

International Journal of Pharmacology

ISSN 1811-7775

ISSN 1811-7775 DOI: 10.3923/ijp.2024.748.767

Research Article

Integrated Computational Analysis of Physicochemical Features, Biological Properties, Kinase Target Prediction and Biotransformation Pathways in Drug Discovery

¹Mohamed Sabri Bensaad, ²Dhiya Eddine Bensaad, ³Mohamed Amine Kahoul, ⁴Dania S. Waggas, ⁵Roua S. Baty, ⁶Rokayya Sami, ⁷Hamsa Jameel Banjer, ^{8,9}Siraj B. Alharthi, ¹⁰Ruqaiah I. Bedaiwi, ¹⁰Zeyad M. Alharbi, ¹⁰Mohammad A. Alanazi, ¹¹Nouf H. Alsubhi, ¹²Ashwaq M. Al-Nazawi, ¹³Nada Alqadri and ¹³Helal F. Al-Harthi

Abstract

Background and Objective: Recently, many scientific teams have been able to elucidate the structural and functional aspects of highly complex macromolecules due to the significant contribution of highly sophisticated bioinformatics platforms, representing these days a primordial steps in drug design and development processes. **Materials and Methods:** In this context, this work aimed to investigate in depth some fundamental properties of four bio-compounds, using diverse computational approaches but also to reveal the distribution of these compounds across kinase families and their possible biotransformation pathways. **Results:** The degree of polarity of compound 1 was the most important among the four tested compounds, while compound 2 exhibited the best natural product-likeness property score (P=1). Concerning metabolism part, data revealed that almost all tested compounds could be considered as non-substrate and non-inhibitor for cytochrome P450 isoforms, but could be effective to target key kinases, especially the class of serine/threonine-protein kinase. The hepatoprotective effect of compound 3 was considerably high (Pa=0.902), while compound 4 could be suitable to inhibit testosterone 17 beta-dehydrogenase (NADP+) (Pa=0.912). **Conclusion:** Both experimental and bioinformatics analysis are mandatory in this era to characterize the full potential of molecules, providing advanced research in modern biology.

Key words: Bio-compounds, bioinformatics platforms, biotransformation, fundamental properties, kinases

Citation: Bensaad, M.S., D.E. Bensaad, M.A. Kahoul, D.S. Waggas and R.S. Baty *et al.*, 2024. Integrated computational analysis of physicochemical features, biological properties, kinase target prediction and biotransformation pathways in drug discovery. Int. J. Pharmacol., 20: 748-767.

Corresponding Author: Rokayya Sami, Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Kingdom of Saudi Arabia

Copyright: © 2024 Mohamed Sabri Bensaad *et al.* This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Funding: This research was funded by Taif University, Saudi Arabia, Project No. (TU-DSPP-2024-10).

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

¹Department of Biology of Organisms, Faculty of Natural and Life Sciences, University Batna 2, Fesdis, Batna 05078, Algeria

²Biological Activities of Foods, Food Sciences Laboratory, Department of Food Technology, Institute of Veterinary Sciences and Agronomic Sciences, University Batna 1, Batna 05000, Algeria

³Laboratory of Food Sciences, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, Batna 05000, Algeria

⁴Department of Pathological Sciences, Fakeeh College for Medical Sciences, P.O. Box 2537, Jeddah 21461, Kingdom of Saudi Arabia

⁵Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

⁶Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Kingdom of Saudi Arabia

⁷Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Kingdom of Saudi Arabia

⁸Department of Biological Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia

⁹Molecular Diagnostic Unit, Al Hada Armed Forces Hospital, Taif, Kingdom of Saudi Arabia

¹⁰Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia

Department of Biological Sciences, College of Science and Arts, King Abdulaziz University, Rabigh 21911, Kingdom of Saudi Arabia

¹²Department of Epidemiology, Faculty of Public Health and Tropical Medicine, Jazan University, Jazan 82726, Kingdom of Saudi Arabia

¹³Department of Biology, Turabah University College, Taif University, Taif 21995, Kingdom of Saudi Arabia

INTRODUCTION

The prosperity of a society has always been linked to scientific and technological progress and scientists agree to say that all disciplines are complementary to each other to understand more our surrounding environment, to treat complex data but also to resolve and overcome many problems related to our daily life¹. As an example, technology-based interventions allowed scientists to improve the nutritional quality of our food's daily consumption, especially in minerals and protein, which has been recently proven using plant-based milk analogs². Moreover, this technological innovation allowed also the elaboration of more effective clinical protocols to face and overcome pandemic situation such as COVID-19³, by providing more targeted approaches and prevention strategies.

Among these disciplines, bioinformatics is playing a crucial role due to the fact that these innovative methods can give a coherent and accurate prediction due to their accurate algorithms. As an example, simulations approaches allowed scientists to analyze a vast expanse of sequenced genomes, which helped geneticists to identify a potential molecular biomarkers, especially those related to metabolic and depressive disorders⁴. Bioinformatics allowed also the scientific community to create a common database repository platform in order to share crucial informations related to the physico-chemical, pharmacokinetics and molecular aspects of chemicals⁵, providing an important gain of time, a constructive collaboration and thus serving the research community at the international level.

These innovative simulation techniques had also a positive impact on the sectors of applied microbiology and biotechnology by allowing scientists to better understand the bioremediation of soils by biological means, especially the various ways of biodegradation of chemicals, such as organic materials by microorganisms including bacteria, fungi or algae⁶. This has also allowed over time to develop sustainable management techniques to properly use macro-or microplastics from biodegradable plastics and thus to minimize the environmental impact of harmful products⁷.

At the internal level, human gut host more than 100 trillion of microorganisms, in which most of them live in colon and ensure crucial metabolic functions via enzymatic systems⁸. For example, this flora allow a coherent metabolism process of xenobiotic, shifting their pharmacokinetic and pharmacodynamic characteristics in order to synthesis active metabolites^{9,10}, which allowed scientists to develop innovative and efficient techniques to eliminate toxic chemicals and thus to clean up industrial, agricultural or military sites¹¹. Let's not

forget the impact of bioinformatics on enzymology, in which this discipline offered an accurate modeling process of kinase-substrate relationships but also to analyze generated data in a reproducible and robust manner to better understand protein kinases regulatory network, which allowed clinicians to learn more about kinase signaling pathway in dendritic development associated with neuropsychiatric diseases^{12,13}.

Our previous research on the plant *Centaurea tougourensis* revealed the pharmacological potential of this species. Indeed, various *in vitro* and *in vivo* techniques were performed and allowed us to characterize the antioxidant, antidiabetic, hepatoprotective, anti-inflammatory, anti-ulcer, neuroprotective, haemostatic, wound healing and antimicrobial capacities of the n-butanol and ethyl acetate fractions of this plant¹⁴⁻¹⁸. In addition, the various phytochemical screening, principally made by GC-MS and HPLC allowed our team to identify a large number of phyto-compounds, which could be responsible of these pharmacological effects^{17,19}. However, the physico-chemical and biological aspects of most of these bio-compounds was not determined yet, which explain the necessity of this work.

In this study, we preferred to investigate various aspects of compounds using computational intelligence (CI) methods instead of regular traditional laboratory techniques, since the algorithmic system integrated in each used server allow to sift through enormous amounts of biological data⁵. In this context, several accredited bioinformatics tools used in this study such as SwissADME, AVCpred, DIGEP Pred as well as new introduced platforms such as KinScreen and BioTransformer 3.0, whose allowed the resolution of the structuro-functional aspects of many compounds²⁰⁻²⁹, were used in this work in order to predict for the first time some physico-chemical product-likeness features, natural characteristics, pharmacokinetics, pharmacological aspect, antimicrobial property, gene expression profiles, kinase targets and biotransformation pathways of Centaurea tougourensis bioactive compounds to reveal the full potential of these phyto-compounds and thus to make the initial steps before pre-clinical research.

MATERIALS AND METHODS

Phyto-compounds origin: In the present work, some fundamental properties has been predicted and investigated in depth using 4 compounds that were previously determined by our team via GC-MS from the species *C. tougourensis* (voucher specimen: CT/2019/LPTPCMB)¹⁹. Indeed, the physicochemical, biological properties as well as possible

biotransformation pathways of these compounds were studied. These compounds are, respectively; 2,5-Monoformal-l-rhamnitol (compound 1), Cholest-7-en-3,beta,5,alpha,-diol-6,alpha,-benzoate (compound 2), 7,8-epoxylanostan-11-ol, 3-acetoxy- (compound 3) and 1H-pyrrole-2,5-dione, 3-ethyl-4-methyl-(compound 4).

Computational study

Physicochemical and natural product-likeness characteristics: The intrinsic physical and chemical characteristics of each tested compound has been predicted via SwissADME web-service (http://www.swissadme.ch/, accessed on 11 January, 2023). For this purpose, 6 parameters were investigated and noting that the colored zone in the figure, indicate the suitable physicochemical space for oral bioavailability²⁰. In addition, the natural product-likeness characteristics of each compound was estimated using a new machine learning approach integrated in NP-Scout system, developed by the Computational Drug Discovery and the University of Vienna team from (https://nerdd.univie.ac.at/npscout/, accessed on 13 January, 2023).

Pharmacokinetics profile: The ADMET properties is considered a crucial throughout drug design process and noted for the failure of approximately 60% of all phases of clinical research²¹. In this context, the pharmacokinetics and toxicity of each tested compound has been predicted using admetSAR 2.0 interface (http://lmmd.ecust.edu.cn/admetsar2, accessed on 19 January, 2023)²². Noting that other important ADMET parameters (CYP inhibitory promiscuity, UGT catalyzed, nephrotoxicity, reproductive toxicity, respiratory toxicity, mitochondrial toxicity, skin sensitisation, binding process with PPAR gamma and aromatase receptors) were recently added in the platform system, which allowed us to investigate these compounds it in depth to enrich the quality of this work.

Pharmacological properties: More than 4000 types of biological effects can be predicted with the online platform of PASS online²³. In this context, the database of this server was used to allow the prediction of bioactivity score of the four studied compounds (http://way2drug.com/passonline/, accessed on 25 January 2023).

Antiviral, antibacterial and antifungal properties prediction: In order to explore these parameters, several platforms were used as follow; AVCpred to predict the antiviral activity of our compounds against human viruses, based on

ChEMBL database (http://crdd.osdd.net/servers/avcpred/, accessed on 3 March, 2023)²⁴, antiBac-Pred for the antibacterial capacity on more than 353 bacteria (http://www.way2drug.com/antibac/, accessed on 7 February, 2023)²⁵ and MICF for the antifungal effect on 38 fungi (http://www.way2drug.com/micF/, accessed on 9 March, 2023)²⁶. Noting that these servers generate informations based on ChEMBL database.

