
	Pain/discomfort	0.302
	Anxiety/depression	0.258
Level	L ₁	0
	L_2	0.191
	L ₃	0.458
	L_4	0.832
	L ₅	1

Health-related quality of life

Euroquality of life five-dimensional-five-level (EQ-5D-5L): It

comprises Mobility (MO), Self-Care (SC), Usual Activities (UA), Pain/Discomfort (PD) and Anxiety/Depression (AD). Each one has five possible answers (1: No problems, 2: Slight problems, 3: Moderate problems, 4: Severe problems and 5: Extreme problems). A total of 3,125 health states were possible. The utility score ranged from -0.391-1. Where, score less than 0: The health status worse than death, 0: Death, 1: Full health 17. The score was calculated from Table 118 and equation 219. Trained instructors (minimum 3-years of experience) of institutes were evaluated EQ-5D-5L at BL and EL:

Utility =
$$1-(MO \times L_n)-(SC \times L_n)-(UA \times L_n)-(PD \times L_n)-(AD \times L_n)$$
 (2)

where, n = 1, 2, 3, 4, 5.

Kansas City Cardiomyopathy Questionnaire (KCCQ) score:

This comprises 23-items questionnaires for the physical and social quality of life of patients. The is ranged from 0-100. 0: Death, 1-25: Complete disability and severe symptoms, 26-50: Moderate symptoms, 51-75: Fair symptoms and 76-100: No disability²⁰. Trained instructors (minimum 3-years of experience) of institutes were evaluated KCCQ score at BL and EL.

Six min walking distance test (6MWDT): The distance travel by patient in 6 min was considered as the 6 min walking distance. More than 500 m was considered a normal value⁴. Trained instructors (minimum 3-years of experience) of institutes were evaluated the 6MWDTat BL and EL.

Adverse events: Any adverse event reported during 1 year from the start of the intervention(s) were extracted from medical records of institutes and analyzed. The effect was considered an adverse event as per institutional protocol.

Statistical analysis: The study was assumed that the 12 weeks of intervention(s)might be decreased more than 25% of serum NTproBNP level in at least $40\pm5\%$ of the

population. Also, with 5% two-sided type-I error, 80% power ($\beta=0.2$) and 95% of confidence level, the sample size (minimum patients enrolled in each cohort) was 50^4 . InStat®, 3.01, GraphPad Software, San Diego, CA, USA was used for statistical analyses. Descriptive and ordinal variables are presented as frequency (percentages) and continuous variables are presented as Mean \pm Standard Deviation (SD). One-way analysis of variance (ANOVA) was used for continuous and ordinal variables and the Chi-squared test for independence was used for constant variables². The Tukey test (considering critical value (q)>3.329 as significant) was used for *post hoc* analysis. All results were significant if the p-value was reported as less than 0.05.

RESULTS

Study population: A total of 244 patients (age>18 years) were diagnosed with advanced chronic heart failure with <35% of the left ventricular ejection fraction (history of 6 months)

and were requiring optimal medical management. Among them 25 patients were put on amrinone, 13 patients were put on enoximone, 11 patients were put on dopamine and 12 patients were put on milrinone treatment. Therefore, data of these patients (n = 61) were excluded from the analysis. Data regarding clinical history, physical examinations, hospitalization, NTproBNP level, the adverse events, EQ-5D-5L, KCCQ score and 6MWDT of a total of 183 patients who requiring optimal medical management for advanced chronic heart failure were included in the analysis. The flow diagram of the optimal medical management for advanced chronic heart failure patients is presented in Fig. 1.

Clinical history and physical examinations: Patients of the LN cohort were received 25.12 ± 1.22 mg per patient intermittent intravenous levosimendan and 300 ± 20 oral Qili Qiangxin capsules per patient during 12 weeks. Patients of the DB cohort were received 1.01 ± 0.75 g per patient intermittent intravenous dobutamine and 295 ± 18 oral Qili Qiangxin

Fig. 1: Flow diagram of the optimal medical management for advanced chronic heart failure patients

