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Introduction

Lycopene is an acyclic carotenoid with 11 linearly
arranged conjugated double bonds, found only in a few
food items. Tomatoes and tomato-based products are the
main dietary lycopene sources for humans. Further
sources of lycopene include apricot, guava, watermelon,
papaya, pink grapefruit, sea buckthorn, rosehip, etc.
Lycopene lacks the β-ionone ring and therefore has no
provitamin A activity. Numerous investigations focus
currently on carotenoids as biological antioxidants. The
carotenoids with nine or more conjugated double bonds
are able to quench singlet oxygen with increasing activi-

ty depending on the number of conjugated double bonds
[1]. Within the carotenoids, lycopene is the most effective
quencher of singlet oxygen [2]. Recent investigations by
using the TEAC (Trolox equivalent antioxidant capacity)
assay showed significantly different antioxidant activity
for lycopene isomers depending on the geometrical struc-
ture [3].

Isomerization of carotenoids, often encountered in food
processing, is affected by both temperature and light ex-
posure. However, in tomatoes and tomato-based foods
(all-E)-lycopene is predominant, accounting for 90–98%
of total lycopene [4]. In contrast, in benign or malignant
human prostate tissues, (all-E)-lycopene accounts for on-
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ly 12–21% of total lycopene, and (Z)-isomers for 79–88%.
In serum, lycopene consists of 58–73% (Z)-isomers [5].
A recent human intervention study showed that there was
no significant (Z)-(E) isomerization of lycopene in the hu-
man stomach. The fact that lycopene (Z)-isomers are poor-
ly transported by the chylomicrons and thus poorly ab-
sorbed, strongly suggests that an (E)-(Z) isomerization of
lycopene occurs in the human body at a post-enterocyte
level [6].

In most investigations on lycopene, the different (Z)-
isomers are often only tentatively identified by using the
UV-vis data as well as their high-performance liquid chro-
matography (HPLC) retention behavior compared to pub-
lished separations. Thus, the aim of this study was to un-
ambiguously identify prominent geometrical lycopene
(Z)-isomers in a photoisomerized mixture by using dif-
ferent spectroscopic methods. These investigations were
done by using the nowadays most common C30 HPLC.

Material and Methods

Chemicals

(all-E)-Lycopene was a gift from BASF (Ludwigshafen,
Germany). Iodine was purchased from Merck (Darmstadt,
Germany). Cyclohexane, toluene, petroleum ether,
ethanol, dichloromethane, and acetone were of analytical
grade, and methanol, methyl tert-butyl ether (MTBE), and
hexane were of HPLC quality. Deuterated chloroform
(CDCl3) was obtained from Euriso-top (Saarbrücken, Ger-
many).

Iodine isomerization

(all-E)-Lycopene standard solution (150–200 µg/mL) in
cyclohexane/toluene (8+2, v/v) was used for isomeriza-
tion. Iodine crystals were added to the standard at ap-
proximately 5% of the carotenoid weight and photoiso-
merization was performed according to the method of
Zechmeister [7]. The resulting mixture of lycopene
metabolites was used for fractionation as described below.
Four prominent (Z)-isomers (Figure 1 showing a separa-
tion on the preparative C30 column) were isolated for fur-
ther investigations.

Fractionation

The isomers were fractionated at room temperature using
a HPLC pump model L-7100 (Merck, Darmstadt, Ger-
many), detector model Lambda 1000 (Bischoff, Leonberg,
Germany) and integrator model Chromatopac C-R6A

(Shimadzu, Duisburg, Germany). For separation, a prepar-
ative C30 (300 × 10.0 mm, 5 µm) column (YMC Europe,
Schermbeck, Germany), preceded by a C18 ProntoSil 120-
5-C18 H (10 × 4.0 mm, 5 µm) column (Bischoff, Leon-
berg, Germany) was used. Mixtures (see details below) of
methanol and MTBE constituted a mobile phase at a flow
rate of 4.0 mL/minute; the detection wavelength was 450
nm. Due to the low stability of the isolated isomers of ly-
copene, all steps had to be completed rapidly and under
subdued light.

