Folate Deprivation and Copper Exposure Potentiate Reactive Oxygen Species Generation and Chromosomal DNA Loss but not Mitochondrial DNA Deletions in Rat Hepatocytes

Hsiu-Ling Lin, Chu-Ching Yu, Yi-Fang Chou and Rwei-Fen S. Huang

Department of Nutrition and Food Sciences, Fu-Jen University, Hsinchuang, Taipei, 24205, Taiwan

Received for publication: November 30, 2005; Accepted for publication: April 6, 2006

Abstract: Both increased copper and reduced folate levels are commonly found in patients with liver diseases. To better understand the mechanisms by which folate deprivation interacts with copper to contribute to hepatocellular toxicity, rat primary hepatocytes were isolated, cultured in folate-deprived (FD) RPMI medium, and assayed for cytotoxicity after copper sulfate (CuSO₄) exposure. MTT measurement and trypan blue assay showed that elevated CuSO₄ levels aggravated cell death of folate-deprived but not folate-sufficient hepatocytes. CuSO₄ treatment increased the levels of intracellular reactive oxygen species (ROS) by 3 times in FD hepatocytes and tripled the proportion of FD hepatocytes with hypodiploid DNA contents. Measurement of membrane phosphatidylserine exposure indicated that the CuSO₄-mediated toxicity in FD hepatocytes was not mediated by the apoptotic pathway. Real-time polymerase chain reaction (PCR) analysis revealed that CuSO₄ treatment did not increase the occurrence of a 4834-bp mtDNA (mtDNA⁴⁸³⁴) deletion in FD hepatocytes. Preincubation of FD hepatocytes with various concentrations of folate prior to CuSO₄ treatment did not modulate the mtDNA⁴⁸³⁴ deletion. Taken together, the data suggest that elevated copper levels potentiate cell death of folate-deprived hepatocytes, which is primarily associated with increased ROS generation and chromosomal DNA loss. The cytotoxicity exerted by folate depletion and elevated copper levels, however, is not due to apoptosis or accumulated mtDNA⁴⁸³⁴ deletions in primary hepatocytes.

Key words: Folate depletion, copper toxicity, reactive oxygen species, hypoploid DNA content, mtDNA deletion, primary hepatocytes

Abbreviations: DCFH-DA, 2',7'-dichlorofluorescein diacetate; FBS, fetal bovine serum; folate, pteroylmonoglutamic acid; FD, folate-deficient; mtDNA⁴⁸³⁴ deletion, a 4834-bp deletion in mitochondrial DNA; PBS, phosphate-buffered saline; PI, propidium iodide; ROS, reactive oxygen species.

Introduction

Toxicological levels of copper occur in Wilson's disease, an autosomal recessive disorder of copper disposition in the liver and extrahepatic organs [1]. In cirrhotic patients with liver disorders, plasma copper levels are abnormally elevated [2]. Excess copper, a pro-oxidant, facilitates the formation of hydroxyl radicals via the Fenton reaction and through redox alteration of antioxidant molecules to cause cellular damage [3,4]. In addition to elevated copper levels, reduced folate levels are commonly found in patients with alcoholic and liver diseases such as hepatitis C [5–7]. Growing evidence suggests that folate acts as an antioxidant, which is capable of scavenging peroxyl, azide, hydroxyl radicals and peroxynitrite [8,9]. Folate deprivation promotes reactive oxygen species (ROS) generation and lipid peroxidation in human hepatoma HepG2 cells [10]. Although either folate deprivation or elevated copper levels could independently elicit intracellular oxidative stress, the question as to whether these two factors interact to cause hepatocellular injury remains elusive.

Oxidative stress can promote apoptosis, a programmed cell death [11] characterized by chromosomal DNA damage such as chromatin condensation and DNA fragmentation, and membrane phosphatidylserine translocation [12,13]. Mitochondria DNA (mtDNA) is more susceptible to oxidative injury than chromosomal DNA partially due to lack of histone protection [14]. Among various types of mtDNA damage, large-scale deletions of mtDNA (a 4977 bp deletion in human mtDNA and a 4834 bp deletion in rodent mtDNA) are commonly found in aging tissues [15–17] and in livers of patients with liver diseases [18]. Accumulation of large mtDNA deletions beyond a certain threshold may involve the altered synthesis of mitochondrial proteins, respiratory chain dysfunction, and the production of free radicals [19]. Although the exact causes of accumulating large mtDNA large deletions are not clear, the occurrence of this common mtDNA deletion has been correlated with increased oxidative damage of lipid and increased 8-OHdG levels [20].