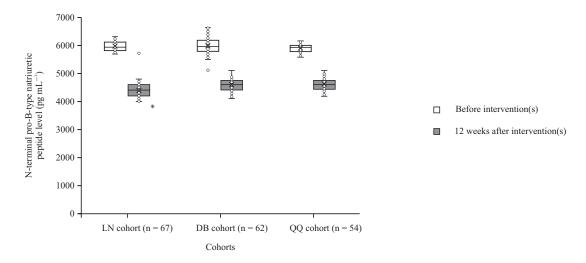


Fig. 2: N-terminal pro-B-type natriuretic peptide analysis

Immunoassay was performed for evaluation of N-terminal pro-B-type natriuretic peptide. *Significantly higher decrease in patients than those of DB and QQ cohort

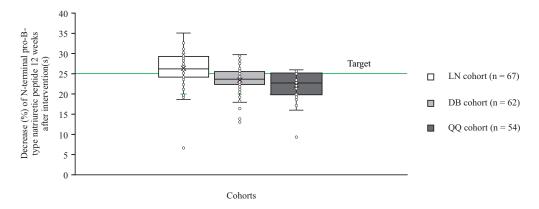


Fig. 3: Decrease (%) of N-terminal pro-B-type natriuretic peptide 12 weeks after intervention(s)

capsules per patient during 12 weeks. Patients of the QQ cohort had received 305 ± 25 oral Qili Qiangxin capsules per patient during 12 weeks. A total of 9 (13%), 7 (11%) and 7 (13%) patients from the LN, the DB and the QQ cohorts respectively had EQ-5D-5L scores less than 0 (the health status worse than death). Clinical history and physical examinations for patients had no significant differences among cohorts before intervention(s) (p>0.05 for all parameters, Table 2).

N-terminal pro-B-type natriuretic peptide: At EL, NTproBNP was significantly decreased in all cohorts, i.e., LN cohort (5991.81 \pm 170.14 vs. 4415.10 \pm 272.59 pg mL $^{-1}$, p<0.0001, q = 52.527), DB cohort (6018.05 \pm 281.58 vs. 4607.16 \pm 203.34 pg mL $^{-1}$, p<0.0001, q = 50.032) and QQ cohort (5932.17 \pm 145.17 vs. 4616.15 \pm 218.26 pg mL $^{-1}$, p<0.0001, q = 42.921). At EL, NTproBNP was significantly

higher decreased in patients of the LN cohort than those of DB (p<0.0001, q = 6.555) and QQ (p<0.0001, q = 6.612) cohorts (Fig. 2). At EL, significantly higher numbers of patients were reported with more than 25% in LN cohort than the DB (45 (67%) vs. 24 (39%), p = 0.0006, q = 4.723) and QQ (45 (67%) vs. 20 (37%), p = 0.0006, q = 4.719) cohorts. At EL, higher average (%) was reported in the patients of the LN cohort than those of DB (26.30 \pm 4.29 vs. 23.37 \pm 3.29 pg mL $^{-1}$ per patient, p<0.0001, q = 6.403) and QQ (26.30 \pm 4.29 vs. 22.18 \pm 3.45 pg mL $^{-1}$ per patient, p<0.0001, q = 8.669) cohort. Also, at EL, average (%) of the patients of only the LN cohort (26.30 \pm 4.29 pg mL $^{-1}$ per patient) was higher than 25%. Values of % at EL of different cohorts are presented in Fig. 3.

Hospitalization: Intermittent intravenous infusions of levosimendan plus Qili Qiangxin capsules were reduced