The pre-fractionation was necessary to provide the iso-
mers for the NMR measurements at adequate concentra-
tions, for isomers 1–3. The mixture of isomers was dis-
solved in cyclohexane/toluene (8+2, v/v). The separation
was carried out with a mobile phase consisting of a mix-
ture of methanol and MTBE (1+1, v/v). The isolated ex-
tract contained the three isomers (Z)-lycopene isomer 1,
(Z)-lycopene isomer 2, and (Z)-lycopene isomer 3. A con-
centrated solution of this mixture was stable for two weeks
at –30°C as shown by analytical HPLC (data not shown).

Prior to the separation of several isomers, the mixtures
were dried under a flow of nitrogen at room temperature.
After dilution with the mobile phase, several isomers were
fractionated using a mixture of methanol and methyl tert-
butyl ether (6+4, v/v) as mobile phase. The eluates with
the separated isomers were concentrated under vacuum at
room temperature in a rotary evaporator. The residue of
the solvent was dried under a nitrogen flow at room tem-
perature. The purity of the separated isomers was checked
by means of an analytical C30 HPLC-diode array detector
(DAD) as described below, and found to range between
95 and 100%. In addition, for isomers 1–3 purity was
checked by using the preparative HPLC system as de-
scribed above due to its better separation of these isomers.

HPLC analysis

The mixture of isomers as well as the isolated single com-
pounds were analyzed using a HPLC pump model L-6200
(Merck, Darmstadt, Germany), autosampler model AS-
2000 (Merck), column oven model CTO-10AC (Shi-
madzu, Duisburg, Germany) and diode array detector
model L-4500 (Merck). For separation, an analytical scale
polymeric C30 (250 × 4.6 mm, 5 µm) column (YMC Eu-
rope, Schermbeck, Germany), preceded by a C18 ProntoSil
120-5-C18 H (10 × 4.0 mm, 5 µm) column (Bischoff,
Leonberg, Germany) was used. As mobile phase (1.3
mL/minute) the following gradient procedure consisting
of methanol (solvent A) and methyl tert-butyl ether (sol-
vent B) was used: 1) Initial conditions 90% solvent A and
10% solvent B, 2) a 35-minute linear gradient to 45% sol-
vent B, 3) a 10-minute linear gradient to 60% solvent B,
4) 40% solvent A and 60% solvent B for 11 minutes, 5) a
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4-minute linear gradient to 10% solvent B. The column
temperature was 23 ± 1°C, and injection volume was 50
µL [8].

UV-vis spectroscopy

The absorbance spectra of isolated isomers were mea-
sured in hexane, petroleum ether, MTBE, ethanol,
dichloromethane, and acetone directly after fractionation
using an UV-vis spectrophotometer (model V-530, Jasco,
Groß-Umstadt, Germany).

HPLC-MS analysis

Dried isomers were transported cooled under argon am-
bience and stored at –18°C until analysis. Before analy-
sis, residues were redissolved in MTBE/methanol (1+1,
v/v). The HPLC-mass spectrometry (MS) was performed
on an HP1100 modular HPLC system (Hewlett Packard,
Waldbronn, Germany), coupled to a Micromass (Man-
chester, UK) VG platform II quadrupole mass spectrom-
eter, using an APCI interface, operated in the positive
mode to generate quasimolecular ions ([M+H]+). Definite
interface parameters as well as information about instru-
ment calibration were described in detail previously [9].
Mass spectra of lycopene isomers were recorded in a m/z
200–1000 scan range and the UV-vis absorbance mea-
surement was monitored at 450 nm (DAD). Data were ac-
quired and processed using MassLynx 3.2 software. For
HPLC separation, a YMC analytical column (250 × 4.6
mm, 5 µm; YMC Europe, Schermbeck, Germany) with C30

material including a precolumn (10 × 4.6 mm, 5 µm) main-
tained at 35 ± 1°C was used. The mobile phase consisted
of two mixtures of methanol, MTBE, and water (A =
81+15+4, v/v/v and B = 6+90+4, v/v/v), using a gradient
program (minutes/%A): 0/99, 39/44, 45/0, 48/0, 52/99,
55/99 at a flow rate of 1 mL/minute. The injection volume
was 20 µL.