Previous studies have shown that folate deficiency leads to oxidative stress-related apoptotic DNA damage in human hepatoma cells [21] and rat liver [22]. Folate supplementation has been found to modulate the accumulation of large mtDNA deletions in the liver of rats after chemotherapy [23], and in the liver of aging rats [24]. Whether elevated copper levels may potentiate the cytotoxicity of folate-deprived hepatocytes via increased oxidative stress is currently not known. We hypothesized that elevated copper levels may interact with folate deprivation to cause hepatic injury through apoptotic DNA damage and the accumulation of large mtDNA deletions. For this reason, a rat primary hepatocyte model was used to

assess the individual and combined effects of folate deficit and increased copper levels on cellular viability, intracellular ROS generation, chromosomal DNA loss, apoptotic markers, and the large mtDNA deletions.

Material and Methods

Materials

Folate (pteroylmonoglutamic acid), 2',7'-dichlorofluorescein diacetate (DCFH-DA), insulin, transferrin, copper sulfate, MTT (3-[4,5-dimethylthiazol-2-yl]- 2,5-diphenyl-tetrazolium bromide), and propidium iodide (PI) were obtained from Sigma Chemical Co. (St. Louis, MO, USA). RPMI 1640 medium, RPMI 1640 medium without folate, penicillin, streptomycin, fungizone, trypsin, and trypan blue were obtained from Gibco BRL Life Technologies Inc. (Gaithersburg, MD, USA).

Primary hepatocyte cultures

Primary hepatocytes were isolated from young male Wistar rats (200–250 g; 6 weeks) by using a two-stage collagenase perfusion technique [25] with some modifications. The experimental protocols were approved by the Institutional Animal Care Committee of Fu-Jen University. Briefly, the liver was perfused via the portal vein at a flow rate of 25 mL/minute for 10 minutes with a buffer solution (25 mmol/L sodium phosphate buffer pH 7.6, 3.1 mmol/L KCl, 119 mmol/L NaCl, 3.5 mmol/L glucose, 1.0 g/L bovine serum albumin, and 5 mg/L phenol red). The perfusion was then continued for an additional 10 minutes at a flow rate of 18 mL/minute with the same buffer supplemented with 50 mg collagenase. The liver was then minced and suspended in Krebs-Henseleit buffer containing 10 g/L bovine serum albumin and 8 mmol/L HEP-ES (pH 7.4). After centrifugation at low speed $(130 \times g)$ for 10 minutes, the parenchymal cells in the pellet were resuspended and washed twice with buffer. Cells prepared in this manner had greater than 90% viability by trypan blue exclusion. The hepatocytes were seeded at a density of 1×10^5 cells/mL in RPMI 1640 medium supplemented with 2 g/L sodium bicarbonate, 100 units/mL penicillin, 100 units/mL streptomycin, 100 μg/mL fungizone, 10% fetal bovine serum (FBS), 5 mg/L transferrin, and 5 mg/mL insulin. The cell culture was incubated in a CO₂ incubator at 37 °C.

Folate deprivation and copper treatment

Primary hepatocytes (1×10^5 /mL) were cultured in the RP-MI complete medium (control) or folate-deprived medium (FD) for 6 hours, treated either with or without copper sulfate (CuSO₄) for 24 or 48 hours, and then harvested for various assays. The concentrations and the time of pro-oxidant treatment were previously tested [26]. The concentrations (4–16 μ M) of copper selected for this study were in the range of plasma levels of patients with liver diseases [27]. For folate supplementation, hepatocytes were cultured in FD medium supplemented with various levels of folate. A stock solution of folate was prepared at 10 mmol/L in bicarbonate solution.

Measurement of cytotoxicity

The viability of hepatocytes was determined by MTT colorimetric assay [28]. After termination of copper treatment, 10 μ L MTT solution (5 mg/mL in phosphate-buffered saline; PBS) was added to each plate. The absorbance of each well was determined with an automated plate reader at 550 nm (Bio-Tek Instrument, Inc., Vermont, USA). Survival was calculated as the percentage of the staining value of untreated cultures. The rate of cell death was also characterized by trypan blue assay.

Determination of intracellular reactive oxygen species

Intracellular ROS were labeled using an oxidation-sensitive probe, DCFH-DA, and assayed for by flow cytometry. The detailed procedure has been described elsewhere [29]. The excitation wavelength was 488 nm and the emission wavelength was 525 nm for the fluorescent 2',7'-dichlorofluorescein (DCF). The fluorescence in control cells was designated as 100%, and the ratio of treated cells to control cells was calculated.

