

Vitamin D can be effective on the prevention of COVID-19 complications: A narrative review on molecular aspects

Editor's Choice

Amir-Abbas Shiravi¹, Milad Saadatkish², Zeinab Abdollahi¹, Paniz Miar¹, Hossein Khanahmad¹, and Mehrdad Zeinalian^{1,3}

- 1 Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- ² School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- ³ Ala Cancer Control and Prevention Center, Isfahan, Iran

Abstract: The widespread COVID-19 pandemic has been, currently, converted to a catastrophic human health challenge. Vitamin D (VD) and its metabolites have been used as a palliative treatment for chronic inflammatory and infectious diseases from ancient times. In the current study, some molecular aspects of the potential effects of VD against COVID-19 side-effects have been discussed. An arguable role in autophagy or apoptosis control has been suggested for VD through calcium signaling at the mitochondrial and ER levels. 1,25(0H)2D3 is also an immunomodulator that affects the development of B-cells, T-cells, and NK cells in both innate and acquired immunity. The production of some anti-microbial molecules such as defensins and cathelicidins is also stimulated by VD. The overexpression of glutathione, glutathione peroxidase, and superoxide dismutase, and down-regulation of NADPH oxidase are induced by VD to reduce the oxidative stress. Moreover, the multi-organ failure due to a cytokine storm induced by SARS-CoV2 in COVID-19 may be prevented by the immunomodulatory effects of VD. It can also downregulate the renin-angiotensin system which has a protective role against cardiovascular complications induced by COVID-19. Given the many experimental and molecular evidences due to the potential protective effects of VD on the prevention of the COVID-19-induced morbidities, a VD supplementation is suggested to prevent the lethal side-effects of the infection. It is particularly recommended in VD-deficient patients or those at greater risk of serious or critical effects of COVID-19, including the elderly, and patients with pre-existing chronic diseases, especially those in nursing homes, care facilities, and hospitals.

Keywords: Vitamin D, Calcitriol, COVID-19, Coronavirus, molecular aspects

Abbreviations

VD: Vitamin D; RAS: renin-angiotensin system; PARP: Poly-ADP ribose polymerase-1; COVID-19: Coronavirus 2019 infectious disease; CoV: Coronavirus; Ang: Angiotensin; PARG: poly (ADP-ribose) glycohydrolase; CVD: cardiovascular disease

Introduction

Currently, the Coronavirus-2019 infectious disease (COVID-19) has been distributed worldwide as a catastrophic pandemic condition. Thousands of people die every day due to this infection throughout the world [1]. The pathogen of COVID-19 is the SARS-CoV-2 virus, a positive

single-stranded RNA virus that belongs to the Coronavirus (CoV) family. Two worldwide epidemic situations in the past decades were occurred by two well-known members of this family, SARS-CoV and MERS-CoV [2]. The existence of several flexible glycyl residues within the distinct loop of SARS-CoV-2 receptor-binding domains leads to increase affinity to Angiotensin-Converting Enzyme 2 (ACE2) receptor as a transmembrane protein into the membrane of human host cells [3]. This binding mechanism is the main reason for the high virulence and communicability of COVID-19 compared to other viral infections [4]. Although many research projects are being implemented for finding a definite treatment for COVID-19, currently, there is no confirmed curative treatment for the disease. The current therapeutic approaches are concentrated to relieve the symptoms and support the respiratory and cardiovascular systems in affected patients.

Vitamin D (VD) and its metabolites have presented a lot of protective effects against different microbial infections and inflammatory disorders [5–7]. Rather than immunomodulatory functions, these nutritious compounds have also antioxidant effects that can prevent organ damages due to oxidative stress [8]. Moreover, VD can modulate the renin-angiotensin system (RAS) through which some deleterious effects of the SARS-CoV-2 virus could be modified in COVID-19 [9–12].

Although several studies have suggested the preventive role of VD supplementation in acute respiratory infections like COVID-19 [13–15], a handful studies have concentrated on the molecular pathways regarding the virus pathogenesis. In this narrative review, the potential protective effects of VD against COVID-19-induced damages and its related molecular aspects have been discussed.