NMR analysis

To eliminate residual solvent, the separated isomers were
dried again under vacuum for two hours in a desiccator.
Dried isomers were transported cooled under argon am-
bience and stored at –18°C until actual analysis. For NMR
analysis, 160–290 µg of the isolated lycopene isomers dis-
solved in 175 µL CDCl3 were used. The NMR solvent and
the sample tube were flushed with nitrogen in order to re-
move oxygen prior to data acquisition. NMR spectra were
recorded on a Varian Unity Inova 500 MHz NMR equipped
with a 3 mm ID-PFG probe. 1H chemical shifts were ref-
erenced to the residual solvent signal at δ = 7.27 ppm (CD-
Cl3) relative to TMS. 1H NMR and 2D NMR (gCOSY,

TOCSY, TROESY) measurements were performed using
standard Varian pulse sequences.

Results and Discussion

Iodine-mediated isomerization of (all-E)-lycopene result-
ed in a mixture of (all-E)-lycopene, (Z)-isomers, and ox-
idation products. Five isomers (Figure 1), being the same
as recently investigated on their antioxidant activity [3] as
well as being partly present in plasma samples [10], with
retention times (preparative column) between 30 and 60
minutes, were fractionated for characterization. These five
peaks represented 25–72% (mean value of 15 isomeriza-
tion days) of the peaks in the mixture obtained by iodine
mediated isomerization. The large variation depended on
different amounts of oxidation products while the relative
contents of the (Z)-isomers were nearly constant (ratio:
peaks (1+2+3):4:5 = 1.5 ± 0.4:1.0:1.5 ± 0.3.; (all-E)-lyco-
pene (peak 4) was the basis for the calculation of the ra-
tio).

UV-vis: The UV-vis data of the five isomers investi-
gated are shown in Table I. Differences in the wavelength
corresponding to maximal absorbance were observed de-
pending on the solvent used. For (all-E)-lycopene (4), the
wavelength of the maximum varied between 469 nm in
petroleum ether and 482 nm in dichloromethane. Isomer
5 exhibited the same spectral characteristics in all solvents
as (all-E)-lycopene (4). Thus, this isomer was suspected
to be a mono-(Z)-isomer with (Z)-double bond far from
the center of the molecule. In contrast, the spectra of the
isomers 1–3 showed a hypsochromic shift of 5–7 nm, be-
ing normally a hint for mono-(Z)-isomers. In our experi-
ment, one (Z)-double bond of the di-(Z)-isomers was far
from the center of the molecule. The ratio ε2/ε1 (absorp-
tion intensity at the near-UV maxima to absorption inten-
sity at the main absorption maximum) is another useful
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Figure 1: Chromatographic separation of (all-E)-lycopene and
four lycopene (Z)-isomers (25–50 ng per isomer) using a prepar-
ative C30 column at room temperature, DAD 450 nm (see text
for further chromatographic conditions). 1, 2, 3, 5 = lycopene
(Z)-isomers, 4 = (all-E)-lycopene, x = other lycopene metabo-
lites.
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parameter to describe carotenoid isomers. This value is
nearly zero for (all-E)-isomers, and increases with posi-
tion of the (Z)-double bond getting closer to the center of
the molecule. Hence this ratio is highest for (15Z)-isomers
of carotenoids. This study resulted in ratios of 0.09–0.18
for the (all-E)-lycopene (4), 0.08–0.16 for isomer 5, and
0.14–0.30 for the isomers 1–3. These results also charac-
terize isomer 5 as one with a (Z)-double bond far from the
center of the molecule. The higher ratios of the three iso-
mers 1–3 describe a position of the (Z)-double bond up to
the 9- or 9’-position.

HPLC-MS: All isolated isomers showed spectra with
strong mass signals at m/z 537.4, corresponding to the qua-
simolecular ion of lycopene. Fragmentation did not occur,
and adduct ions were not present. The isotopic ratio of ions
at m/z 537.4/538.4/539.4 calculated for C40H57 is in a good
agreement with that measured for all lycopene isomers;
the intensity of the [M+H]+-signal indicated the presence
of a C40 skeleton.