Analysis of chromosomal DNA loss

Cells were fixed in ice-cold 100% ethanol. RNase A (500 mg/L) and 0.5% Triton were added to the samples, which were further incubated at 37 °C for 60 minutes. Cells were then incubated with PI (50 mg/L) for 20 minutes at 37 °C. After centrifugation (300 \times g, 5 minutes), 10,000 cells were assayed for cellular DNA content (red fluorescence) on the flow cytometer. Cells with DNA contents < 2N in the M1 region were defined as hypodiploid cells.

Analysis of membrane phosphatidylserine exposure

The Annexin-V-Fluos kit was used to measure apoptosis of cells with membrane phosphatidylserine (PS) exposure. The detailed procedure has been described elsewhere [29]. The green (Annexin-V stain: apoptotic cells) and red (PI stain: necrotic cells) fluorescence intensities were analyzed on the flow cytometer at 488 nm excitation with a 515-nm bandpass filter and a > 560-nm filter for PI detection. Cells with Annexin-V-positive and PI-negative fluorescence were defined as apoptotic.

Analysis of large mtDNA deletions

Whole DNAs were extracted as described by Huang et al [29]. Primers and probes for the mtDNA D-loop and a 4834-bp large deletion in rodent mtDNA (mtDNA⁴⁸³⁴ deletion), and PCR conditions were modified from the method described by Branda et al [23]. The degree of mtDNA⁴⁸³⁴ deletion was quantified with a DYXL-5' reporter and a 3'-BHQ1 quencher dye, and the amount of D-loop expression was quantified with a 6FAM-5' reporter and a 3'-BHQ1-labeled quencher dye. PCR amplification was carried out in a 50-µL reaction consisting of 1× TaqMan Universal Master Mix, 200 nM each mtDNA⁴⁸³⁴ deletion primer, 100 nM each D-loop primer, and 100 nM each mtDNA⁴⁸³⁴ deletion and D-loop probe primer. The cycling condition included an initial phase of 2 minutes at 50 °C, 10 minutes at 95 °C, then 40 cycles of 15 seconds at 95 °C and 0.5 minutes at 72 °C (LightCycler, Roche Diagnostics, Mannheim GmbH, Mannheim, Germany). Each sample was assayed in duplicate, and the fluorescence spectra were monitored by the LightCycler Sequence Detection System with Sequence Detection Software version 4.

Statistical analysis

Results are expressed as means \pm SEM. Differences between groups were analyzed by one-way ANOVA and Dunnett's multiple-range test with the General Linear Model of SAS (SAS Institute, Cary, NC, USA). P < 0.05 is considered significant.

Results

Folate deprivation and copper treatment potentiated cell death

Figure 1 presents the data of cellular viability measured by MTT and trypan blue assays. Treatment with CuSO₄ levels of 4, 8, and 16 μM for 48 hours did not exert cytotoxicity in folate-sufficient cells (controls) as shown in Figure 1A. In contrast, treatment of folate-deprived hepatocytes with 16 μM for 24 hours significantly decreased cellular viability. At 48 hours of CuSO₄ treatment, the inhibitory effect of copper treatment on cellular viability reached a plateau at 16 μM CuSO₄ (Figure 1A). Trypan blue assay showed that the death rate of FD cells treated with 16 μM CuSO₄ for 48 hours was 28 \pm 5%, which was significantly higher than death rates of control cells without CuSO₄ treatment (Figure 1B).

Copper treatment aggravated ROS generation in folate-deprived hepatocytes

Figure 2A showed that $CuSO_4$ treatment for 48 hours increased DCF fluorescence intensity in both control and FD cells, as reflected by the shift of mean DCF intensity to the right. The intracellular ROS levels in FD cells were higher than those in controls, regardless of the presence or absence of $CuSO_4$ treatment (16 μ M). FD hepatocytes receiving $CuSO_4$ treatment (8 and 16 μ M) for 48 hours displayed 2- to 3-fold increases in ROS production when compared to untreated FD hepatocytes (Figure 2B). Conversely, hepatocytes with sufficient folate produced less ROS (40–60% increases) after receiving the same $CuSO_4$ treatment as FD hepatocytes did.