Kinase targets prediction: Protein kinases contribute to the regulation of almost all aspects of cell function and represents a particular interest as therapeutic targets. However, kinase may also be responsible of pathological state and disease manifestation at the organismal level²⁷. For this purpose, KinScreen, a new platform has been used to calculate the probability of our compounds to target various classes of kinases. This webserver allow also the visualization of results in the form of a mapped kinome tree (https://www.way2drug.com/KinScreen/, accessed on 12 February, 2023).

Gene expression profiles: The possible influence of our compounds to induce changes in gene expression profiles was investigated using DIGEP Pred web service (http://www.way2drug.com/ge/, accessed on 17 February, 2023) and thus to understand the upregulation or downregulation processes of selected genes²⁸.

Xenobiotics biotransformation (human gut microbial) pathways prediction: For this test, BioTransformer 3.0, a newly Canadian server was used to predict the plausible human gut microbial enzyme-catalysed reaction pathways of our compounds. This server use metabolic transformation module including both knowledge-based approach and machine learning based approach to displays all predicted reaction pathways of transformed compounds²⁹ (https://biotransformer.ca/, accessed on 25 February, 2023). Noting that this platform; use the same approach and accuracy as EAWAG Pathway Prediction system.

RESULTS AND DISCUSSION

Canonical format extraction: In order to correctly predict the properties of particular chemicals, the use of canonicalization algorithm is mandatory to generate the respective canonical SMILE of compound. Table 1 reports all details about the molecular formula, structure, PubChem Identifier as well as canonical smiles of each targeted compound.

Table 1: Structural characteristics of each selected compound

Extract	Compound	Molecular formula	3D structure	PubChem identifier	Canonical smiles
n-BuOH	1	C ₇ H ₁₂ O ₆		552228	CC1C(C(C(OC(=0)O1)CO)O)O
	2	$C_{34}H_{50}O_4$		91703478	CC(C)CCCC(C)C1CCC2C1(CCC3C2=CC(C4(C 3(CCC(C4)O)C)O)OC(=O)C5=CC=CC=C5)C
EA	3	$C_{32}H_{54}O_4$		541562	CC(C)CCCC(C)C1CCC2(C1(CC(C3C24C(O4)C C5C3(CCC(C5(C)C)OC(=O)C)C)O)C)C
	4	C ₇ H ₉ NO ₂		29995	CCC1=C(C(=O)NC1=O)C

Physicochemical and natural product-likeness characteristics: The determination of physicochemical parameters is fundamental to characterize and optimize the structure of candidate compounds or to adjust their composition in order to obtain the desired functionality³⁰. These properties help also to anticipate formulation process but also to measure the performance of specific compound in a reaction mixture³¹. As represented in Fig. 1, the proportion of unsaturation of compound 4 was considered the best, suggesting a higher binding affinity in cyclic hydrocarbons and thus giving addition reactions³². That's why compounds which possesses this property are qualified more reactive and are usually involved in many industrial processes, especially for the production of pesticides, paints, fuel³³, but also as a basis for drug design and synthesis processes³⁴.

However, in term of polarity, compound 1 exhibited better result and this parameter is crucial in pharmacology. Indeed, it was reported that polar drugs or their respective metabolites can be filtered and excreted in appreciable amounts by kidneys than non-polar drugs³⁵. The fact that polarity confers to molecules the capacity to be absorbed across gut wall by transcytosis, thus may partially explain why highly polar oral drugs are often used as antibiotics for the treatment of gastrointestinal infections³⁶.

On the other hand, the insolubility, lipophilicity and flexibility of compounds 2 and 3 was considered the most important among the four tested compounds, which mean that these two compounds could potentially affect lipid-soluble drugs transport through lipid structures, in positive way³⁷, but also a considerable impact on binding and

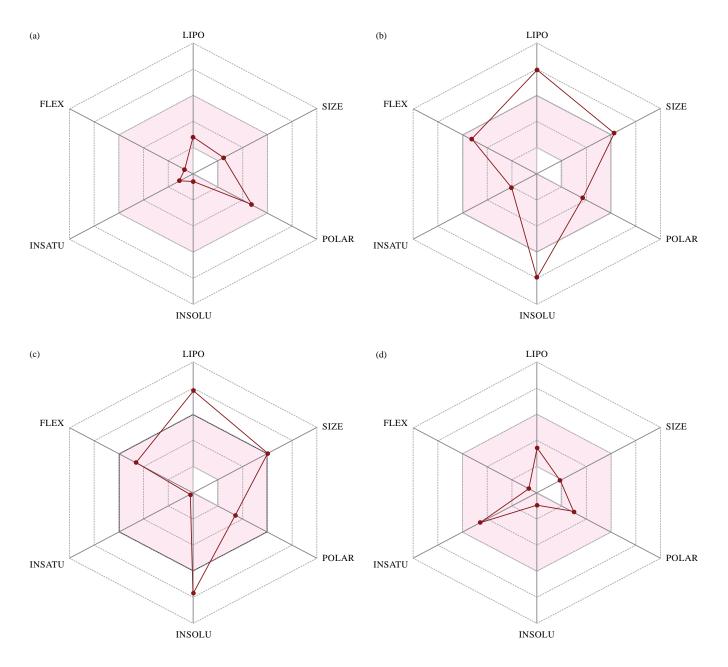


Fig. 1(a-d): Radar plots describing the physicochemical characteristics of each tested compound, (a) Compound 1, (b) Compound 2, (c) Compound 3 and (d) Compound 4

LIPO: Lipophilicity, SIZE: Size, POLAR: Polarity, INSOLU: Insolubility, INSATU: Unsaturation and FLEX: Flexibility

distribution process of these drugs allowing them to reach the therapeutic site of action in optimal conditions³⁸. Its also interesting to note that high flexibility leads to stronger binding affinity and thus guarantee a certain stability of the protein-ligand complex³⁹. Data also revealed that among the tested compounds, three of them could possibly possess natural product-likeness property, in which compound 2 exhibited a perfect score (Table 2). This

possibility could be directly linked to the structural and physico-chemical aspects of these compounds, since Nakashima *et al.*³⁰ revealed that these features have a clear impact on the concepts of drug-likeness and thus the expected pharmacological response of a chemical. Also, let's not forget that NP-likeness is considered nowadays a crucial criteria during the selection and designing process of novel drugs⁵.

Table 2: Estimation of the Natural Product-Likeness property of the four selected compounds

	n-BuOH ext	ract	EA extract		
Parameters/compounds	Compound 1	Compound 2	Compound 3	Compound 4	
Prediction	Possible NP-likeness	Possible NP-likeness	Possible NP-likeness	None NP-likeness	
NP class probability	0.99	1 (perfect score)	0.99	NA	
Probability Map	ОН	OH OH	OH	NA	

NA: Not applicable and NP-likeness: Natural product-likeness

ADMET profile: In pharmacology, pharmacokinetics properties play a crucial role in drug design and development processes but also to understand the safety and efficacy of a particular drug candidate⁴⁰. As reported in Table 3, all tested compounds could be absorbed by human intestine but also permeable to blood brain barrier. These informations means that our compound could be helpful to increase the permeability of drugs to brain, which could be helpful to treat CNS Inflammation using a process called nanocarriers⁴¹. This also suggest that our compound may also be good candidate to regulate the transport of biological substances that are essential for brain function⁴², but also to study gastrointestinal disease in depth, such as ulcerative colitis⁴³.

Data also revealed that almost all tested compounds may have a sufficient oral bioavailability in humans, except compound 2. This information is interesting and suggest that our compounds may easily enter systemic circulation, thereby accessing the site of action in order to exert the desired pharmacological effect⁴⁴. Its important to underline that this parameter is considered nowadays a crucial factor in determining the fate of new drugs in clinical trials⁴⁵. However, it seems that only compound 4 could be permeable to Caco-2 cells. Noting that this parameter is used nowadays to measures the rate of flux of a compound and thus to predict *in vivo* absorption of drugs⁴⁶.

In term of distribution, mitochondria was the principal targeted organelle for the four tested compounds, which means that these natural compounds may have the capacity to slowdown the excessive production of mitochondrial reactive oxygen species (ROS) by controlling/regulating the activity of mitochondrial Oxidative Phosphorylation (OXPHOS) system⁴⁷, which is very important, since this organelle is well known to generate approximately 90% of ROS⁴⁸ and it has been reported that an imbalance in redox status may increase the risk of developing cancer⁴⁹.

Concerning metabolism part, data revealed that almost all tested compounds could be considered as non-substrate and non-inhibitor for cytochrome P450 isoforms, suggesting that

they will not interfere with drugs and other xenobiotics biotransformation process made by cytochrome P450 enzymes⁵⁰. The four compounds exhibited also a low CYP inhibitory promiscuity, which is very logic since this parameter refer to the capacity for a compound to bind and decrease the activity of various CYP450 isoform enzymes⁵¹. Its also interesting to note that compounds 1, 2 and 3 may increase the catalytic function of Uridine Diphospho-Glucuronosyltransferase (UGT) since this category of enzyme is considered a major phase II drug-metabolizing enzymes⁵², but play also a major role in metabolic and detoxification pathways⁵³.

In term of toxicity, the tested compounds seem to be non-hepatotoxic, while only compound 2 could be non-nephrotoxic, which means that this compound could be considered a potential candidate in the formulation process of nephroprotective drugs in order to limit renal tubular dysfunction and a cumulative impairment in kidney⁵⁴, since pathologies that affect this organ such as Acute Kidney Injury (AKI) concern 13.3% of the worldwide population. Noting that this compound exhibited the lowest rate of acute oral toxicity⁵⁵. However, only compound 1 appear to be non-toxic for the reproductive system, while compounds 2 and 3 could be potentially toxic for mitochondria and respiratory system.

Its also interesting to note that all compounds could be non-carcinogenic but also non-mutagenic making them a suitable candidate for phase I clinical trials in order to test their possible cytotoxic effect against malignant cell lines⁵⁶. Moreover, almost all tested compounds appears to be non-corrosive and non-irritant agents, which open new perspective in the elaboration process of natural eye care products, more eco-friendly, but also to reduce the adverse irritant effects of artificial constituents that compose the actual eye drops present in the market⁵⁷. The fact that the four compounds are non-sensitive for skin, could make them less susceptible to activate allergic reaction linked to skin contact such as dermatitis, rhinitis or atopic eczema⁵⁸.