NMR: In order to unambiguously identify the struc-
tures of the major lycopene isomers obtained by iodine
isomerization of (all-E)-lycopene (Figure 2), the individ-
ual isomers 1–5 were semi-preparatively isolated and in-
vestigated by 1H NMR. Spectral assignment of the proton
signals was performed by 2D NMR including gCOSY,
TROESY, and TOCSY. Compared to (all-E)-lycopene (4),
a downfield shift of ∆δ = 0.04 ppm of H-2 and ∆δ = 0.11
ppm of H-4 as well as ROEs between Me-18 and H-6, H-

4 and H-7 established the (5Z)-configuration in compound
5 (Table II). As in the case of the (5Z)-configuration, (9Z)-
isomer 2 showed also some typical chemical shift differ-
ences compared to (all-E)-lycopene (4): downfield shift
of ∆δ = 0.08 ppm of H-6, ∆δ = 0.02 ppm of H-7, ∆δ = 0.54
ppm of H-8, and ∆δ = 0.17 ppm of H-11 as well as upfield
shift of ∆δ = 0.14 ppm of H-10, and ∆δ = 0.07 ppm of H-
12. A crosspeak between H-10 und Me-19 in the ROESY
spectrum clearly established the (9Z)-configuration. Com-
pounds 1 and 3 (Figure 2) showed almost identical 1H
NMR spectra in the olefinic region (Figure 3). The major
difference is a chemical shift difference (∆δ = 0.03 ppm)
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Table I: Electronic absorption of geometrical lycopene isomers investigated in pure organic solvents

Isomer Absorption maximaa [ε2/ε1]b

Hexane Petroleum ether
4 (all-E)- 295, 363, 444, (471), 502 [0.09] 295, 361, 443, (469), 501 [0.12]
1 (5Z, 9’Z) 296, 361, 438, (464), 496 [0.21] 296, 361, 438, (464), 495 [0.19]
2 (9Z) 296, 361, 438, (465), 496 [0.18] 296, 361, 438, (464), 495 [0.18]
3 (5Z, 9Z) 296, 361, 438, (465), 496 [0.16] 296, 361, 438, (464), 495 [0.17]
5 (5Z) 295, 362, 443, (470), 502 [0.09] 295, 361, 443, (469), 500 [0.09]

MTBE Ethanol
4 (all-E)- 294, 361, 445, (472), 503 [0.18] 295, 363, 445, (472), 503 [0.17]
1 (5Z, 9’Z) 296, 361, 440, (466), 497 [0.23] 297, 361, 441, (466), 497 [0.21]
2 (9Z) 296, 361, 440, (466), 497 [0.19] 296, 361, 441, (466), 497 [0.21]
3 (5Z, 9Z) 296, 361, 440, (466), 497 [0.18] 296, 361, 441, (467), 497 [0.21]
5 (5Z) 295, 362, 445, (472), 503 [0.10] 295, 362, 446, (472), 503 [0.16]

Dichloromethane Acetone
4 (all-E)- nd, 369, 455, (482), 515 [0.16] nd, 363, 447, (473), 505 [0.13]
1 (5Z, 9’Z) nd, 368, 450, (476), 509 [0.30] nd, 362, 442, (468), 499 [0.28]
2 (9Z) nd, 368, 450, (476), 509 [0.30] nd, 362, 442, (468), 499 [0.14]
3 (5Z, 9Z) nd, 368, 450, (476), 509 [0.14] nd, 362, 442, (468), 499 [0.15]
5 (5Z) nd, 368, 455, (482), 515 [0.10] nd, 363, 447, (473), 505 [0.08]
a Units are nm. Values in parentheses represent the main absorption maxima.
b Ratio of absorption intensity (ε2) at the near-UV maxima (361–369 nm) to absorption intensity (ε1) at the main absorption maxi-
mum (464–482 nm).
nd: not detected.