Pharmacokinetics and pharmacodynamics of vitamin D

VD is one of the fat-soluble vitamins which refer to a group of secosteroids. It plays a key role in calcium and phosphate homeostasis, beside the parathyroid hormone. The diet and cutaneous synthesis are two main resources for VD and 25 (OH) D, a prohormone form which is used as a VD status marker. VD3 (cholecalciferol) can be naturally produced by UVB light, while VD2 (ergocalciferol) may be found in fortified foods and supplements which are usually provided by the individuals over the counter [16, 17].

DBP (VD binding protein) is responsible for transporting the VD and its Metabolites in the circulation. At first, liver hydroxylates VD3 and D2 by the microsomal and mitochondrial 25-hydroxylase. This enzyme is encoded by *CYP27A1* and *CYP2R1* genes which produce 1,25(OH)D. In the kidney, 1a-hydroxylase converts 25(OH)D to 1,25 (OH)₂D (calcitriol), which is the only biologically active form of VD. 1,25(OH)₂D leads to calcium absorption. 1,25 (OH)₂ D has a similar structure to steroid hormones [16–18]. The calcitriol production process also found in many organs, like the parathyroid gland, placenta, and prostate [19, 20].

24-hydroxylase is the main enzyme that degrades 25 (OH)D and 1,25(OH)2D. This rate-limiting step is regulated by the *CYP24A1* gene which converts these two molecules to inactive forms. These metabolites are soluble in water; hence, they can be excreted in the bile [17, 21].

The parathyroid hormone (PTH) regulates the synthesis of 1,25[OH]₂ D which is inhibited by circulating FGF23 protein [22]. 25(OH)D is the most suitable indicator of VD status due to its 3-week half-life. Serum 25(OH)D level of less than 10 ng/ml results in several bone diseases. The main

stimulant for PTH secretion is a low level of serum ionized calcium. The optimal 25(OH)D value maximally inhibits the PTH secretion [22].

Calcium homeostasis is the main function of calcitriol [23]. 1,25(OH)₂D is physiologically affected by its interaction with the VD receptor (VDR) which creates a complex with the retinoic acid X receptor (RXR). VDR-RXR complex is named as VD Response Elements (VDRE) after binding to the specific DNA sequences. VDRE is associated with the genes which contribute to intestinal calcium absorption. Its function is characterized by alteration in gene expression which plays a role in apoptosis, cell growth, and differentiation [21, 24].

VD can also stimulate bone absorption through binding with VDR in osteoblasts. Therefore, RANK ligand (RANKL) expression will be increased which results in the transformation into bone-resorbing osteoclasts [21, 23]. In general, serum 25(OH)D concentrations lower than 20 ng/mL (50 nmol/L) are considered to be VD deficient [25]. Nevertheless, serum 25(OH)D concentrations above 150 ng/mL (375 nmol/L), can be named as a VD toxicity which leads to hypercalcemia and hyperphosphatemia [25].

There is a controversy in determining the therapeutic dosage of VD [25–27]. It has a wide range, depending on body weight, age, sun exposure, etc. However, its recommended therapeutic dosage ranges from 1000 IU/day (25mg/day) for neonates to 7000–10,000 IU/day (175–250 mg/day) or 50,000 IU/week (1250 mg/week) for adults [28, 29]. The preventive dose for infection has been recommended 10,000 IU/d of the vitamin D3 for a few weeks, which should be followed by 5000 IU/d, in at risk people. The therapeutic level is considered at least 40–60 ng/mL (100–150 nmol/L) of 25(OH)D concentrations. For COVID-19 patients, a higher dose of VD might be useful [30]. Moreover, in patients who have not been taking VD, a higher dose for a shorter time is recommended [30, 31].