Table 3: Pharmacokinetics characteristics and toxicity of the selected compounds

	n-BuOH	extract	EA extract		
Parameter/compound	Compound 1	Compound 2	Compound 3	Compound 4	
Absorption					
Human oral bioavailability	HOB+	HOB-	HOB+	HOB+	
Human intestinal absorption	HIA+	HIA+	HIA+	HIA+	
Blood brain barrier	BBB+	BBB+	BBB+	BBB+	
Caco-2 permeability	Caco2-	Caco2-	Caco2-	Caco2+	
P-glycoprotein substrate	Non-substrate	Substrate	Substrate	Non-substrate	
P-glycoprotein inhibitor	Non-inhibitor	Inhibitor	Inhibitor	Non-inhibitor	
Distribution and metabolism					
Subcellular localization	Mitochondria	Mitochondria	Mitochondria	Mitochondria	
CYP450 3A4 substrate	Non-substrate	Substrate	Substrate	Non-substrate	
CYP450 2C9 substrate	Non-substrate	Non-substrate	Non-substrate	Substrate	
CYP450 2D6 substrate	Non-substrate	Non-substrate	Non-substrate	Non-substrate	
CYP450 3A4 inhibition	Non-inhibitor	Non-inhibitor	Non-inhibitor	Non-inhibitor	
CYP450 2C9 inhibition	Non-inhibitor	Non-inhibitor	Non-inhibitor	Non-inhibitor	
CYP450 2C19 inhibition	Non-inhibitor	Non-inhibitor	Non-inhibitor	Non-inhibitor	
CYP450 2D6 inhibition	Non-inhibitor	Non-inhibitor	Non-inhibitor	Non-inhibitor	
CYP450 1A2 inhibition	Non-inhibitor	Non-inhibitor	Non-inhibitor	Non-inhibitor	
CYP inhibitory promiscuity	Low CYP inhibitory	Low CYP inhibitory	Low CYP inhibitory	Low CYP inhibitory	
	promiscuity	promiscuity	promiscuity	promiscuity	
UGT catalyzed	Increase catalysis	Increase catalysis	Increase catalysis	Decrease catalysis	
Excretion and toxicity					
Acute oral toxicity	Class IV	Class I	Class III	Class III	
Hepatotoxicity	Non-hepatotoxic	Non-hepatotoxic	Non-hepatotoxic	Non-hepatotoxic	
Nephrotoxicity	Nephrotoxic	Non-nephrotoxic	Nephrotoxic	Nephrotoxic	
Reproductive toxicity	Non-reprotoxic	Reprotoxic	Reprotoxic	Reprotoxic	
Respiratory toxicity	Non-toxic	Toxic	Toxic	Non-toxic	
Mitochondrial toxicity	Non-toxic	Toxic	Toxic	Non-toxic	
Carcinogenicity	Non-carcinogenic	Non-carcinogenic	Non-carcinogenic	Non-carcinogenic	
Ames mutagenesis	Non-mutagenic	Non-mutagenic	Non-mutagenic	Non-mutagenic	
Eye corrosion	Non-corrosive	Non-corrosive	Non-corrosive	Non-corrosive	
Eye irritation	Non-irritant	Non-irritant	Non-irritant	Irritant	
Skin sensitisation	Non-sensitive	Non-sensitive	Non-sensitive	Non-sensitive	
Honey bee toxicity	Non-toxic	Non-toxic	Non-toxic	Non-toxic	
Crustacea aquatic toxicity	Non-toxic	Non-toxic	Non-toxic	Non-toxic	
Fish aquatic toxicity	Non-toxic	Toxic	Toxic	Toxic	
Estrogen receptor binding	Non-binding	Binding	Binding	Non-binding	
Androgen receptor binding	Non-binding	Binding	Binding	Non-binding	
Thyroid receptor binding	Non-binding	Binding	Binding	Non-binding	
Glucocorticoid receptor binding	Non-binding	Binding	Binding	Non-binding	
PPAR gamma binding	Non-binding	Binding	Binding	Non-binding	
Aromatase binding	Non-binding	Binding	Binding	Non-binding	
Biodegradation	Non-biodegradable	Non-biodegradable	Non-biodegradable	Biodegradable	
ADMET predicted profile (regression)					
Water solubility (logS)	-0.134	-4.733	-4.531	-1.109	
Plasma protein binding (%)	0.145	1.13	1.067	0.38	
Acute oral toxicity (kg/mol)	0.883	3.566	1.847	2.557	
Tetrahymena pyriformis (pIGC50, μg/L)	-1.117	1.214	0.846	-0.267	

Data also suggested that compounds 2 and 3 may possess a high binding affinity with a large variety of receptors including estrogen, androgen, thyroid, glucocorticoid, PPAR gamma and aromatase making them a potential candidate for the elaboration of agonist drugs that may exert the same effect of original hormones of these receptors and this has been already proved. Indeed, several phyo-compounds have the capacity to regulate the reproduction and growth processes of herbivores by directly interacting with steroid

hormone receptors⁵⁹. Noting that only compound 4 could be potentially biodegradable.

In term of toxicity, results indicated that all compounds were non-toxic to honey bees or aquatic Crustacea. However, only compound 1 could be non-toxic to fish. The water solubility of compound 2 was considered the lowest (-4.733) among the tested compounds. However, this compound expressed the best plasma protein binding percentage (1.13%) followed very closely by compound 3 (1.067%) and

Table 4: Bioactivity score of the selected compounds

Extracts	Compound	Pa	Pi	Biological properties
n-BuOH	1	0.955	0.002	Sugar-phosphatase inhibitor
		0.851	0.008	Beta-adrenergic receptor kinase inhibitor
		0.788	0.005	Vasoprotector
	2	0.913	0.003	Anti-hypercholesterolemic
		0.774	0.004	Adenomatous polyposis treatment
		0.728	0.013	Respiratory analeptic
EA	3	0.902	0.002	Hepatoprotectant
		0.888	0.005	Respiratory analeptic
		0.795	0.005	Immunosuppressant
	4	0.912	0.005	Testosterone 17beta-dehydrogenase (NADP+) inhibitor
		0.859	0.022	CYP2C12 substrate
		0.732	0.004	Erythropoiesis stimulant

Pa: Probability of activity and Pi: Probability of inactivity

this information is crucial, since a high degree of plasma protein binding (PPB) means that our compounds may serve as good model to predict the pharmacokinetics parameters of highly protein-bound drugs and thus the efficacy of drug candidates⁶⁰.

The acute oral toxicity of compound 1 was considered the lowest (0.883 kg/mol), which suggest that orally, a single-dose administration of this compound will not generate adverse effect or fatal toxic reactions linked to poisoning phenomenon^{61,62}. Its also interesting to underline that the best median population growth inhibition of *Tetrahymena pyriformis* was expressed by compound 2 (1.214 µg/L), since this ciliated protozoa is able to invade internal organs, skin and muscle in all fish species and to cause a high mortality rate, especially in guppies⁶².

Pharmacological properties: Table 4 indicated that compound 1 could potentially inhibit sugar-phosphatase activity but may also suppress the activity of Beta-Adrenergic Receptor Kinase (βARK) with respective values of Pa=0.955 and Pa=0.851. It has been demonstrated that the inhibition of sugar-phosphatase activity may considerably prevent the transition from insulin resistance to overt diabetes, but also to preserve the histological integrity of Langerhans islets 63 . On the other hand, the inhibition of βARK can considerably improve cardiac function by preserving beta-adrenergic receptor signaling pathways, but also to prevent cardiomyopathy induced by calsequestrin overexpression 64 . Noting that compound 1 could also be useful as vasoprotective agent (Pa=0.788).

Concerning compound 2, it seems that this compound may exert a considerable anti-hypercholesterolemic effect (Pa=0.913) and this information is very important since hypercholesterolemia can considerably increase the risk of coronary artery disease and thus affecting the performance of cardiovascular and cerebrovascular systems⁶⁵. Data also revealed that compound 2 could be effective to treat adenomatous polyposis (Pa=0.774), which is crucial since

adenomatous polyposis is a rare, inherited form of pre-cancer that can promote the development of colorectal cancers if not treated in time⁶⁶. Compound 2 could be also a potent respiratory analeptic agent (Pa=0.728), but it seems that compound 3 exerted a more significant analeptic effect (Pa=0.888).

The hepatoprotective effect of compound 3 was considerably high (Pa=0.902), but its also interesting to underline that this compound may possess an important immunosuppressive capacity (Pa=0.795), making it a suitable candidate to develop a more sophisticated drugs in order to prevent cell damage and inflammation symptoms linked to the inappropriate activation of autoimmune system⁶⁷.

Compound 4 could be suitable to inhibit testosterone 17beta-dehydrogenase (NADP+) (Pa=0.912), which could be helpful to regulate androgenic hormones production since an excessive concentration of sex steroids is associated with several disorders and pathologies such as acne, hirsutism and even prostate cancer⁶⁸. This compound could be also considered an appropriate substrate for Cytochrome P450 2C12 (CYP2C12) (Pa=0.859), underlining the crucial role played by these isoforms in the metabolism process of drugs and other xenobiotics⁶⁹. Noting that compound 4 may stimulate with a significant way erythropoiesis (Pa=0.732) and this could be helpful to develop erythropoietin-stimulating medications, especially for people suffering from anemia⁷⁰ and thus to cover the lack of red blood cells, normally produced by bone marrow.

Antiviral, antibacterial and antifungal properties prediction: Antibiotics and anti-infective drugs have been a real leap forward for modern medicine, whether to treat diseases or prevent infections. In this context, this work investigated the antimicrobial properties against certain pathogenic species of bacteria, fungi and virus. Indeed, as shown in Table 5, it seems that only compound 1 and 2 could potentially be active against HIV and HCV viruses, but with a potency slightly more pronounced for compound 2, which is

Table 5: Antimicrobial properties of the tested compounds

Extracts	Compound	Antiviral effect	p-value	Antibacterial effect	p-value	Antifungal effect	p-value
n-BuOH	1	HIV	0.589	Yersinia pestis	0.860	Rhizopus oryzae	0.645
		HCV	0.301	Clostridium ramosum	0.783	Absidia corymbifera	0.603
		HBV	0.234	Resistant Mycobacterium ulcerans	0.737	Trichophyton mentagrophytes	0.534
	2	HIV	0.671	Porphyromonas gingivalis	0.289	Rhizopus oryzae	0.308
		HCV	0.356	Staphylococcus simulans	0.264	Absidia corymbifera	0.241
		HHV	0.272	Streptococcus mutans	0.248	Saccharomyces cerevisiae	0.219
EA	3	NA-C	/	Staphylococcus lugdunensis	0.565	Candida albicans	0.237
				Lactobacillus plantarum	0.548	Clavispora lusitaniae	0.129
				Bacteroides stercoris	0.352	Rhizopus oryzae	0.126
	4	NA-C	/	Bacteroides stercoris	0.636	Saccharomyces cerevisiae	0.391
				Yersinia pestis	0.604	Epidermophyton floccosum	0.155
				Actinomyces meyeri	0.544	NA	/

P: Probability for the query molecule assumed as bioactive on virus, bacteria and fungi, HIV: Human Immunodeficiency Virus, HCV: Hepatitis C Virus, HBV: Hepatitis B Virus, HHV: Human herpes virus, NA: Not available and NA-C: Non-active compound

very important, since statistics clearly indicated that the number of persons affected by these two types of viruses dramatically increased the recent years, especially in developing countries⁷¹.