	Cohorts			
	LN	DB	00	
Characteristics Trostmont(c) during 12 woolks	25.12±1.22 mg per patient intermittent intravenous levosimendan+300±20 oral Qili	1.01±0.75 g per patient intermittent intravenous dobutamine+295±18 oral	305±25 oral Qili Qiangxin	on original
Patients included in the analysis	G7	62	S4	p-value
Age (years)	C)	()	73	0.400
Maximim	77	03 73	74	0.402
Mean±SD	65.12±7.15	66.14±8.15	67.51 ±9.45	
Sex				
Male .	52 (78)	48 (77)	42 (78)	0.998
Female	15 (22)	14 (23)	12(22)	
body mass index (kg m⁻²) Ethnicitv	25.12 ±2.01	24.89 ± 2.12	25.15 ± 3.14	0.813
Han Chinese	(06) 09	55 (88)	48 (89)	0.972
Mongolian	4 (6)	5 (8)	5 (9)	
Tibetan	1(2)	1(2)	1(2)	
Uighur Muslims	1(2)	1(2)	(0) 0	
Systolic blood pressure (mmHg)	115±12	113土14	116±9	0.384
Heart rate (beats min ⁻¹)	75±11	76±12	73±14	0.415
New TOTA Heart association functional class		(00)	(10) //	141
	(9)	50 (30)	46 (63 <i>)</i> 8 (15)	0.54/
Left ventricular ejection fraction	30±6	2(15) 29十6	31±7	0.237
Previous cardiovascular hospitalization in 1 year	31(46)	20 (32)	19 (35)	0.225
Co-morbidities				
Anemia	7 (10)	7 (11)	7 (13)	0.997
Ulabetes	15 (22)	15 (24)	14 (27)	
Atrial fibrillation Divelinidamia	16 (24)	18 (29)	14 (27)	
Hypertension	20 (30)	19 (24) 20 (32)	14 (27)	
N-terminal pro-B-type natriuretic peptide (pg mL ⁻¹)	5991.81±170.14	6018.05±281.58	5932.17±145.17	0.083
Hemoglobin (g dL $^{-1}$)	12.01 ± 1.91	11.91 ± 1.82	11.81 ± 1.93	0.845
Serum creatinine (mg dL $^{-1}$)	1.51 ± 0.41	1.41±0.35	1.43±0.37	0.287
Serum potassium level (mEq L ⁻¹)	4.23 ± 0.22	4.21 ± 0.25	4.26±0.26	0.541
Serum sodium level (mEq L ⁻¹)	125±10	127±12 6.44 6.57	126±5	0.501
Euro quality of lite five-dimensional-five-level score Niimbars of nationts with Firro citality of life	0.40±0.2/ 9.(13)	0.44±0.2/ 7 (11)	0.43±0.25 7 (13)	0.66/
five-dimensional-five-level score less than 0		(11)	(51)	
Kansas city cardiomyopathy questionnaire score	39.21±11.71	40.21±11.63	39.67 ± 13.74	0.899
Patients with a complete disability and severe symptoms	7 (10)	6 (10)	6 (11)	0.969
(Nansas city cardiornyopatriy questionnaire score: 1-25) Six min walking distance fest	40515+6067	398 10+52 88	404 85+66 17	0.761
Patients with normal 6 min walking distance test value (>500 m)	3 (5)	3 (5)	5 (9)	0.492

Table 2: Continued				
	Cohorts			
	LN	DB	00	
	25.12±1.22 mg per patient intravenous	1.01±0.75 g per patient intermittent intravenous	305±25 oral	
Characteristics	levosimendan+300±20 oral Qili	dobutamine+295±18 oral	Qili Qiangxin	
Treatment(s) during 12 weeks	Qiangxin capsules/patient	Qili Qiangxin capsules/patient	capsules/patient	Comparisons
Patients included in the analysis	29	62	54	p-value
Other medication(s)				
Angiotensin converting enzyme inhibitors	41 (61)	34 (55)	37 (69)	0.994
Angiotensin-receptor blockers	12 (18)	18 (29)	16 (30)	
β-blockers	17 (25)	15 (24)	14 (26)	
Digoxin	10(15)	11 (18)	11 (20)	
Diuretics	22 (33)	22 (35)	22 (41)	
Mineralocorticoid receptor antagonists	20 (30)	16 (26)	16 (30)	
Hydralazine-nitrate combination	10(15)	11 (18)	13 (24)	
Antiplatelet	18 (27)	15 (24)	16 (30)	
Anticoagulant	15 (22)	19(31)	19 (35)	
Implantable cardioverter-defibrillator	21 (31)	20 (32)	12 (22)	
Cardiac resynchronization therapy	21 (31)	16 (26)	14 (26)	
Descriptive variables are presented as frequency (percentages) and continuous and ordinal variables are presented as Mean ± Standard deviation (SD), one-way ANOVA was used for continuous and ordinal variables	uous and ordinal variables are presented as I	Mean±Standard deviation (SD), one-way Al	.NOVA was used for continuous ar	nd ordinal variables