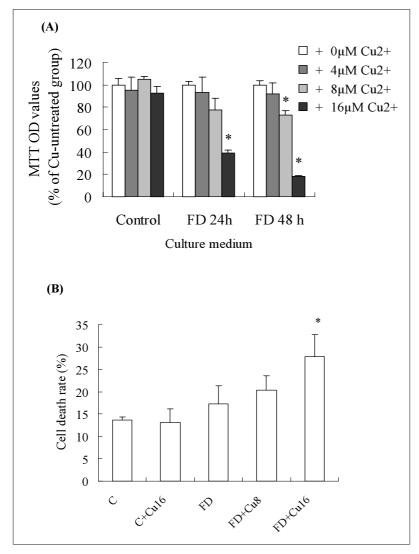


Figure 1: Effects of folate depletion and copper treatment on cellular viability. (A) Freshly isolated hepatocytes were cultured in folate-deprived (FD) and complete medium (control) for 6 hours, and treated with various concentrations of copper sulfate (CuSO₄) for 24 or 48 hours. Viability was measured by MTT assay, and expressed as a percentage of Cu-untreated values in the respective group. ANOVA was performed for each culture group. *: Significant at P < 0.05 compared with values of CuSO₄-untreated respective groups. (B) Death rates of primary hepatocytes incubated in control (C) and FD culture medium with or without 8µM (Cu8) or 16 μM (Cu16) CuSO₄ treatment for 48 hours. Death rate is expressed as percentage of dead cells (trypan blue-stained) to total cells (both live and dead). Means \pm SD were obtained from triplicate cultures of three independent experiments. *: Significant at P < 0.05compared with the control group.

Copper treatment aggravated chromosomal DNA loss in folate-deprived hepatocytes with no apoptotic induction

As indicated in Figure 3A, CuSO₄-treatment (16 µM) did not induce significant nuclear DNA loss in control hepatocytes. However, it is interesting to note that CuSO₄ treatment caused a 3-fold increase in hypoploid DNA content in FD hepatocytes compared to their untreated counterparts. To investigate whether CuSO₄-treated cells underwent apoptosis, cells with membrane disruption due to phosphatidylserine (PS) exposure were analyzed by fluorescent labeling with Annexin-V-Fluos. PI labeling is an index of necrotic cells with impaired membrane for dye penetration. Apoptotic cells were characterized by Annexin-positive and PI-negative fluorescence. In the bivariate scatter plots shown in Figure 3B, neither folate deprivation alone nor CuSO₄ treatment of FD hepatocytes induced apoptosis (no cells with Annexin+ and PI- fluorescence were found). Oligonucleosomal DNA fragmentation and DNA ladders were not detected in FD, CuSO₄treated FD, and control hepatocytes (data not shown).

Effect of folate status on levels of the mtDNA⁴⁸³⁴ deletion in FD hepatocytes during copper treatment

The levels of the mtDNA⁴⁸³⁴ deletion were evaluated by quantitative real-time PCR. The cycle at which a statistically significant increase in normalized fluorescence was first detected was designated as the threshold cycle number (C_t) (Figure 4A). The relative amount (R) of deleted mtDNA to total mtDNA was calculated as $R = 2^{-\Delta Ct}$, where ΔCt is $Ct_{deleted\ mtDNA} - \Delta Ct_{D-loop\ value}$. We checked the specificity of the amplification products by 2% agarose gel electrophoresis, which showed unique PCR fragments of the expected size (Figure 4B). Figure 4C shows that copper treatment did not significantly increase the levels of mtD-NA⁴⁸³⁴ deletion in FD hepatocytes. Preincubation of hepatocytes with 10, 100, and 1000 μ M folate for 6 hours did not modulate levels of mtDNA⁴⁸³⁴ deletion.

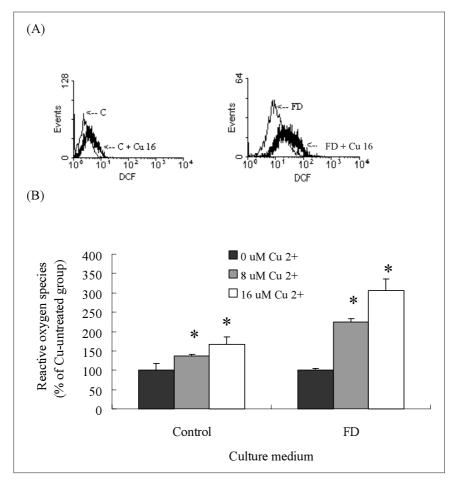


Figure 2: Effects of folate depletion and copper treatment on reactive oxygen species generation. Culture conditions and CuSO₄ treatment are as described in Figure 1. Intracellular ROS in hepatocyte cultures were measured by DCF fluorescence and flow cytometry. (A) DCF fluorescence distribution in control and FD hepatocyte cultures treated with or without 16 µM CuSO₄ for 48 hours. Histograms represent three independent experiments. (B) Dose effects of CuSO₄ treatments on intracellular ROS generation in control and FD hepatocytes. The relative ROS levels are expressed as percentages of the CuSO₄-untreated values from the respective group. Means ± SD were obtained from triplicate cultures of three independent experiments. *: Significant at P < 0.05 compared with values of CuSO₄-untreated group.