Let's not forget that HIV primarily targets immune system and weakens body's defenses against many infections, certain types of cancer and even central nervous system since this virus can easily cross blood brain barrier⁷². On the other hand, HCV, the most severe form Hepatitis, increases the risk of developing liver cirrhosis or hepatocellular carcinoma⁷³. A recent study also revealed the implication of these two virus in adverse pregnancy and neonatal complications⁷⁴. However, data revealed that only compound 1 may eventually prevent the proliferation of HBV virus, while compound 2 of HHV virus, but with a non-significant way, which suggest that these two compounds should be associated with more active agents to increase their antiviral effects.

It's also interesting to underline that all tested compounds may possess an antibacterial effect. Indeed, compound 1 exhibited a remarkable antibacterial effect against Yersinia pestis with a respective values of (p = 0.860), while a moderate effect was expressed by compound 4 on this bacterial strain (p = 0.604). These informations are crucial since this virulent pathogen considerably increase the risk to develop severe pneumonia or enlarged and painful adenopathies with high fever, often evolving to sepsis⁷⁵. A significant antibacterial effect was also exerted by compound 1 on *Clostridium ramosum* (p = 0.783) and resistant Mycobacterium ulcerans (p = 0.737). It has been reported that an infection of intervertebral disc called spondylodiscitis could be caused by *Clostridium ramosum*⁷⁶, while resistant Mycobacterium ulcerans could lead to tissue necrosis, generating in long term Bairnsdale ulcer or Buruli ulcer pathologies⁷⁷.

Concerning compound 3, its seems that this compound could possibly exert a moderate antibacterial effect on

Staphylococcus lugdunensis (p = 0.565) and Lactobacillus plantarum (p = 0.548), which could be interesting since these two pathogenic bacteria are responsible of infective endocarditis⁷⁸ and meningoencephalitis⁷⁹, respectively. A non negligible antiproliferative effect was also exhibited by compound 4 on Bacteroides stercoris (p = 0.636) and Actinomyces meyeri (p = 0.544), underlining the fact that Actinomyces meyeri has a direct role in complicating dental infection but also the main cause of chronic productive cough in smoker people⁸⁰. Noting that the antibacterial effect of compound 2 was considered the lowest among the four tested compounds.

Concerning the antifungal capacity, it seems that compound 1 exhibited the best effect among the tested compounds. Indeed, this compound could be potentially active against *Rhizopus oryzae* (p = 0.645) by possibly blocking host-pathogen molecular factors that contribute to the pathogenesis conditions of these this fungus species, such as CotH fungal protein and GRP78 cell receptor⁸¹. Noting that a noticeable antifungal effect may also be exerted by compound 2 on *Rhizopus oryzae*, but with a low incidence (p = 0.308). A modest antifungal effect was also exerted by compound 1 on both *Absidia corymbifera* (p = 0.603) and *Trichophyton mentagrophytes* (p = 0.534), which is important since these fungal species can affect both humans and animals and are principally responsible of post-traumatic corneal keratitis and dermatophytosis, respectively^{82,83}.

Data also revealed that a possible antifungal effect may also be exerted by compound 4 against *Saccharomyces cerevisiae* (p = 0.391), underlying the fungal susceptibility to develop several pathologies such as septic emboli, but also on immunosuppressed condition including sepsis and COVID-19 infections^{84,85}. Noting that compound 2 and 3 could, respectively inhibit the proliferation process of *Absidia corymbifera* and *Candida albicans*, but with a non-significant way.

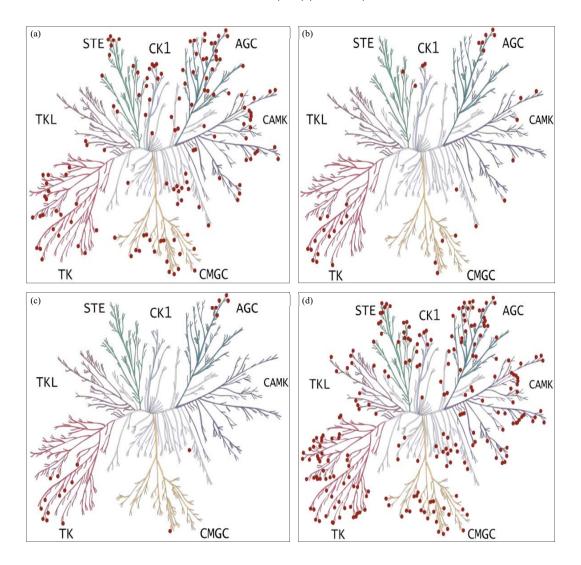


Fig. 2(a-d): Mapped kinome tree visualization of the possible distribution of our compounds across kinase families, (a) Data of compound 1, (b) Data of compound 2, (c) Data of compound 3 and (d) Data of compound 4

AGC: Containing PKA, PKG, PKC families; CAMK: Calcium/calmodulin-dependent protein kinase; CK1: Casein kinase 1; CMGC: Containing CDK, MAPK, GSK3, CLK families; STE: Homologs of yeast Sterile 1, Sterile 20 kinases; TK: Tyrosine kinase and TKL: Tyrosine kinase-like

Kinase targets prediction: In this study, the probability for our compound to target some important classes of kinases was performed and as shown in Fig. 2, its seems that compound 1 and 4 has the best distribution profile across kinase families, while the members of TK (tyrosine kinase), AGC (containing PKA, PKG and PKC families) and possibly CMGC (containing CDK, MAPK, GSK3 and CLK families) could potentially be targeted by compound 2 and 3.

In more specific way, Table 6 revealed that compound 1 could potentially target and regulate the activity of Dual specificity Mitogen-Activated Protein Kinase Kinase 7 (MAP2K7) with a significant confidence score of p=0.780, which is important since any dysfunction in the function of

this enzyme may increase the risk to develop psychiatric conditions like schizophrenia⁸⁶. On the other hand, recent pre-clinical study revealed that MAP2K7 inhibition could considerably attenuate certain sever form of leukemia, such as T-Cell Acute Lymphoblastic Leukemia (T-ALL) by inhibiting MAP2K7-JNK pathway, increasing at the same time the efficacy of some anti-leukemia drugs like dexamethasone⁸⁷.

Furthermore, the four compounds could be active on various classes of Serine/Threonine-Protein Kinases (STPKs). As an example, compound 1 on MST4, while compound 2 and 3 on NEK6 and finally compound 4 on NIM1 and TLK1, respectively. Despite the crucial physiological role of these categories of kinases, it has been reported that an

Table 6: Tabular form results of the main compounds classes of kinases targeted by our compounds

Extracts	Compound	Name	UniProt ID	ChEMBL ID	Confidence score
n-BuOH	1	Dual specificity mitogen-activated protein kinase kinase 7	014733	CHEMBL3530	0.780
		Serine/threonine-protein kinase MST4	Q9P289	CHEMBL5941	0.720
		Serine/threonine-protein kinase haspin	Q8TF76	CHEMBL1075163	0.700
	2	Ephrin type-A receptor 4	P54764	CHEMBL3988	0.930
		Ephrin type-A receptor 8	P29322	CHEMBL4134	0.910
		Serine/threonine-protein kinase NEK6	Q9HC98	CHEMBL4309	0.660
EA	3	Ephrin type-A receptor 4	P54764	CHEMBL3988	0.920
		Ephrin type-A receptor 8	P29322	CHEMBL4134	0.900
		Serine/threonine-protein kinase NEK6	Q9HC98	CHEMBL4309	0.710
	4	Serine/threonine-protein kinase NIM1	Q8IY84	CHEMBL3542	0.760
		Serine/threonine-protein kinase tousled-like 1	Q9UKI8	CHEMBL5388	0.720
		Myosin light chain kinase smooth muscle	Q15746	CHEMBL2428	0.710

Table 7: Probable effect of the selected compounds on mRNA expression profile of some genes

Extracts	Compound	Genes (upregulation)	Pa	Pi	Genes (downregulation)	Pa	Pi
n-BuOH	1	SMPD1	0.892	0.013	ADAM19	0.906	0.006
		TCF12	0.863	0.014	APTX	0.876	0.008
		PGM2	0.857	0.007	ABCA13	0.863	0.008
	2	KCNH2	0.868	0.031	MSH5	0.868	0.031
		PLLP	0.868	0.031	TREX1	0.868	0.031
		FOXO1	0.865	0.045	RPS19	0.867	0.037
EA	3	KCNH2	0.828	0.040	MSH5	0.828	0.040
		PLLP	0.828	0.040	TREX1	0.828	0.040
		CHRNE	0.803	0.054	RPS19	0.822	0.056
	4	POR	0.846	0.049	NSF	0.861	0.022
		CXCL11	0.820	0.022	ALDH18A1	0.825	0.036
		C10ORF118	0.804	0.015	SLC15A1	0.761	0.036

Pa: Probability of activity and Pi: Probability of inactivity

overexpression of these STPKs may generate in long term several pathologies including breast and prostate cancers but also promotes reactive astrogliosis and exacerbates brain lesions⁸⁸⁻⁹⁰, which explain why these kinases are considered by many clinicians as potential oncogene. The regulation of the activity of may also bring new strategies to increase plants disease resistance and elaborate more effective fungicides⁹¹.

Moreover, target report revealed that compound 2 and 3 exhibited the best confidence score on both ephrin type-A receptors 4 and 8, which is crucial since these two members of receptors tyrosine kinase maintain epithelial tissue homeostasis and an optimal immune response 92,93. Noting that compound 4 may target with a non-negligible way Myosin Light Chain Kinase (MLCK) smooth muscle, underlining the physiological role of this kinase to ensure a proper contraction of smooth muscle by maintaining a coherent actin-myosin interaction process 94. At this stage, all computational approaches performed in this study could be considered complementary to each other and provided a preliminary qualitative investigation. Molecular docking and dynamics simulations were not investigated in the present study, since the algorithms of this axis execute quantitative predictions

and thus not suitable for the aspect of this work. However, in the future, it is fundamental and crucial to perform docking approach on these compounds in order to determine the molecular complex stability, binding affinity energy score, categories of participating bonds as well as to determine if ligand-receptor interaction follows the agonist or antagonist model⁵ and thus to validate the results of the present work.

Confidence score represent the difference between the probability for compound of interest to inhibit particular kinase and probability to not to inhibit this kinase.

Gene expression profiles: As reported in Table 7, an important upregulation and downregulation processes has been exerted by our phyto-compounds on the mRNA expression of key genes. Indeed, compound 1 may significantly increase the mRNA expression of SMPD1, TCF12 and PGM2 genes with a respective values of Pa=0.892, Pa=0.863 and Pa=0.857. These genes ensure crucial functions, as an example, SMPD1 gene can modulates stress-induced apoptosis⁹⁵ and participate in the export of cholesterol from the intra-endolysosomal membranes by allowing the conversion of sphingomyelin to ceramide⁹⁶.