Descriptive variables are presented as in equency (percentages) and continuous on variables, all results were significant if the p-value was reported as less than 0.05

Table 3: Hospitalization during 12 weeks from the start of the intervention(s)

	Cohorts						
		DB	00		Comparisons		
	Intermittent intravenous	_			q-value		
Patients	levosimendan+oral Qili	dobutamine+oral Qili	Qili qiangxin				
Treatment(s)+usual care+medications	Qiangxin capsules	qiangxin capsules	capsules	p-value	LN vs. DB	LN vs. 00	DB vs. QQ
Patients included in the analysis	29	62	54				
Heart failure hospitalization	11 (16)*	12 (19)	20 (37)	0.018	0.564	3.814	3.213
Cardiovas cular hospitalization	15 (22)	16 (26)	18 (33)	0.396	N/A	N/A	N/A
Non-cardiovascular hospitalization	10 (15)	12 (19)	14 (26)	0.321	N/A	N/A	N/A
All cause hospitalization	36 (54)*	40 (65)*	52 (93)	<0.0001	2.028	7.714	5.658
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- F			1.)		

Variables are presented as frequency (percentages), one-way ANOVA was used for statistical analysis, Tukey test was used for statistical analysis, all results were significant if the p-value was reported less than 0.05 and the q-value was reported more than 3.329, *Significantly lower numbers of patients than those of the QQ cohort, N/A: Not applicable

Table 4: Adverse events and mortality reported during 1 year from the start of the intervention(s)

	Cohorts						
	N.	DB	00		Comparisons		
	Intermittent intravenous	Sn			q-value		
Event Treatment(s)+usual care+medications	ievosimendan+orai Qili giangxin capsules	dobutamine+oral QIII giangxin capsules	Qili qiangxin capsules	p-value	LN vs. DB	LN vs. 00	DB vs. 00
Patients included in the analysis	67		54	-			
Infections and infestations	14 (21)*	2 (3)	2 (4)	90000	4.923	4.615	0.126
Cardiac disorders	29 (43)*	10 (16)	3 (6)	<0.0001	5.558	7.442	2.049
Gastrointestinal disorders	10 (15)*	7 (11)	7 (13)	0.831	N/A	N/A	N/A
Hypokalemia	8 (12)*	1(2)	1(2)	0.013	3.704	3.487	0.081
Skin disorders	5 (7)*	0(0)	0 (0)	0.011	3.735	3.599	N/A
Death	21 (31)	13 (21)	4 (7)	0.005	2.096	4.659	2.594

Patients had reported one or more events, variables are presented as frequency (percentages), one-way ANOVA was used for statistical analysis, Tukey test was used for statistical analysis, all results were significant if the p-value was reported less than 0.05 and the q-value was reported more than 3.329, N/A: Not applicable, *Levosimendan-emergent adverse effects



Fig. 4: Euro quality of life five-dimensional-five-level evaluation

Chinese utility value set was used for the evaluation of the EQ-5D-5L score. 1: Full health, 0: Death and <0: Health status worse than death

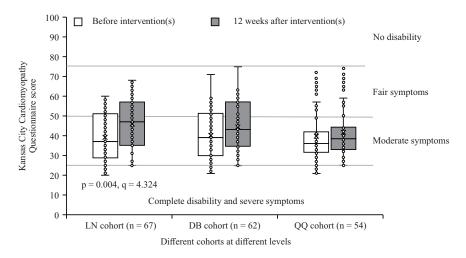


Fig. 5: Kansas City Cardiomyopathy Questionnaire score evaluation

0: Death, 1-25: Complete disability and severe symptoms, 26-50: Moderate symptoms, 51-75: Fair symptoms and 76-100: No disability

hospitalization due to heart failure than Qili Qiangxin capsules alone (p = 0.018, q = 3.814) during 12 weeks from the start of the intervention(s). Intermittent intravenous infusions of levosimendan plus Qili Qiangxin capsules (p<0.0001, q = 7.714) and intermittent intravenous infusions of dobutamine plus Qili Qiangxin capsules (p<0.0001, q = 5.658) were reduced all-cause hospitalization than Qili Qiangxin capsules alone during 12 weeks from the start of the intervention(s). The details of hospitalization due to different causes are reported in Table 3.