Figure 2: The structures of (all-E)-lycopene and of compounds
1 (5Z, 9’Z) and 3 (5Z, 9Z). The arrows indicate important ROESY
correlations.
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between the doublet at δ = 6.80 ppm of 1 and δ = 6.77 ppm
of 3. Significant differences were observed in the chemi-
cal shift region of the methyl groups as shown in Figure
4. Inspection of the 2D NMR spectra revealed both the
peak pattern of (5Z)- and (9Z)-configurations in both com-
pounds 1 and 3. The ROESY-correlations between H-4

and H-7, Me-18 and H-6, H-7 and Me-19, Me-19 and H-
10 unambiguously identified 3 as (5Z, 9Z)-lycopene
whereas ROEs between H-4 and H-7, Me-18 and H-6, H-
7 and Me-19, Me-19 and H-11, H-10’ and Me-19’, Me-
19’ and H-7’, H-7’ and Me-18’ established 1 as (5Z, 9’Z)-
lycopene.
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Table II: 1H NMR of lycopene isomers. CDCl3, ref= 7.27 ppm, ϑ = 25°C, 500 MHz
1H NMR δ [ppm], mult, J [Hz] a, ov = overlapped, s = singlet, d = doublet, t = triplet 
1 (5Z, 9’Z) 2 (9Z) 3 (5Z, 9Z) 4 (all-E) 5 (5Z)

2 5.16, bt, 7.2 5.13, ov 5.16, bt, 7.2 5.16, bt, 7.2
5.12, bt, 6.8

2’ 5.13, bt, 6.8 5.12, ov 5.12, bt, 6.8 5.12, bt, 7.0
3 (2H) 2.12, ov 2.14, ov 2.14, ov 2.14, ov

2.13, ov
3’ (2H) 2.14, ov 2.13, ov 2.13, ov 2.13, ov
4 (2H) 2.23, t, 7.2 2.13, ov 2.24, bt, 7.4 2.24, bt, 7.4

2.13, ov
4’ (2H) 2.14, ov 2.13, ov 2.13, ov 2.13, ov
6 5.95, d, 11.4 6.04, d, 10.9 6.03, d, 10.7 5.95, d, 10.9

5.96, d, 10.9 
6’ 6.04, d, 11.1 5.96, d, 10.9 5.96, d, 10.8 5.96, d, 10.9
7 6.50, dd, 11.2, 15.1 6.52, dd, 10.9, 15.0 6.52, dd, 11.1, 14.9 6.50, dd, 11.0, 15.1

6.50, dd, 10.9, 15.1
7’ 6.52, dd, 10.9, 14.9 6.50, dd, 10.9, 15.1 6.50, dd, 10.8, 15.1 6.50, dd, 11.0, 15.1
8 6.23, d, 15.1 6.80, d, 15.1 6.77, d, 14.9 6.26, d, 15.0

6.26, d, 15.0 
8’ 6.80, d, 15.0 6.26, d, 15.1 6.26, d, 15.0 6.26, d, 15.0
10 6.19, d, 11.5 6.05, d, 11.6 6.05, d, 11.6 6.19, d, 11.3

6.19, d, 11.4
10’ 6.05, d, 11.5 6.19, d, 11.5 6.19, d, 11.5 6.19, d, 11.3
11 6.64, ov 6.81, dd, 11.6, 14.9 6.80, dd, 11.5, 14.9 6.64, ov

6.64, ov 
11’ 6.81, dd, 11.4, 14.9 6.64, ov 6.64, ov 6.64, ov
12 6.36, d, 14.9 6.29, d, 15.0 6.29, d, 15.1 6.36, d, 14.9

6.36, d, 14.9
12’ 6.29, d, 14.9 6.36, d, 14.9 6.36, d, 15.0 6.36, d, 14.9
14 6.26, ov 6.26, ov 6.26, ov 6.26, ov

6.26, ov
14’ 6.26, ov 6.26, ov 6.26, ov 6.26, ov
15 6.63, ov 6.64, ov 6.64, ov 6.64, ov

6.64, ov
15’ 6.63, ov 6.64, ov 6.64, ov 6.64, ov
16 (3H) 1.696, s 1.702, s 1.696, ov 1.697, ov

1.698, s
16’ (3H) 1.703, s 1.696, s 1.696, ov 1.697, ov
17 (3H) 1.632, s 1.632, s 1.633, s 1.635, s

1.624, s
17’ (3H) 1.632, s 1.623, s 1.624, s 1.624, s
18 (3H) 1.836, s 1.836, s 1.853, s 1.836, s

1.829, s
18’ (3H) 1.836, s 1.828, s 1.829, s 1.829, s
19 (3H) 1.962, s 1.977, ov 1.965, s 1.963b