Int. J. Vitam. Nutr. Res., 76 (5), 2006, © Hogrefe & Huber Publishers

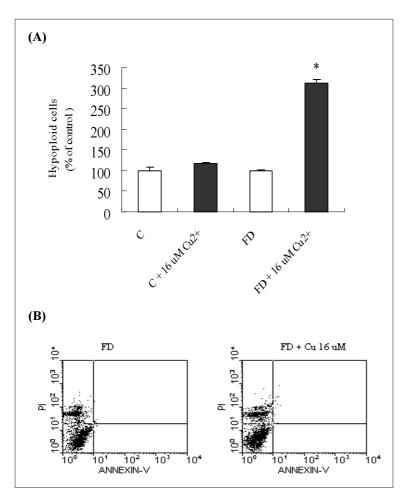


Figure 3: Effects of folate depletion and copper treatment on chromosomal DNA loss and apoptosis induction. Hepatocytes treated with or without 16 µM CuSO₄ for 48 hours were harvested, fixed, stained with DNA-interacting dye, and analyzed by flow cytometry. (A) Hypoploid cells were quantified and expressed as percentages of CuSO₄-untreated values from the respective group. Data are means \pm SD from triplicate cultures of three independent experiments. *: Significant at P < 0.05 compared with values of CuSO₄-untreated group. (B) Representative scatter plots of apoptosis in FD hepatocytes treated with or without 16 µM copper for 48 hours. Apoptotic cells binding to Annexin V (AV fluorescence-positive) and necrotic cells with PI staining (PI-positive) were analyzed by flow cytometry. Data were obtained from triplicate cultures of three independent experiments.

Discussion

Our data demonstrated that copper exposure (16 µM) within the range of the reported copper concentrations in patients with liver diseases [2, 27, 30] promoted cell death of folate-deprived hepatocytes. Furthermore, we found that folate sufficiency could prevent these hepatocytes from being injured while receiving the same copper treatment. These findings are consistent with a report elsewhere which demonstrated that the threshold concentrations of copper-induced hepatocellular toxicity in vitro were substantially higher (50–100 µM) under the condition of normal folate status [31]. Lack of folate, a proposed antioxidant vitamin, resulted in the depletion of antioxidant molecules and weakened the cellular oxidative defense system [10]. Folate-deficient rats have compromised antioxidant enzymatic activities and elevated lipid peroxidation in their livers [32], which may potentiate copper-induced oxidative stress in folate-deprived hepatocytes. Indeed, copper-mediated toxicity coincided with a 3-fold elevation in intracellular ROS generation in folate-deprived hepatocytes. These results are consistent with those from human hepatoma cells. Folate deficiency sensitized HepG2 cells to pro-oxidant-elicited cell death by promoting ROS generation and oxidative damage [33].

In the present study, copper-mediated toxicity of folate-deprived hepatocytes was correlated with chromosomal DNA loss. These hypodiploid cells were not apoptotic, because no membrane PS exposure, a hallmark of apoptosis, was detectable. Instead, the cell death mode appeared to be necrosis, supported by the evidence of PI-positive staining and trypan-blue assay. Acute oxidative damage can elicit necrosis with chromosomal DNA loss, whereas chronic and moderate oxidative stress promotes apoptosis [34]. Folate depletion combined with elevated copper levels apparently promoted acute oxidative stress, since ROS generation tripled in only 48 hours (Figure 2). In contrast, folate deficiency for 2 to 4 weeks without any pro-oxidant stimulation essentially promoted chronic oxidative stress, which was associated with apoptotic induction in HepG2 cells [21, 33].