Health-related quality of life

EQ-5D-5L score: At EL only patients of the LN cohort $(0.40\pm0.27 \text{ vs. } 0.52\pm0.25, \text{ p}=0.019, \text{ q}=3.872)$ were improved EQ-5D-5L score as compared to the BL (Fig. 4). At

EL, a total of 2 (3%), 4 (6%) and 4 (7%) of patients from the LN, DB and QQ cohorts, respectively had EQ-5D-5L scores less than 0 (the health status worse than death).

KCCQ score: Patients of only the LN cohort $(39.21\pm11.71 \text{ vs.} 45.81\pm12.18$, p=0.004, q=4.324) were an improved KCCQ score at EL (Fig. 5). At EL, 3 (4%), 4 (6%) and 4 (7%) of patients of the LN, DB and QQ cohorts respectively had a complete disability and severe symptoms (KCCQ score: 1-25).

6MWDT value: There were no significant differences for 6MWDT values between BL and EL for patients of all three cohorts. At BL, there were 3 (5%), 3 (5%) and 5 (9%) of the patients with normal 6 MWDT value (> 500 m) into the LN, DB

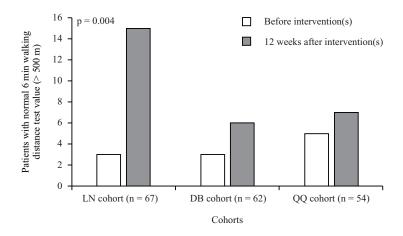


Fig. 6: Patients with the normal 6-min walking distance test value (>500 m)

and QQ cohorts, respectively. Those were become 15 (22%), 6 (10%) and 7 (13%) into LN, DB and QQ cohorts respectively at EL. Intermittent intravenous infusions of levosimendan plus Qili Qiangxin capsules were increased numbers of patients with a normal 6MWDT value (>500 m) at EL as compared to BL (p = 0.004). The numbers of the patients with normal 6 MWDT values of different cohorts at different time intervals are presented in Fig. 6.

Adverse events: Hypotension, atrial and ventricular rhythm were reported in all patients. Patients of the LN cohort were reported infections and infestations, cardiac disorders, gastrointestinal disorders, hypokalemia and skin disorders as the adverse events during 1-year from the start of the intervention(s). While that for patients of DB and QQ cohorts was gastrointestinal disorders. High numbers of death were reported in the LN cohort than the QQ cohort (21 vs. 4, p = 0.005, q = 4.659) during 1-year of follow-up (Table 4).

DISCUSSION

At EL for intermittent intravenous infusions of levosimendan plus oral Qili Qiangxin capsules, patients were successful for more than 25% % then those who received intermittent intravenous infusions of dobutamine plus Qili Qiangxin capsules or oral Qili Qiangxin capsules only. The results of the NTproBNP of the current study agreed with those of the multicenter LION-HEART trial¹, LevoRep trial² and the REVIVE trial¹⁰ on levosimendan and the multicenter trial on Qili Qiangxin capsules⁴. NTproBNP is a biologically inactive fragment of brain natriuretic peptide, which is released by the heart in condition(s) of myocardial tension and in the heart failure condition, the elevated level of NTproBNP is found in

blood plasma⁴. Intravenous levosimendan at short time intervals improves the left ventricular performance but does not increase oxygen consumption, which decreases NTproBNP level¹. The reason for the failure of dobutamine for the management of advanced chronic heart failure is its shorter half-life and no active metabolite²¹. Qili Qiangxin capsules act on the down-regulating ratio of tumour necrosis factor-α/interleukin-10 and improve cardiac functions²², maintenance anti-inflammatory and pro-inflammatory cytokines balance⁴, maintenance signalling pathway of the down-regulating cardiac-chymase and production of β-chymase²³, inhibit angiotensin II type 1 receptor, promote cardiomyocyte proliferation and activate ErbB receptors²⁴. Qili Qiangxin capsules as an adjuvant treatment with intermittent intravenous infusions of levosimendan could be preferable for optimal medical management of advanced chronic heart failure patients to improve prognosis.