1.979, ov
19’ (3H) 1.977, s 1.977, ov 1.977, ov 1.979b,ov
20 (3H) 1.977, s 1.989, s 1.984, s 1.979, ov

1.979, ov
20’ (3H) 1.989, s 1.977, ov 1.977, ov 1.979, ov
a Observed coupling constants were not averaged. Assignments based on gCOSY, TOCSY, and TROESY spectra.
b Assignments maybe interchanged.
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Comparison of the 1H NMR data for compounds 1, 2,
4, and 5 with literature values [11] were in a good agree-
ment except for the chemical shift of H-8 in compound 2
(9Z). In the study presented here δ = 6.80 was found where-
as Hengartner et al reported δ = 6.70 for that proton. These
authors isolated compounds 1 and 2 by using C18 HLPC
and synthesized isomers 4 and 5. In another study [12]
where liquid chromatography (LC)-NMR was used for the
characterization of different (Z)-isomers of lycopene,
Strohschein identified compounds 2, and 5 by this method

and compound 3 by conventional NMR after isolation. The
author used a silica gel column and acetone as a mobile
phase. A recent paper [13] describing the analysis of ly-
copene isomers in tomato extracts and human serum, iden-
tified only compounds 2 and 5 by using LC-NMR (C30 col-
umn, acetone/water gradient or methanol/MTBE/water
gradient as mobile phase). In another paper [14], Breiten-
bach et al showed the compounds 2–5 in a C30 chro-
matogram (methanol/MTBE/water gradient as mobile
phase) of a lycopene isomer standard without giving any
information about identification of carotenoids. Even a
current paper [15] investigating lycopene isomers in toma-
to pulp only tentatively identified two of the here presented
(Z)-isomers (2 and 5) by using spectroscopic data as well
absorbance ratios from the literature. To our knowledge,
the identification of the (5Z)-isomer seems to be erro-
neous. In addition, the authors used a very unusual mo-
bile phase (1-butanol/acetonitrile/methylene chloride gra-
dient) for their separation. Tiziani et al (2006) used off-
line NMR experiments to characterize lycopene (Z)-iso-
mers in extracts from tomato juice. They did not isolate
single (Z)-isomers. However, they identified the com-
pounds 2 and 5 and allocated them to a C30 separation us-
ing a methanol/MTBE gradient as mobile phase [16].

To the best of our knowledge, this paper presents for
the first time ever the unambiguous identification of two
lycopene (di-Z)-isomers related to the known, most com-
mon HPLC separation on a C30 column. This will allow
other laboratories to use the results for their C30 HPLC.
Thus, six (Z)-isomers of lycopene in human plasma (Fig-
ure 5) are now characterized. In addition, it is possible to
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Figure 3: The 1H NMR spectra of the olefinic region of 1 (5Z,
9’Z) (upper trace) and 3 (5Z, 9Z) (lower trace).

Figure 4: The 1H NMR spectra of the region of the methyl groups
of 1 (5Z, 9’Z) (upper trace) and 3 (5Z, 9Z) (lower trace).

Figure 5: HPLC chromatogram of a plasma extract using an an-
alytical C30 column at 23 ± 1°C (further chromatographic con-
ditions are the same as described in the text for the mixture of
isomers and the isolated single compounds). 1 = (all-E)-lutein,
2 = (all-E)-zeaxanthin, 3 = (all-E)-canthaxanthin, 4 = (all-E)-β-
cryptoxanthin, 5 = echinenone (IS), 6 = (13Z)-β-carotene, 7 =
(all-E)-β-carotene, 8 = (all-E)-β-carotene, 9 = (9Z)-β-carotene,
10 = (13Z)-lycopene, 11 = (15Z)-lycopene, 12 = (5Z, 9´Z)-ly-
copene (isomer 1), 13 = (9Z)-lycopene (isomer 2), 14 = (5Z,
9Z)-lycopene (isomer 3), 15 = (all-E)-lycopene (isomer 4), 16
= (5Z)-lycopene (isomer 5).
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investigate structure-activity relationships for these ly-
copene isomers which will improve the understanding of
their physiological role in biological tissues.
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