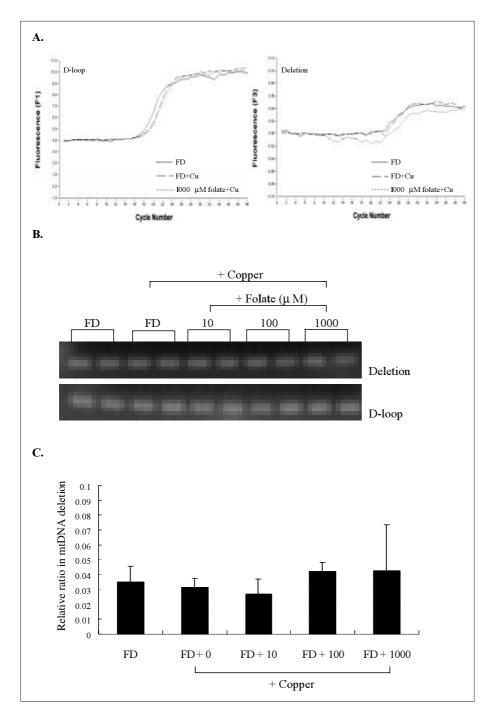


Figure 4: Effects of supplemental folate and copper treatment on mtDNA deletion of FD hepatocytes. FD hepatocytes were treated with or without 16 µM CuSO₄ for 48 hours. For folate supplementation, FD hepatocytes were preincubated with various concentrations of folate (0, 10, 100, and 1000 μM) for 6 hours prior to copper treatment. DNA was extracted from each group and analyzed by real-time PCR for the 4834-bp mtDNA deletion. (A) Representative plots of realtime PCR analysis. (B) Agarose gel electrophoresis of PCR products amplified from the primer pair detecting the 4834-bp mtDNA deletion and the primer pair for the D-loop region. (C) Quantification of the 4834-bp mtDNA deletion in FD hepatocytes supplemented with various levels of folate (0, 10, 100, and $1000 \, \mu M$). Data are means \pm SEM (n = 4).

Studies have reported that mitochondria are a potential target of copper-mediated toxicity in hepatocytes [31]. Our data provide several notable findings relative to mtDNA large deletions upon copper exposure: (1) mtDNA⁴⁸³⁴ accumulation at 3–5% was not lethal in copper-untreated FD hepatocytes; (2) these levels of mtDNA deletion did not mediate necrotic cell death in copper-treated FD hepatocytes and; (3) folate deprivation and copper-induced ROS

generation, an acute oxidative condition, seemed not to affect mtDNA⁴⁸³⁴ accumulation. It is possible that oxidative stress elicited by copper in folate-deprived hepatocytes may be more pronounced in the cytosol than in the mitochondrial matrix, where the mtDNA is located. Elevated levels of copper have been documented to decrease cellular glutathione, cytosolic metallothionein levels, and glutathione peroxidase activity, and thus increased hydrogen peroxide

flux can be anticipated [35]. Consequently, acute oxidative stress may preferentially disrupt plasma membranes (Figure 3), impair mitochondrial membrane potential [36], and disturb mitochondrial function [37] without having an impact on the levels of mtDNA⁴⁸³⁴ accumulation.

Despite reports elsewhere indicating that increased folate levels could modulate the mtDNA4834 deletion in the rat liver after chemotherapy or in the liver of aging rats [23, 24], we could not find any protective effect by folate in modulating this deletion in copper-treated primary hepatocytes. Madsen et al proposed that mtDNA deletion may be due to slipped mispairing between repeated sequences during DNA replication or by erroneous RNA splicing [38]. It has been suggested that the favorable selection for and propagation of mutated mtDNA through tissue proliferation results in the accumulation of mutated mtDNA in individual cells [39]. However, this possibility can be excluded, since primary hepatocytes do not divide. Collectively, the evidence implies that folate may only modulate the common mtDNA deletion through mitochondrial biogenesis and mtDNA replication during cellular proliferation [23, 24].

In summary, our data demonstrate that folate deprivation and elevated copper levels potentiate necrotic cell death associated with elevated ROS generation and impaired chromosomal DNA integrity, but have no impact on accumulation of the common mtDNA deletion. Our observations from an *ex vivo* primary hepatocyte model may therefore provide mechanistic insights into the effect of folate insufficiency and increased copper toxicity on liver damage.

Acknowledgments

We acknowledge Prof. C.-K. Lii in the Dept. of Nutritional Sciences at Chuang-Shen Medical University, for advice on primary hepatocyte isolation, and Prof. CW P. Chiu in the Dept. of Nutrition and Food Sciences at Fu-Jen University for providing a perfusion pump. The authors are deeply grateful for the kind support and excellent suggestions of Prof. Y.-H. Wei in the Dept. of Biochemistry at National Yang-Ming University. We also thank Prof. Y.-A. Lee in the Dept. of Life Science and Prof. J.-F. Lu in the Dept. of Medicine at Fu-Jen University for helpful discussion. We appreciate the effort of Dr. Eric Jaehnig at UCSF for the English editing of the manuscript. This study was supported by grants from the National Science Council, Taiwan, ROC (NSC-89-2320-B-030-004 and NSC 94-2320-B-030-002).