Moreover, TCF12 gene could be involved in the early initiation of neuronal differentiation but also in the development of mesodiencephalic dopaminergic (mdDA) neurons in murine midbrain⁹⁷, while PGM2 gene may greatly facilitate carbohydrate metabolic process⁹⁸. Concerning downregulation process, data indicated that compound 1 may considerably decrease the mRNA expression of ADAM19 (Pa=0.906), APTX (Pa=876) and ABCA13 (Pa=0.863) genes, respectively. The overexpression of these genes has been linked with several pathologies such as tumors, inflammatory diseases, psychiatric disorders and ataxia with oculomotor apraxia type 1⁹⁹⁻¹⁰¹.

Data also revealed that compound 2 and 3 could potentially upregulate the mRNA expression of KCNH2 gene (Pa=0.868 and Pa=0.828), respectively. It has been reported that this gene provide instructions for making potassium channels and thus confer to cells the capacity to generate and transmit electrical signals¹⁰². These two compounds may also enhance the mRNA expression of PLLP gene but it seems that only compound 2 could be active on FOXO1 gene with a possible probability of Pa=0.865. Shulgin et al.¹⁰³ indicated that PLLP gene could be involved in ion transport events but also in the regulation of Notch signaling pathway and thus controlling cell proliferation, differentiation and cell death processes 104. Its also interesting to underline that FOXO1 gene is essential for muscle energy metabolism to support muscular contractions¹⁰⁵, but could be also essential for adaptive immune functions by affecting lymphocyte development and cytokine expression, which could be helpful to treat immune/oxidative stress-related diseases 106.

On the other hand, compound 2 and 3 could effectively decrease the mRNA expression of MSH5 but the best effect has been exhibited by compound 2 (Pa=0.868) and lets not forget that a mutation in this gene could be responsible of primary ovarian insufficiency¹⁰⁷ but also reproductive malfunctions affecting both genders¹⁰⁸. Noting that the same downregulation process could be exerted by these compounds on TREX1 and RPS19 genes. Its has been reported that TREX1 mutation may generate autoimmune and cerebroretinal vasculopathy syndromes¹⁰⁹, while another study made on Korean patients confirmed that a mutation in RPS19 gene could possibly lead to the development of Diamond-Blackfan anemia¹¹⁰. Noting that this pathology is inherited in up to 45% of cases.

Compound 4 may significantly upregulate the mRNA expression of POR (Pa=0.846) gene, which is very important since this gene provides instructions for making cytochrome P450 oxidoreductase, considered a crucial enzyme for multiple metabolic processes¹¹¹ and nowadays an important factor to determine drug metabolism and efficacy. In addition, this compound could also be effective to increase the mRNA

expression of CXCL11 (Pa=0.820) and C10ORF118 (Pa=0.804) genes. Previous works have reported the potential of these two genes in regulating various physiological processes. Indeed, Hirota *et al.*¹¹² revealed that CXCL11 gene promote the migration of trophoblast cells but also the proliferation of endometrial stromal cells and thus supporting implantation and early embryo development. Concerning C10ORF118 gene, it seems that the expression of this gene may help controlling the proliferation of cancer cells via a possible regulation of hyaluronan synthesis, since this glycosaminoglycan is well known to influence tumor proliferation, migration and neoangiogenesis and this has been proved using several breast tumor cell lines¹¹³.

A potent downregulation process has been exerted by compound 4 on the NSF (Pa=0.861) and ALDH18A1 (Pa=0.825) genes. It has been reported that heterozygous mutations on NSF gene could cause an irreversible early infantile epileptic encephalopathy¹¹⁴, while an overexpression of ALDH18A1 gene could promote mice neuroblastoma growth¹¹⁵ and even retinopathy¹¹⁶. In addition, a non-negligible decrease in the mRNA expression of SLC15A1 gene may also exerted by this compound (Pa=0.761), underlining the possible implication of this gene in several pathologies such as bladder cancer¹¹⁷, but also to increase the risk of dyslipidemia and thus of cardiovascular deseases¹¹⁸.

Biotransformation pathways prediction: Human gut microbiota constitute one of the most complex and fascinating community, in which their diversity significantly contribute to the maintain of metabolic hemostasis. Indeed, this internal microbial ecosystem guarantee a proper biotransformation process of nutrients and drugs¹¹⁹, to supports the generation of active metabolites, known as microbiome metabolites, considered primordial to maintain a coherent function of immune system but also to generate Butyrate, a fatty acid representing a vital energy source for human colonocytes^{120,121}.

As shown in Fig. 3, the biotransformation prediction result revealed that three compounds could potentially be transformed by human gut microbial flora following various metabolic pathways of degradation. Indeed, carboxylesterase could potentially catalyze the hydrolysis of carboxylic acid ester of compound 2 and 3 to generate four different metabolites as indicated in Table 8. This information is very interesting since Wang *et al.*¹²² reported that human gut microbiota, especially genera *Escherichia* and *Lactobacillus* may possess the capacity to accumulate and transform dangerous heavy metals such as arsenic via its functional carboxyl groups following a process called Biosorption in order to reduce it to a less toxic form called arsenate (As⁵⁺) and thus to neutralize its toxicity¹²².

Its also interesting to underline that two other metabolites may possibly be obtained from the previous cited compounds by two distinct glucuronidation processes, the first one called 3-OH-glucuronidation of sterol and the second one was Alkyl-OH-glucuronidation (reactions 3 and 7),

respectively. These reactions were catalyzed by the same enzyme named bacterial UDP-glucuronosyltransferase, an important member of intestinal epithelial barrier and considered crucial for detoxification pathways in humans¹²³ and the phenolic nature of our compounds could possibly

Fig. 3(a-d): Continue

Fig. 3(a-d): Pathway prediction result of the microbial biotransformation process of the tested compounds, (a) Compound 1, (b) Compound 2, (c) Compound 3 and (d) Compound 4

Table 8: Biotransformation reaction details of the tested compounds

Tested	Reaction		Chemical		
compound	No.	Chemical name	formula	Reaction type	Catalytic enzyme
Compound 1	NA	NA	NA	NA	NA
Compound 2	1	(3β,5α,6β)-Cholest-7-ene-3,5,6-triol	$C_{27}H_{46}O_3$	Hydrolysis of carboxylic acid ester	Carboxylesterase
	2	Benzoic Acid	$C_7H_6O_2$	Hydrolysis of carboxylic acid ester	Carboxylesterase
	3	(3β,16β)-3,17-Dihydroxy-22-oxocholest-5-en-16-yl	$C_{40}H_{58}O_{10}$	3-OH-Glucuronidation of sterol	
		2-O-(4-methoxybenzoyl)-β-D-xylopyranoside		Bacterial UDP-glucuronosyltransferase	
	4	$(5\alpha,7\alpha,24R)$ -3-Oxo-24-(sulfooxy)cholestan-7-yl	$C_{34}H_{50}O_7S$	3-OH-Sulfation of sterol	Sulfotransferase
		benzoate			
Compound 3	5	20,25-Epoxydammarane-3,12-diol	$C_{30}H_{52}O_3$	Hydrolysis of carboxylic acid ester	Carboxylesterase
	6	Acetic acid	$C_2H_4O_2$	Hydrolysis of carboxylic acid ester	Carboxylesterase
	7	6,16,25-Trihydroxy-20,24-epoxy-	$C_{38}H_{62}O_{10}$	Alkyl-OH-glucuronidation	Bacterial UDP-
		9,19-cyclolanostan-3-yl			glucuronosyltransferase
		2-O-acetyl-6-deoxyhexopyranoside			
Compound 4	8	3-Ethyl-4-methylpyrrolidine-2,5-dione	$C_7H_{11}NO_2$	Reduction of alpha, beta-unsaturated	NADPH dehydrogenase
				carbon-carbon double bond adjacent	
				to electron withdrawing group	

NA: Not available data

explain the implication of this enzyme, since Wu *et al.*¹²³ and Isvoran *et al.*¹²⁴ indicated that UDP-glucuronosyltransferase target and promote in a more specific way the metabolism of phenolic-nature compounds with an extensive glucuronidation phenomenon in order to obtain the adequate structural modification needed to properly control oral bioavailability of drugs.

Sulfotransferases are considered a crucial phase II drug-metabolizing enzymes¹²⁵ and at the clinical level, several approaches underlined the intervention of this enzyme in drug-drug interactions but also in bio-transformation process of hydrophobic drugs to improve their pharmacological effect or simplify their excretion process^{125,126}. In our study, data revealed that sulfotransferase may act on compound 2 by exerting a reaction of 3-OH-sulfation to obtain $(5\alpha, 7\alpha, 24R)$ -3-Oxo-24-(sulfooxy)cholestan-7-yl benzoate. Concerning compound 4, it seems that the enzymatic mechanism of NADPH dehydrogenase could possibly be adopted by gut microbes to obtain 3-ethyl-4-methylpyrrolidine-2,5-dione via a reduction of alpha, beta-unsaturated carbon-carbon double bond adjacent to electron withdrawing group of the compound. Noting that recently, a new approach involving both experimental and computational approaches made by Yan et al. 126 allowed the identification of 17 unique novel biotransformations pathways, mainly orchestrated by human gut microbiome, using metagenomics datasets, which prove once again the accuracy and fundamental role of bioinformatics in biotransformation pathways discovery.

CONCLUSION

In summary, this work revealed that the four tested compounds may possesses a stable pharmacokinetics property, a non-negligible pharmacological effect but also an exceptional impact on the expression profile of key genes and thus, the molecular aspect could be considered the most important and promising aspect of this study. In addition, the 2nd compound could be considered the suitable candidate for the next pre-clinical and clinical investigations since the insolubility, lipophilicity, flexibility as well as the natural product-likeness capacities of this compound were considered the most appropriate. In addition, various classes of kinases were preferentially targeted by the 2nd compound and let's not forget that the enzymatic catalysis of this compound may generate four new metabolites, which could be used as a valuable strategy to synthetize molecules, similar to parent drug and thus make an initial step in drug discovery programme.

SIGNIFICANCE STATEMENT

However, due to the limitations of this study, it was not possible to experimentally validate the accuracy of the various results related to this theoretical predictions. That's why, wet lab experiments should be performed to validate the findings of this preliminary work, but also to properly investigate the physico-chemical/biological characteristics of other phyto-compounds previously identified in *Centaurea tougourensis*.

ACKNOWLEDGMENT

The authors extend their appreciation to Taif University, Saudi Arabia, for supporting this work through project number (TU-DSPP-2024-10).