At EL, intermittent intravenous infusions of levosimendan plus Qili Qiangxin capsules were reduced hospitalization due to heart failure and all-cause hospitalization. The results of the hospitalization of the current study agreed with those of the multicenter LION-HEART trial¹ and randomized trial¹⁶ on levosimendan and the multicenter trial on Qili Qiangxin capsules⁴. Qili Qiangxin capsules as an adjuvant treatment with intermittent intravenous infusions of levosimendan could reduce events and reduces the hospitalization of advanced chronic heart failure patients.

At EL, intermittent intravenous infusions of levosimendan plus Qili Qiangxin capsules were successful in the improvement of the EQ-5D-5L score of patients. The results of health-related quality of life of the current study agreed with those of the multicenter LION-HEART trial¹ on levosimendan and the multicenter trial on Qili Qiangxin capsules⁴ but are

not agreed with those of the LevoRep trial² on levosimendan. The reason for contradictory results is that patients in the LevoRep trial² were received 14 mg per patient levosimendan. While in the current study patients were received 25.12 ± 1.22 mg per patient levosimendan. Also, the sample size in the LevoRep trial² was small than that of the current study. Qili Qiangxin capsules as an adjuvant treatment with intermittent intravenous infusions of levosimendan may improve the health-related quality of life of advanced chronic heart failure patients.

At EL, intermittent intravenous infusions of levosimendan plus Qili Qiangxin capsules were successful in the improvement of the KCCQ score of patients. The results of the KCCQ score of patients of the current study agreed with those of the LevoRep trial² and the multicenter trial on Qili Qiangxin capsules⁴. Qili Qiangxin capsules as an adjuvant treatment with intermittent intravenous infusions of levosimendan may improve the social quality of life of patients.

At EL, intermittent intravenous infusions of levosimendan plus Qili Qiangxin capsules were increased numbers of patients with a normal 6MWDT value (>500 m). The results of the physical quality of life of patients of the current study agreed with those of the LevoRep trial² and the multicenter trial on Qili Qiangxin capsules⁴. Qili Qiangxin capsules as an adjuvant treatment with intermittent intravenous infusions of levosimendan may improve the physical and walking quality of patients.

During 1-year from the start of the intervention(s), patients who received intermittent intravenous infusions of levosimendan plus Qili Qiangxin capsules were reported higher adverse events and mortality. While patients who received Qili Qiangxin capsules only were reported fewer adverse events and mortality. The results of adverse events and morality of the current study agreed with those of the multicenter LION-HEART trial¹, the LevoRep trial², randomized trial¹⁶ and REVIVE trial¹⁰ on levosimendan and the multicenter trial on Qili Qiangxin capsules4. Intermittent intravenous infusions of levosimendan and dobutamine are responsible for higher adverse events and mortality¹⁰. Also, the dose of 0.2 µg/kg/min intravenous levosimendan is responsible for mortality9. Intermittent intravenous infusions of levosimendan and dobutamine have increased the risk of adverse events and mortality.

Even there are reported adverse effects of hypotension, atrial and ventricular rhythm of intermittent intravenous infusions¹⁰ of levosimendan and dobutamine is preferred in

the current study and bolus dose followed by intravenous infusion³ was not preferred. The bolus dose is caused by trial fibrillation and sudden death²¹. Also, intermittent intravenous infusions are more effective compared to the bolus dose⁷. Therefore, patients were treated with intermittent intravenous infusions of 6-cycles at 15 days intervals.

The limitations of the study, for example, non-randomized retrospective study with small sample size and lack of blinded, adequately controlled compared with placebo or conventional medicine, randomized trial with sufficient statistical power to confidentially and accurately interpret the effect. The small sample size is also responsible for α -error². The randomized trial is not possible in the Chinese population for this study because Chinese people have legal rights for the selection of traditional Chinese medicine for their treatment(s) of disease(s). The study evaluation period is short- and long-term outcomes are not evaluated. The confounders that may affect outcomes are not evaluated. The study lacks characterization of the individual components of Qili Qiangxin capsules.