References

- Ferenci, P. (2004) Pathophysiology and clinical features of Wilson disease. Metab. Brain Dis. 19, 229–239.
- Halifeoglu, I., Gur, B., Aydin, S. and Ozturk, A. (2004) Plasma trace elements, vitamin B₁₂, folate, and homocysteine levels in cirrhotic patients compared to healthy controls. Biochemistry 69, 693–696.
- Kachur, A.V., Koch, C.J. and Bigalow, J.E. (1999) Mechanism of copper-catalyzed autoxidation of cysteine. Free Radic. Res. 31, 23–34.
- Ohta, Y., Shiraishi, N., Nishikawa, T. and Nishikimi, M. (2000) Copper catalyzed autoxidations of GSH and L-ascorbic acid: mutual inhibition of the respective oxidations by their coexistence. Biochim. Biophys. Acta 1474, 378–382.
- Wu, A., Chanarin, I., Slavin, G. and Levy, A.J. (1975) Folate deficiency in the alcoholic Its relationship to clinical and haematological abnormalities, liver disease and folate stores. Br. J. Haematol. 29, 469–478.
- Tkaczewski, W., Niedzielska, H., Malafiej, E., Dworniak, D. and Dramiski, M. (1971) Studies of serum folic acid level in patients with viral hepatitis. Polish Med. J. 10, 1081–1084.
- Kao C-S. (2003) Relationships between vitamin B status, plasma homocysteine and hepatitis in Taiwanese population. Master thesis. Department of Nutrition and Food Sciences, Fu-Jen University, Taiwan, R.O.C.
- 8. Joshi, R., Adhikari, S., Patro, B.S., Chattopadhyay, S. and Mukherjee, T. Free radical scavenging behavior of folic acid: evidence for possible antioxidant activity. Free Radic. Biol. Med. 30, 1390–1399.
- Rezk, B.M., Haenen, G.R.M.M., van der Vijgh, W.J.F. and Bast, A. (2003) Tetrahydrofolate and 5-methyltetrahydrofolate are folates with high antioxidant activity. Identification of the antioxidant pharmacophore. FEBS Lett. 555, 601–605
- Chen, Y.H., Huang, R.F.S., Wei, J.S. and Liu, T.Z. (2001) Folate deficiency-mediated downregulation of intracellular glutathione and antioxidant enzymes increases susceptibility of human hepatoma HepG2 cells to various oxidant stress-induced cytotoxicity. J. Biomed. Lab. Sci. 13, 52–57.
- 11. Chandra, J., Samali, A. and Orrenius, S. (2000) Triggering and modulation of apoptosis by oxidative stress. Free Radic. Biol. Med. 29, 323–333.
- 12. Kroemer, G., Petit, P., Zamzami, N., Vayssiere, J. and Mignotte, B. (1995) The biochemistry of programmed cell death. FASEB J. 9, 1277–1287.
- Granville, D.J., Carthy, C.M., Hunt, D.W.C. and McManus, B.M. (1998) Apoptosis: molecular aspects of cell death and disease. Lab. Investi. 78, 893–913.
- Richter, C., Park, J.W. and Ames, B.N. (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA 85, 6465–6467.
- 15. Yen, T.C., Su, J.H., King, K.L. and Wei, Y.H. (1991) Ageing-associated 5-kb deletion in human liver mitochondrial DNA. Biochem. Biophys. Res. Commun. 178, 124–131.
- Edris, W., Burgett, B., Stine, O.C. and Filburn, C.R. (1994)
 Detection and quantitation by competitive PCR of an age-