REFERENCES

- Cristancho, S., L. Lingard and G. Regehr, 2017. From problem solving to problem definition: Scrutinizing the complex nature of clinical practice. Perspect. Med. Educ., 6: 54-57.
- Paul, A.A., S. Kumar, V. Kumar and R. Sharma, 2020. Milk Analog: Plant based alternatives to conventional milk, production, potential and health concerns. Crit. Rev. Food Sci. Nutr., 60: 3005-3023.
- Su, Z., A. Cheshmehzangi, B.L. Bentley, D. McDonnell and S. Šegalo *et al.*, 2022. Technology-based interventions for health challenges older women face amid COVID-19: A systematic review protocol. Syst. Rev., Vol. 11. 10.1186/s13643-022-02150-9.
- 4. Yu, C., F. Zhang, L. Zhang, J. Li and S. Tang *et al.*, 2023. A bioinformatics approach to identifying the biomarkers and pathogenesis of major depressive disorder combined with acute myocardial infarction. Am. J. Transl. Res., 15: 932-948.
- Martínez-Archundia, M., M. Bello and J. Correa-Basurto, 2018.
 Design of Drugs by Filtering Through ADMET, Physicochemical and Ligand-Target Flexibility Properties.
 In: Rational Drug Design: Methods and Protocols, Mavromoustakos, T. and T.F. Kellici (Eds.), Humana Press, New York, ISBN: 978-1-4939-8630-9, pp: 403-416.
- 6. Arora, P.K. and H. Bae, 2014. Integration of bioinformatics to biodegradation. Biol. Proced. Online, Vol. 16. 10.1186/1480-9222-16-8.
- Skariyachan, S., N. Taskeen, A.P. Kishore and B.V. Krishna, 2022. Recent advances in plastic degradation-From microbial consortia-based methods to data sciences and computational biology driven approaches. J. Hazard. Mater., Vol. 426. 10.1016/j.jhazmat.2021.128086.
- 8. Thursby, E. and N. Juge, 2017. Introduction to the human gut microbiota. Biochem. J., 474: 1823-1836.

- 9. Pant, A., T.K. Maiti, D. Mahajan and B. Das, 2023. Human gut microbiota and drug metabolism. Microb. Ecol., 86: 97-111.
- Zhao, Y., X. Zhong, J. Yan, C. Sun, X. Zhao and X. Wang, 2022. Potential roles of gut microbes in biotransformation of natural products: An overview. Front. Microbiol., Vol. 13. 10.3389/fmicb.2022.956378.
- Garcia-Martin, J.A., M. Chavarría, V. de Lorenzo and F. Pazos, 2020. Concomitant prediction of environmental fate and toxicity of chemical compounds. Biol. Methods Protoc., Vol. 5. 10.1093/biomethods/bpaa025.
- Song, J., H. Wang, J. Wang, A. Leier and T. Marquez-Lago et al., 2017. PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection. Sci. Rep., Vol. 7. 10.1038/s41598-017-07199-4.
- 13. Nourbakhsh, K. and S. Yadav, 2021. Kinase signaling in dendritic development and disease. Front. Cell. Neurosci., Vol. 15. 10.3389/fncel.2021.624648.
- Bensaad, M.S., S. Dassamiour, L. Hambaba, C. Bensouici and H. Haba, 2021. *In vitro* assessment of antioxidant, anti-inflammatory, neuroprotective and antimicrobial activities of *Centaurea tougourensis* Boiss. & Reut. J. Pharm. Pharmacogn. Res., 9: 790-802.
- Bensaad, M.S., S. Dassamiour, L. Hambaba, A. Saidi and M.A. Melakhsou et al., 2021. In vivo investigation of antidiabetic, hepatoprotective, anti-inflammatory and antipyretic activities of *Centaurea tougourensis* Boiss. & Reut. J. Physiol. Pharmacol., 72: 439-449.
- Bensaad, M.S., S. Dassamiour, L. Hambaba, M.A. Kahoul and M. Benhoula, 2021. Evidence of anti-inflammatory and anti-ulcer properties of aerial parts of *Centaurea tougourensis* Boiss. and Reut. Trop. J. Pharm. Res., 20: 1647-1654.
- 17. Bensaad, M.S., S. Dassamiour, L. Hambaba, C. Bensouici, O. Karima and M.A. Kahoul, 2021. HPLC-DAD phenolics screening and *in vitro* investigation of haemostatic, antidiabetic, antioxidant and photoprotective properties of *Centaurea tougourensis* Boiss. & Reut. Herba Polonica, 67: 16-31.
- 18. Dassamiour, S., M.S. Bensaad, L. Hambaba, H. Haba and F. Nouicer *et al.*, 2022. Wound healing capacity of the n-butanolic extract of *Centaurea tougourensis* Boiss. & Reut. Sci. Adv. Mater., 14: 430-439.
- 19. Bensaad, M.S., S. Dassamiour, L. Hambaba, M.A. Kahoul and R. Sami *et al.*, 2022. Chemical profile by gas chromatography/mass spectrometry of ethyl acetate and n-butanol extracts of *Centaurea tougourensis* Boiss. & Reut. J. Biobased Mater. Bioenergy, 16: 140-149.
- Daina, A., O. Michielin and V. Zoete, 2017. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., Vol. 7. 10.1038/srep42717.

- Wu, F., Y. Zhou, L. Li, X. Shen and G. Chen *et al.*, 2020. Computational approaches in preclinical studies on drug discovery and development. Front. Chem., Vol. 8. 10.3389/fchem.2020.00726
- Yang, H., C. Lou, L. Sun, J. Li and Y. Cai et al., 2019. AdmetSAR
 Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 35: 1067-1069.
- 23. Lagunin, A., A. Stepanchikova, D. Filimonov and V. Poroikov, 2000. PASS: Prediction of activity spectra for biologically active substances. Bioinformatics, 16: 747-748.
- 24. Qureshi, A., G. Kaur and M. Kumar, 2017. AVCpred: An integrated web server for prediction and design of antiviral compounds. Chem. Biol. Drug Des., 89: 74-83.
- Pogodin, P.V., A.A. Lagunin, A.V. Rudik, D.S. Druzhilovskiy, D.A. Filimonov and V.V. Poroikov, 2019. AntiBac-Pred: A web application for predicting antibacterial activity of chemical compounds. J. Chem. Inf. Model., 59: 4513-4518.
- Amiranashvili, L., N. Nadaraia, M. Merlani, C. Kamoutsis and A. Petrou *et al.*, 2020. Antimicrobial activity of nitrogen-containing 5-α-androstane derivatives: *In silico* and experimental studies. Antibiotics, Vol. 9. 10.3390/antibiotics9050224.
- 27. Liu, Y., J. Chen, S.K. Fontes, E.N. Bautista and Z. Cheng, 2022. Physiological and pathological roles of protein kinase A in the heart. Cardiovasc. Res., 118: 386-398.
- Lagunin, A., S. Ivanov, A. Rudik, D. Filimonov and V. Poroikov, 2013. DIGEP-Pred: Web service for *in silico* prediction of drug-induced gene expression profiles based on structural formula. Bioinformatics, 29: 2062-2063.
- 29. Wishart, D.S., S. Tian, D. Allen, E. Oler and H. Peters *et al.*, 2022. BioTransformer 3.0-A web server for accurately predicting metabolic transformation products. Nucleic Acids Res., 50: W115-W123.
- 30. Nakashima, S., K. Yamamoto, Y. Arai and Y. Ikeda, 2013. Impact of physicochemical profiling for rational approach on drug discovery. Chem. Pharm. Bull., 61: 1228-1238.
- Meanwell, N.A., 2011. Improving drug candidates by design:
 A focus on physicochemical properties as a means of improving compound disposition and safety. Chem. Res. Toxicol., 24: 1420-1456.
- 32. Umadevi, D. and G.N. Sastry, 2014. Saturated vs. unsaturated hydrocarbon interactions with carbon nanostructures. Front. Chem., Vol. 2. 10.3389/fchem.2014.00075.
- 33. DeCicco, R.C., L. Luo and N.S. Goroff, 2019. Exploiting unsaturated carbon-iodine compounds for the preparation of carbon-rich materials. Acc. Chem. Res., 52: 2080-2089.
- 34. Bag, S., S. Ghosh, R. Tulsan, A. Sood and W. Zhou *et al.*, 2013. Design, synthesis and biological activity of multifunctional α,β-unsaturated carbonyl scaffolds for Alzheimer's disease. Bioorg. Med. Chem. Lett., 23: 2614-2618.

- 35. Varma, M.V.S., B. Feng, R.S. Obach, M.D. Troutman, J. Chupka, H.R. Miller and A. El-Kattan, 2009. Physicochemical determinants of human renal clearance. J. Med. Chem., 52: 4844-4852.
- Ahmed, A.S., L.J. McGaw, E.E. Elgorashi, V. Naidoo and J.N. Eloff, 2014. Polarity of extracts and fractions of four Combretum (Combretaceae) species used to treat infections and gastrointestinal disorders in southern African traditional medicine has a major effect on different relevant in vitro activities. J. Ethnopharmacol., 154: 339-350.
- 37. Lee, Y. and S.Q. Choi, 2019. Quantitative analysis for lipophilic drug transport through a model lipid membrane with membrane retention. Eur. J. Pharm. Sci., 134: 176-184.
- 38. Bruno, C.D., J.S. Harmatz, S.X. Duan, Q. Zhang, C.R. Chow and D.J. Greenblatt, 2021. Effect of lipophilicity on drug distribution and elimination: Influence of obesity. Br. J. Clin. Pharmacol., 87: 3197-3205.
- 39. Forrey, C., J.F. Douglas and M.K. Gilson, 2012. The fundamental role of flexibility on the strength of molecular binding. Soft Matter, 8: 6385-6392.
- 40. Daoud, N.E.H., P. Borah, P.K. Deb, K.N. Venugopala and W. Hourani *et al.*, 2021. ADMET profiling in drug discovery and development: Perspectives of *in silico*, *in vitro* and integrated approaches. Curr. Drug Metab., 22: 503-522.
- 41. Khadka, B., J.Y. Lee, D.H. Park, K.T. Kim and J.S. Bae, 2020. The role of natural compounds and their nanocarriers in the treatment of CNS inflammation. Biomolecules, Vol. 10. 10.3390/biom10101401.
- 42. Fong, C.W., 2015. Permeability of the blood-brain barrier: Molecular mechanism of transport of drugs and physiologically important compounds. J. Membr. Biol., 248: 651-669.
- Effinger, A., C.M. O'Driscoll, M. McAllister and N. Fotaki, 2019.
 Impact of gastrointestinal disease states on oral drug absorption-implications for formulation design-A PEARRL review. J. Pharm. Pharmacol., 71: 674-698.
- 44. Aungst, B.J., 2017. Optimizing oral bioavailability in drug discovery: An overview of design and testing strategies and formulation options. J. Pharm. Sci., 106: 921-929.
- 45. Kim, M.T., A. Sedykh, S.K. Chakravarti, R.D. Saiakhov and H. Zhu, 2014. Critical evaluation of human oral bioavailability for pharmaceutical drugs by using various cheminformatics approaches. Pharm. Res., 31: 1002-1014.
- Keemink, J. and C.A.S. Bergström, 2018. Caco-2 cell conditions enabling studies of drug absorption from digestible lipid-based formulations. Pharm. Res., Vol. 35. 10.1007/s11095-017-2327-8.
- 47. Gibellini, L., E. Bianchini, S. de Biasi, M. Nasi, A. Cossarizza and M. Pinti, 2015. Natural compounds modulating mitochondrial functions. Evidence-Based Complementary Altern. Med., Vol. 2015. 10.1155/2015/527209.