CONCLUSION

Oral Qili Qiangxin capsules as an adjuvant treatment with intermittent intravenous infusions of levosimendan could be reduced N-terminal pro-B-type natriuretic peptide and hospitalization of advanced chronic heart failure patients. Also, they were successful in the improvement of health-related, social, physical and walking quality of life of advanced chronic heart failure patients. Unlike oral Qili Qiangxin capsules alone and intermittent intravenous infusions of dobutamine plus oral Qili Qiangxin capsules, intermittent intravenous infusions of levosimendan plus oral Qili Qiangxin capsules have increased the risk of adverse events and mortality. The findings of the study provide promising results of significant interest to the international medical community. A large non-randomized trial is required to state the hypothesis clearly.

SIGNIFICANCE STATEMENT

The retrospective study discovers the potential impact of adjuvant treatment of Qili Qiangxin capsules on inotropic agent on N-terminal pro-B-type natriuretic peptide, hospitalization and quality of life of outpatients with advanced chronic heart failure and recommended the Qili Qiangxin capsules as an adjuvant treatment with

intermittent intravenous infusions of levosimendan for optimal medical management of advanced chronic heart failure patients to improve prognosis. The finding will help the cardiologists to uncover the critical issues of advanced chronic heart failure that many physicians were not able to explore. Thus, a new theory on the management of advanced chronic heart failure may be arrived at.

ACKNOWLEDGMENT

This study was supported by Science and Technology Plan of Health Commission of Jiangxi Provincial (NO.20203097).

REFERENCES

- Comín-Colet, J., N. Manito, J. Segovia-Cubero, J. Delgado and J.M.G. Pinilla *et al.*, 2018. Efficacy and safety of intermittent intravenous outpatient administration of levosimendan in patients with advanced heart failure: The LION-HEART multicentre randomised trial. Eur. J. Heart Fail., 20: 1128-1136.
- Altenberger, J., J.T. Parissis, A. Costard-Jaeckle, A. Winter and C. Ebner et al., 2014. Efficacy and safety of the pulsed infusions of levosimendan in outpatients with advanced heart failure (LevoRep) study: A multicentre randomized trial. Eur. J. Heart Fail., 16: 898-906.
- Zhang, D., Y. Yao, J. Qian and J. Huang, 2015. Levosimendan improves clinical outcomes of refractory heart failure in elderly Chinese patients. Med. Sci. Monit., 21: 2439-2445.
- 4. Li, X., J. Zhang, J. Huang, A. Ma and J. Yang *et al.*, 2013. A multicenter, randomized, double-blind, parallel-group, placebo-controlled study of the effects of qili qiangxin capsules in patients with chronic heart failure. J. Am. Coll. Cardiol., 62: 1065-1072.
- Yi. G.Y., J.X. Li, J. Zhang, L.L. Niu and C.Y. Zhang, 2015.
 Repetitive infusion of levosimendan in patients with chronic heart failure: A meta-analysis. Med. Sci. Monit., 21:895-901.
- Papp, Z., I. Édes, S. Fruhwald, S.G.D. Hert and M. Salmenperä et al., 2012. Levosimendan: Molecular mechanisms and clinical implications. Int. J. Cardiol., 159: 82-87.
- Tasal, A., M. Demir, M. Kanadasi, A. Bacaksiz and M.A. Vatankulu *et al.*, 2014. Comparison of single-dose and repeated levosimendan infusion in patients with acute exacerbation of advanced heart failure. Med. Sci. Monit., 20: 276-282.