- associated increase in a 4.8 kb deletion in rat mitochondrial DNA. Mutat. Res. 316, 69–78.
- 17. Filser, N., Margue, C. and Richter, C. (1997) Quantification of wild-type mitochondrial DNA and its 4.8-kb deletion in rat organs. Biochem. Biophys. Res. Commun. 233, 102–107.
- Shao, J.-Y., Gao, H.-Y., Li, Y.-H., Zhang, Y., Lu, Y.-Y. and Zeng, Y.-X. (2004) Quantitative detection of common deletion of mitochondrial DNA in hepatocellular carcinoma and hepatocellular nodular hyperplasia. World J. Gastroenterol. 10, 1560–1564.
- Wei, Y.H. and Lee, H.C. (2002) Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp. Biol. Med. 227, 671–682.
- Lezza, A.M.S., Mecocci, P., Cormio, A., Beal, F.M., Cherubini, A., Cantatore, P., Senin, U. and Gadaleta, M.N. (1999) Mitochondrial DNA 4977 bp deletion and 80HdG levels correlate in the brain of aged subjects but not Alzheimer's disease patients. FASEB J. 13, 1083–1088.
- Huang, R.F.S., Ho, Y.H., Lin, H.L., Wei, J.S. and Liu, T.Z. (1999) Folate deficiency induces a cell cycle-specific apoptosis in HepG2 cells. J. Nutr. 129, 25–31.
- James, S.J., Miller, B.J., Basnakian, A.G., Pogribny, I.P., Pogribna, M. and Muskhelishvili, L. (1997) Apoptosis and proliferation under conditions of deoxynucleotide pool imbalance in liver of folate/methyl deficient rats. Carcinogenesis 18, 287–93.
- Branda, R.F., Brooks, E.M., Chen, Z., Naud, S.J. and Nicklas, J.A. (2002) Dietary modulation of mitochondrial DNA deletions and copy number after chemotherapy in rats. Mutat. Res. 501, 29–36.
- 24. Crott, J.W., Choi, S.W., Branda, R.F. and Mason, J.B. (2005) Accumulation of mitochondrial DNA deletions is age, tissue and folate-dependent in rats. Mutat. Res. 570, 63–70.
- Lii, C.K. and Hendrich, S. (1993) Selenium deficiency suppresses the S-glutathiolation of carbonic anhydrase III in rat hepatocytes under oxidative stress. J. Nutr. 123, 1480–1486.
- Lin, H.-L. (2001) Copper and homocysteine-induced damage of rat primary hepatocytes in folate-deficient cultures.
 Master thesis. Department of Nutrition and Food Sciences, Fu-Jen University, Taiwan.
- Cesur, S., Cebeci, S.A, Kavas, G.O., Aksaray, S. and Tezeren, D. (2005) Serum copper and zinc concentration in patients with chronic hepatitis B. J. Infect. 51, 38–40.
- Sladowski, D., Steer, S.J., Clothier, R.H. and Balls, M. (1993)
 An improved MTT assay. J. Immunol. Meth. 157, 203.
- Huang, R.F.S., Huang, S.M., Lin, B.S., Hung, C.Y. and Lu,
 H.T. (2002) N-acetylcysteine, vitamin C and vitamin E di-

- minish homocysteine thiolactone-induced apoptosis in human promyeloid HL-60 cells. J Nutr. 132, 2151–2155.
- Cesur, S., Cebeci, S.A., Kavas, G.O., Yilmaz, N., and Tezeren, D. (2005) Serum copper and zinc concentrations in patients with chronic hepatitis C. J. Infect. 51, 35–37.
- Seth, R., Yang, S., Choi, S., Sabean, M. and Roberts, E.A. (2004) In vitro assessment of copper-induced toxicity in the human hepatoma line, HepG2. Toxicol. In vitro 18, 501–509.
- Huang, R.F.S., Hsu, Y.C., Lin, H.L. and Yang, F.L. (2001)
 Folate depletion and elevated plasma homocysteine promote oxidative stress in rat livers. J. Nutr. 131, 33–38.
- Chern, C.L., Huang, R.F.S., Chen, Y.H., Cheng, J.T. and Liu, T.Z. (2001) Folate deficiency-induced oxidative stress and apoptosis are mediated via homocysteine-dependent overproduction of hydrogen peroxide and enhance activation of NF-kB in human HepG2 cells. Biomed. Pharmacother. 55, 434-442
- 34. Buttke, T.M. and Sandstrom, P.A. (1994) Oxidative stress as a mediator of apoptosis. Immunol. Today 15, 7–10.
- Freedman, J.H., Ciriolo, M.R. and Peisach, J. (1989) The role of glutathione in copper metabolism and toxicity. J. Biol. Chem. 264, 5598–5605.
- Lu, H.T., Lii, C.K., Cheng, H.H. and Huang, R.F.S. (2004) Effect of folate supplementation on mitochondrial mass and membrane potential of rat primary hepatocytes treated with oxidant. Nutr. Sci. J. 29, 38–47.
- 37. Sheline, C.T. and Choi, D.W. (2004) Cu toxicity inhibition of mitochondrial dehydrogenases in vitro and in vivo. Ann. Neurol. 55, 645–653.
- Madsen, C.S., Ghivizzani, S.C. and Hauswirth, W.W. (1993) In vivo and in vitro evidence for slipped mispairing in mammalian mitochondria. Proc. Natl. Acad. Sci. USA 90, 7671–7675.
- Chinnery, P.F., Samuels, D.C., Elson, J. and Turnbull, D.M. (2002) Accumulation of mitochondrial DNA mutations in ageing, cancer, and mitochondrial disease: is there a common mechanism? Lancet 360, 1323–1325.

Rwei-Fen S. Huang

Department of Nutrition and Food Sciences Fu-Jen University, Taiwan, ROC Tel: +886-2-2905-2512, Fax: +886-2-2902-1215 E-mail: rweifen@mails.fju.edu.tw