- Tirichen, H., H. Yaigoub, W. Xu, C. Wu, R. Li and Y. Li, 2021. Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress. Front. Physiol., Vol. 12. 10.3389/fphys.2021.627837.
- Criscuolo, D., R. Avolio, D.S. Matassa and F. Esposito, 2021.
 Targeting mitochondrial protein expression as a future approach for cancer therapy. Front. Oncol. Vol. 11. 10.3389/fonc.2021.797265.
- 50. Zhao, M., J. Ma, M. Li, Y. Zhang and B. Jiang *et al.*, 2021. Cytochrome P450 enzymes and drug metabolism in humans. Int. J. Mol. Sci., Vol. 22. 10.3390/ijms222312808.
- Foti, R.S., M. Honaker, A. Nath, J.T. Pearson, B. Buttrick, N. Isoherranen and W.M. Atkins, 2011. Catalytic versus inhibitory promiscuity in cytochrome P450s: Implications for evolution of new function. Biochemistry, 50: 2387-2393.
- 52. Peng, J., J. Lu, Q. Shen, M. Zheng and X. Luo *et al.*, 2014. *In silico* site of metabolism prediction for human UGT-catalyzed reactions. Bioinformatics, 30: 398-405.
- 53. Dong, D., R. Ako, M. Hu and B. Wu, 2012. Understanding substrate selectivity of human UDP-glucuronosyltransferases through QSAR modeling and analysis of homologous enzymes. Xenobiotica, 42: 808-820.
- 54. Guo, X. and C. Nzerue, 2002. How to prevent, recognize, and treat drug-induced nephrotoxicity. Cleveland Clin. J. Med., 69: 289-312.
- Kwiatkowska, E., L. Domański, V. Dziedziejko, A. Kajdy, K. Stefańska and S. Kwiatkowski, 2021. The mechanism of drug nephrotoxicity and the methods for preventing kidney damage. Int. J. Mol. Sci., Vol. 22. 10.3390/ijms22116109.
- 56. Huang, M., J.J. Lu and J. Ding, 2021. Natural products in cancer therapy: Past, present and future. Nat. Prod. Bioprospect., 11: 5-13.
- 57. Huynh, T.P., S.N. Mann and N.A. Mandal, 2013. Botanical compounds: Effects on major eye diseases. Evidence-Based Complementary Altern. Med., Vol. 2013. 10.1155/2013/549174.
- 58. Türkmenoğlu, A. and D. Özmen, 2021. Allergenic components, biocides, and analysis techniques of some essential oils used in food products. J. Food Sci., 86: 2225-2241.
- 59. Oberdörster, E., M.A. Clay, D.M. Cottam, F.A. Wilmot, J.A. McLachlan and M.J. Milner, 2001. Common phytochemicals are ecdysteroid agonists and antagonists: A possible evolutionary link between vertebrate and invertebrate steroid hormones. J. Steroid Biochem. Mol. Biol., 77: 229-238.
- 60. Ye, M., S. Nagar and K. Korzekwa, 2016. A physiologically based pharmacokinetic model to predict the pharmacokinetics of highly protein-bound drugs and the impact of errors in plasma protein binding. Biopharm. Drug Dispos., 37: 123-141.

- 61. Graham, J.C., M. Rodas, J. Hillegass and G. Schulze, 2021. The performance, reliability and potential application of *in silico* models for predicting the acute oral toxicity of pharmaceutical compounds. Regul. Toxicol. Pharm., Vol. 119. 10.1016/j.yrtph.2020.104816.
- Sharon, G., M.P. Leibowitz, J.K. Chettri, N. Isakov and D. Zilberg, 2014. Comparative study of infection with *Tetrahymena* of different ornamental fish species. J. Comp. Pathol., 150: 316-324.
- 63. Winter, C.L., J.S. Lange, M.G. Davis, G.S. Gerwe, T.R. Downs, K.G. Peters and B. Kasibhatla, 2005. A nonspecific phosphotyrosine phosphatase inhibitor, bis(maltolato)oxovanadium(IV), improves glucose tolerance and prevents diabetes in Zucker diabetic fatty rats. Exp. Biol. Med., 230: 207-216.
- 64. Perrino, C., S.V.N. Prasad, M. Patel, M.J. Wolf and H.A. Rockman, 2005. Targeted inhibition of beta-adrenergic receptor kinase-1-associated phosphoinositide-3 kinase activity preserves β-adrenergic receptor signaling and prolongs survival in heart failure induced by calsequestrin overexpression. J. Am. Coll. Cardiol., 45: 1862-1870.
- 65. Rämö, J.T., P. Ripatti, R. Tabassum, S. Söderlund and N. Matikainen *et al.*, 2019. Coronary artery disease risk and lipidomic profiles are similar in hyperlipidemias with family history and population-ascertained hyperlipidemias. J. Am. Heart Assoc., Vol. 8. 10.1161/JAHA.119.012415.
- Inoue, Y., H. Ishida, H. Ueno, H. Kobayashi and T. Yamaguchi *et al.*, 2016. Therapeutic approaches for patients with coexisting familial adenomatous polyposis and colorectal cancer. Jpn. J. Clin. Oncol., 46: 819-824.
- 67. Richard-Eaglin, A. and B.A. Smallheer, 2018. Immunosuppressive/autoimmune disorders. Nurs. Clin. North Am., 53: 319-334.
- 68. Poirier, D., 2003. Inhibitors of 17β-hydroxysteroid dehydrogenases. Curr. Med. Chem., 10: 453-477.
- 69. Steyn, S.J. and M.V.S. Varma, 2020. Cytochrome-P450-mediated drug-drug interactions of substrate drugs: Assessing clinical risk based on molecular properties and an extended clearance classification system. Mol. Pharmaceutics, 17: 3024-3032.
- 70. Moyo, V., P. Lefebvre, M.S. Duh, B. Yektashenas and S. Mundle, 2008. Erythropoiesis-stimulating agents in the treatment of anemia in myelodysplastic syndromes: A meta-analysis. Ann. Hematol., 87: 527-536.
- 71. Artenie, A., J. Stone, H. Fraser, D. Stewart and C. Arum *et al.*, 2023. Incidence of HIV and hepatitis C virus among people who inject drugs, and associations with age and sex or gender: A global systematic review and meta-analysis. Lancet Gastroenterol. Hepatol., 8: 533-552.
- 72. Rudd, H. and M. Toborek, 2022. Pitfalls of antiretroviral therapy: Current status and long-term CNS toxicity. Biomolecules, Vol. 12. 10.3390/biom12070894.

- 73. Manns, M.P. and B. Maasoumy, 2022. Breakthroughs in hepatitis C research: From discovery to cure. Nat. Rev. Gastroenterol. Hepatol., 19: 533-550.
- 74. Curtis, M.R. and C. Chappell, 2023. Evidence for implementation: HIV/HCV coinfection and pregnancy. Curr. HIV/AIDS Rep., 20: 1-8.
- 75. Lei, C. and S. Kumar, 2022. Yersinia pestis antibiotic resistance: A systematic review. Public Health Res. Perspect., 13: 24-36.
- 76. Lavigne, J.P., N. Bouziges, A. Sotto, J.L. Leroux and S. Michaux-Charachon, 2003. Spondylodiscitis due to *Clostridium ramosum* infection in an immunocompetent elderly patient. J. Clin. Microbiol., 41: 2223-2226.
- Hall, B.S., K. Hill, M. McKenna, J. Ogbechi, S. High, A.E. Willis and R.E. Simmonds, 2014. The pathogenic mechanism of the *Mycobacterium ulcerans* virulence factor, mycolactone, depends on blockade of protein translocation into the ER. PLoS Pathog., Vol. 10. 10.1371/journal.ppat.1004061.
- 78. Ishiekwene, C., M. Ghitan, M. Kuhn-Basti, E. Chapnick and Y.S. Lin, 2017. *Staphylococcus lugdunensis* endocarditis with destruction of the ventricular septum and multiple native valves. IDCases, 7: 14-15.
- Biesiada, G., R. Krycińska, J. Czepiel, K. Stażyk, J. Kędzierska and A. Garlicki, 2019. Meningoencephalitis caused by *Lactobacillus plantarum*-Case report. Int. J. Neurosci., 129: 715-718.
- 80. Alsamawi, M., A.F. Al-Mashdali and Y. Eldeeb, 2022. Pulmonary actinomycosis as a cause of chronic productive cough in a heavy smoker male with poor dental hygiene: A case report. Clin. Case Rep., Vol. 10. 10.1002/ccr3.6031.
- 81. Morales-Franco, B., M. Nava-Villalba, E.O. Medina-Guerrero, Y.A. Sánchez-Nuño, P. Davila-Villa, E.J. Anaya-Ambriz and C.L. Charles-Niño, 2021. Host-pathogen molecular factors contribute to the pathogenesis of *Rhizopus* spp. in diabetes mellitus. Curr. Trop. Med. Rep., 8: 6-17.
- 82. Marshall, D.H., S. Brownstein, W.B. Jackson, G. Mintsioulis, S.M. Gilberg and B.F. Al-Zeerah, 1997. Post-traumatic corneal mucormycosis caused by *Absidia corymbifera*. Ophthalmology, 104: 1107-1111.
- 83. Frías-De-León, M.G., E. Martínez-Herrera, C.E. Atoche-Diéguez, J.L. González-Cespón, B. Uribe, R. Arenas and C. Rodríguez-Cerdeira, 2020. Molecular identification of isolates of the *Trichophyton mentagrophytes* complex. Int. J. Med. Sci., 17: 45-52.
- 84. Hassan, S., C. Poulos, J. Bhatti, S. Rangwani and Z. Khan *et al.*, 2020. *Saccharomyces cerevisiae* as a skin physiology, pathology, and treatment model. Dermatol. Online J., Vol. 26. 10.5070/D32611048118.
- 85. Ramos, L.S., L. Mokus, H.F. Frota, M.V. Santos and S.S.C. Oliveira *et al.*, 2023. SARS-CoV-2 post-infection and sepsis by *Saccharomyces cerevisiae*: A fatal case report-focus on fungal susceptibility and potential virulence attributes. TropicalMed, Vol. 8. 10.3390/tropicalmed8020099.