- Nieminen, M.S., J. Altenberger, T. Ben-Gal, A. Böhmer and J. Comin-Colet *et al.*, 2014. Repetitive use of levosimendan for treatment of chronic advanced heart failure: Clinical evidence, practical considerations and perspectives: An expert panel consensus. Int. J. Cardiol., 174: 360-367.
- 9. Landoni, G., G. Biondi-Zoccai, M. Greco, T. Greco and E. Bignami *et al.*, 2012. Effects of levosimendan on mortality and hospitalization. A meta-analysis of randomized controlled studies. Crit. Care Med., 40: 634-646.
- Packer, M., W. Colucci, L. Fisher, B.M. Massie and J.R. Teerlink et al., 2013. Effect of levosimendan on the shortterm clinical course of patients with acutely decompensated heart failure. JACC: Heart Fail., 1:103-111.
- Lahtinen, P., O. Pitkänen and T. Musialowicz, 2014.
 Levosimendan increases bleeding risk after heart valve surgery: A retrospective analysis of a randomized trial.
 J. Cardiothorac. Vasc. Anesthesia, 28: 1238-1242.
- 12. Yan, S.B., X.Y. Wang, G.K. Shang, Z.H. Wang and Q.M. Deng *et al.*, 2020. Impact of perioperative levosimendan administration on risk of bleeding after cardiac surgery: A meta-analysis of randomized controlled trials. Am. J. Cardiovasc. Drugs, 20: 149-160.
- Sun, J., K. Zhang, W.J. Xiong, G.Y. Yang and Y.J. Zhang et al., 2016. Clinical effects of a standardized Chinese herbal remedy, Qili Qiangxin, as an adjuvant treatment in heart failure: Systematic review and meta-analysis. BMC Compl. Alt. Med., Vol. 16. 10.1186/s12906-016-1174-1.
- 14. Yu, Y., A. Gupta, C. Wu, F.A. Masoudi and X. Du *et al.*, 2019. Characteristics, management and outcomes of patients hospitalized for heart failure in China: The China peace retrospective heart failure study. J. Am. Heart Assoc., Vol. 8. 10.1161/jaha.119.012884.
- Yao, W., I. Cheang, S. Liao, Y. Zhou and F. Zhou et al., 2020. Study protocol for a randomized controlled trial: Qiliqiangxin in heart failUre: Assessment of reduction in morTality (Quest). BMC Compl. Med. Ther., Vol. 20. 10.1186/s12906-020-2821-0.
- Bonios, M.J., J.V. Terrovitis, S.G. Drakos, F. Katsaros and C. Pantsios *et al.*, 2012. Comparison of three different regimens of intermittent inotrope infusions for end stage heart failure. Int. J. Cardiol., 159: 225-229.
- 17. Liang, Z., T. Zhang, T. Lin, L. Liu and B. Wang *et al.*, 2019. Health-related quality of life among rural men and women with hypertension: Assessment by the EQ-5D-5L in Jiangsu, China. Qual. Life Res., 28: 2069-2080.
- 18. Wang, Z., Z. Chen, L. Zhang, X. Wang and G. Hao *et al.*, 2018. Status of hypertension in China: Results from the China hypertension survey, 2012-2015. Circulation, 137: 2344-2356.

- 19. Luo, N., G. Liu, M. Li, H. Guan, X. Jin and K. Rand-Hendriksen, 2017. Estimating an EQ-5D-5L value set for China. Value Health, 20: 662-669.
- Hao, Y., L. Zhang, Z. Zhang, L. Chen, N. He and S. Zhu, 2019. Tai Chi exercise and functional electrical stimulation of lower limb muscles for rehabilitation in older adults with chronic systolic heart failure: A nonrandomized clinical trial. Braz. J. Med. Biol. Res., Vol. 52. 10.1590/1414-431x20198786.
- 21. Mebazaa, A., M.S. Nieminen, M. Packer, A. Cohen-Solal and F.X. Kleber *et al.*, 2007. Levosimendan vs dobutamine for patients with acute decompensated heart failure: The survive randomized trial. JAMA, 297: 1883-1891.
- 22. Xiao, H., Y. Song, Y. Li, Y.H. Liao and J. Chen, 2009. Qiliqiangxin regulates the balance between tumor necrosis factor- α and interleukin-10 and improves cardiac function in rats with myocardial infarction. Cell. Immunol., 260: 51-55.
- 23. Liu, W., J. Chen, T. Xu, W. Tian, Y. Li, Z. Zhang and W. Li, 2012. Qiliqiangxin improves cardiac function in spontaneously hypertensive rats through the inhibition of cardiac chymase. Am. J. Hypertens., 25: 250-260.
- 24. Zou, Y., L. Lin, Y. Ye, J. Wei and N. Zhou *et al.*, 2012. Qiliqiangxin inhibits the development of cardiac hypertrophy, remodeling, and dysfunction during 4 weeks of pressure overload in mice. J. Cardiovasc. Pharmacol., 59: 268-280.