- 86. Openshaw, R.L., D.M. Thomson, J.M. Penninger, J.A. Pratt and B.J. Morris, 2017. Mice haploinsufficient for *Map2k7*, a gene involved in neurodevelopment and risk for schizophrenia, show impaired attention, a vigilance decrement deficit and unstable cognitive processing in an attentional task: Impact of minocycline. Psychopharmacology, 234: 293-305.
- 87. Chen, T.J., W. Du, J.J. Junco, C.S. Bridges and Y. Shen *et al.*, 2021. Inhibition of the MAP2K7-JNK pathway with 5Z-7-oxozeaenol induces apoptosis in T-cell acute lymphoblastic leukemia. Oncotarget, 12: 1787-1801.
- 88. Singh, V., P.K. Jaiswal, I. Ghosh, H.K. Koul, X. Yu and A. de Benedetti, 2019. The TLK1-Nek1 axis promotes prostate cancer progression. Cancer Lett., 453: 131-141.
- 89. Arora, R., J.H. Kim, A.A. Getu, A. Angajala and Y.L. Chen *et al.*, 2022. MST4: A potential oncogene and therapeutic target in breast cancer. Cells, Vol. 11. 10.3390/cells11244057.
- 90. Yu, Y., T. Shen, X. Zhong, L.L. Wang and W. Tai *et al.*, 2022. NEK6 is an injury-responsive kinase cooperating with STAT3 in regulation of reactive astrogliosis. Glia, 70: 273-286.
- 91. Friedrich, L., K. Lawton, R. Dietrich, M. Willits, R. Cade and J. Ryals, 2001. *NIM1* overexpression in arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Mol. Plant-Microbe Interact., 14: 1114-1124.
- 92. White, B.E.P. and S. Getsios, 2014. Eph receptor and ephrin function in breast, gut, and skin epithelia. Cell Adhes. Migr., 8: 327-338.
- 93. Darling, T.K. and T.J. Lamb, 2019. Emerging roles for Eph receptors and ephrin ligands in immunity. Front. Immunol., Vol. 10. 10.3389/fimmu.2019.01473.
- 94. Sun, J., Y.N. Qiao, T. Tao, W. Zhao and L.S. Wei *et al.*, 2020. Distinct roles of smooth muscle and non-muscle myosin light chain-mediated smooth muscle contraction. Front. Physiol., Vol. 11. 10.3389/fphys.2020.593966.
- 95. Santana, P., L.A. Peña, A. Haimovitz-Friedman, S. Martin and D. Green *et al.*, 1996. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell, 86: 189-199.
- 96. da Veiga Pereira, L., R.J. Desnick, D.A. Adler, C.M. Disteche and E.H. Schuchman, 1991. Regional assignment of the human acid sphingomyelinase gene (SMPD1) by PCR analysis of somatic cell hybrids and *in situ* hybridization to 11p15.1-p15.4. Genomics, 9: 229-234.
- 97. Mesman, S. and M.P. Smidt, 2017. *Tcf12* is involved in early cell-fate determination and subset specification of midbrain dopamine neurons. Front. Mol. Neurosci., Vol. 10. 10.3389/fnmol.2017.00353.
- 98. Seibold, G.M. and B.J. Eikmanns, 2013. Inactivation of the phosphoglucomutase gene *pgm* in *Corynebacterium glutamicum* affects cell shape and glycogen metabolism. Biosci. Rep., Vol. 33. 10.1042/BSR20130076.

- 99. Qi, B., R.G. Newcomer and Q.X.A. Sang, 2009. ADAM19/adamalysin 19 structure, function, and role as a putative target in tumors and inflammatory diseases. Curr. Pharm. Des., 15: 2336-2348.
- 100. Ababneh, N.A., D. Ali, B. Al-Kurdi, M. Sallam and A.M. Alzibdeh *et al.*, 2020. Identification of *APTX* disease-causing mutation in two unrelated Jordanian families with cerebellar ataxia and sensitivity to DNA damaging agents. PLoS ONE, Vol. 15. 10.1371/journal.pone.0236808.
- 101. Nakato, M., N. Shiranaga, M. Tomioka, H. Watanabe and J. Kurisu *et al.*, 2021. ABCA13 dysfunction associated with psychiatric disorders causes impaired cholesterol trafficking. J. Biol. Chem., Vol. 296. 10.1074/jbc.RA120.015997.
- 102. Afrasiabi, E., H. Marika, V. Tero, S. Pramod, B. Nina and T. Kid, 2010. Expression and significance of HERG (KCNH2) potassium channels in the regulation of MDA-MB-435S melanoma cell proliferation and migration. Cell. Signalling, 22: 57-64.
- 103. Shulgin, A.A., T.D. Lebedev, V.S. Prassolov and P.V. Spirin, 2021. Plasmolipin and its role in cell processes. Mol. Biol., 55: 773-785.
- 104. Guelte, A.L. and I.G. Macara, 2015. Plasmolipin-A new player in endocytosis and epithelial development. EMBO J., 34: 1147-1148.
- 105. Lu, H. and H. Huang, 2011. FOXO1: A potential target for human diseases. Curr. Drug Targets, 12: 1235-1244.
- 106. Kim, M.E., D.H. Kim and J.S. Lee, 2022. FoxO transcription factors: Applicability as a novel immune cell regulators and therapeutic targets in oxidative stress-related diseases. Int. J. Mol. Sci., Vol. 23. 10.3390/ijms231911877.
- 107. Guo, T., S. Zhao, S. Zhao, M. Chen and G. Li *et al.*, 2017. Mutations in *MSH5* in primary ovarian insufficiency. Hum. Mol. Genet., 26: 1452-1457.
- 108. Clark, N., X. Wu and C. Her, 2013. MutS homologues hMSH4 and hMSH5: Genetic variations, functions, and implications in human diseases. Curr. Genomics, 14: 81-90.
- 109. Gulati, A., A.E. Bale, D.J. Dykas, M.J. Bia and G.M. Danovitch *et al.*, 2018. *TREX1* mutation causing autosomal dominant thrombotic microangiopathy and CKD-A novel presentation. Am. J. Kidney Dis., 72: 895-899.
- 110. Kavanagh, D., D. Spitzer, P. Kothari, A. Shaikh, M.K. Liszewski, A. Richards and J.P. Atkinson, 2008. New roles for the major human 3-5 exonuclease TREX1 in human disease. Cell Cycle, 7: 1718-1725.
- 111. Gong, L., C.M. Zhang, J.F. Lv, H.H. Zhou and L. Fan, 2017. Polymorphisms in cytochrome P450 oxidoreductase and its effect on drug metabolism and efficacy. Pharmacogenet. Genomics, 27: 337-346.
- 112. Hirota, Y., Y. Osuga, K. Koga, O. Yoshino and T. Hirata *et al.*, 2006. The expression and possible roles of chemokine CXCL11 and its receptor CXCR3 in the human endometrium. J. Immunol., 177: 8813-8821.

- 113. Caon, I., M.L. D'Angelo, B. Bartolini, E. Caravà and A. Parnigoni *et al.*, 2021. The secreted protein C10orf118 is a new regulator of hyaluronan synthesis involved in tumour-stroma cross-talk. Cancers, Vol. 13. 10.3390/cancers13051105.
- 114. Suzuki, H., T. Yoshida, N. Morisada, T. Uehara and K. Kosaki *et al.*, 2019. De novo *NSF* mutations cause early infantile epileptic encephalopathy. Ann. Clin. Transl. Neurol., 6: 2334-2339.
- 115. Guo, Y.F., J.J. Duan, J. Wang, L. Li and D. Wang *et al.*, 2020. Inhibition of the ALDH18A1-MYCN positive feedback loop attenuates *MYCN*-amplified neuroblastoma growth. Sci. Transl. Med., Vol. 12. 10.1126/scitranslmed.aax8694.
- 116. Wolthuis, D.F.G.J., E. van Asbeck, M. Mohamed, T. Gardeitchik, E.R. Lim-Melia, R.A. Wevers and E. Morava, 2014. Cutis laxa, fat pads and retinopathy due to *ALDH18A1* mutation and review of the literature. Eur. J. Paediatr. Neurol., 18: 511-515.
- 117. Wu, P. and Y. Guo, 2022. Retracted: Susceptibility loci in SLC15A1, UGT1A3, and CWC27 genes associated with bladder cancer in the Northeast Chinese population. BioMed Res. Int., Vol. 2022. 10.1155/2022/2988159.
- 118. Liu, S., C. Wang, Y. Chen, S. Peng, X. Chen and Z. Tan, 2019. Association of *SLC15A1* polymorphisms with susceptibility to dyslipidaemia in a Chinese Han population. J. Clin. Pharm. Ther., 44: 868-874.
- 119. Jandhyala, S.M., R. Talukdar, C. Subramanyam, H. Vuyyuru, M. Sasikala and D.N. Reddy, 2015. Role of the normal gut microbiota. World J. Gastroenterol., 21: 8787-8803.

- 120. Kim, C.H., 2018. Immune regulation by microbiome metabolites. Immunology, 154: 220-229.
- 121. Kong, D., L. Schipper and G. van Dijk, 2021. Distinct effects of short chain fatty acids on host energy balance and fuel homeostasis with focus on route of administration and host species. Front. Neurosci., Vol. 15. 10.3389/fnins.2021.755845.
- 122. Wang, P., H. Du, Y. Fu, X. Cai, N. Yin and Y. Cui, 2022. Role of human gut bacteria in arsenic biosorption and biotransformation. Environ. Int., Vol. 165. 10.1016/j.envint.2022.107314.
- 123. Wu, B., K. Kulkarni, S. Basu, S. Zhang and M. Hu, 2011. First-pass metabolism via UDP-glucuronosyltransferase: A barrier to oral bioavailability of phenolics. J. Pharm. Sci., 100: 3655-3681.
- 124. Isvoran, A., Y. Peng, S. Ceauranu, L. Schmidt, A.B. Nicot and M.A. Miteva, 2022. Pharmacogenetics of human sulfotransferases and impact of amino acid exchange on Phase II drug metabolism. Drug Discovery Today, Vol. 27. 10.1016/j.drudis.2022.103349.
- 125. Tibbs, Z.E. and C.N. Falany, 2015. Dimeric human sulfotransferase 1B1 displays cofactor-dependent subunit communication. Pharmacol. Res. Perspect., Vol. 3. 10.1002/prp2.147.
- 126. Yan, D., L. Cao, M. Zhou and H. Mohimani, 2022. TransDiscovery: Discovering biotransformation from human microbiota by integrating metagenomic and metabolomic data. Metabolites, Vol. 12. 10.3390/metabo12020119.