Pathophysiology of COVID-19

After entering the human body, SARS-CoV-2 similar to the original SARS-CoV attaches to ACE2, a transmembrane enzyme that converts angiotensin (Ang) II to Ang 1-7. When the virus binds to the ACE2 receptor, its entering and replication are facilitated and a chain of deleterious events is triggered. SARS-CoV-2-ACE2 binding leads to the downregulation of the ACE2 enzyme [32, 33]. Angiotensin II functions are normally modified by ACE2 through the production of Ang (1-7) in the RAS system [34]. In patients with COVID-19, the balance of the RAS system is disturbed, and Ang II/Ang (1-7) ratio is enhanced. This important event

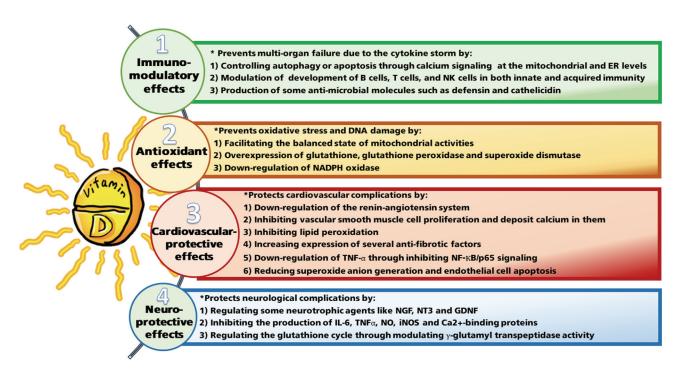


Figure 1. An infographic diagram illustrating the immuno-modulatory (1), anti-oxidant (2), cardioprotective (3) and neuroprotective (4) potencies of vitamin D against COVID-19 and molecular pathways involved (COVID-19: Coronavirus Infectious Disease-2019).

justifies the organ damage induced by the SARS-CoV-2 infection, leading to respiratory, renal, and cardiovascular complications in the patients [34]. Meanwhile, AngII, as a pro-inflammatory factor, over-activates NADPH oxidase and upregulates NF-κB which both have a determinant role in the pathogenesis of inflammatory diseases such as chronic heart and renal failures [35, 36].

NOX1, a homologous enzyme of NADPH oxidase is expressed in endothelial cells, epithelial cells, smooth muscle cells, and interstitial fibroblasts, while NOX2, another homologous enzyme of NADPH oxidase, is expressed in phagocyte cells, and some tissue cells of cardiovascular system, kidney, CNS, and GI tract. The over-activation of Ang II in some pathological conditions, like COVID-19, leads to the upregulation of NOX1 and NOX2 enzymes, resulting in overproducing the reactive oxygen species (ROS) molecules followed by reducing the available cellular NADPH [37]. It creates severe oxidative stress through which DNA damages could occur. The base excision repair (BER) pathway is essentially responsible for repairing these oxidative DNA damages [38]. One of the important enzymes, involved in the BER pathway, is Poly-ADP ribose polymerase-1 (PARP-1) [39], which has an antiviral function by ADP-ribosylation of the virus genome. Some viral families, including Coronaviruses, encode a macrodomain protein with poly (ADP-ribose) glycohydrolase (PARG) activity through which could hydrolyze ADP-ribose attached to viral proteins and genomes and facilitate the viral replication [40] (Figure 1).

Vitamin D and its immunomodulatory functions

Along with the classic functions of VD such as bone health and calcium homeostasis, some immunomodulatory functions such as immune protection, inflammation reduction, and the possible anti-allergic effects have been added to the functions of this hormone-like vitamin [41-43]. Ricciardi et al. (2015) [44] showed that VD can play a role in maintaining energy homeostasis and cell survival by modulating the stress and damage response. Moreover, VD deficiency and T cell imbalance in patients with renal transplantation were reported by Swiderska et al. (2015) [45] as a negative factor in survival. The presence of IL28B rs8099917 GG genotype, IL28B rs12979860 TT genotypes, and IL13 rs20541 T allele were also introduced as negative predictors in survival. Therefore, VD is closely linked to the T cell immune response.

Rizzuto et al. (2012) [46] determined that VD has an arguable role to control the autophagy or apoptosis through calcium signaling at the mitochondrial and endoplasmic reticulum (ER) levels. Calcium signaling plays a modulatory role in autophagy through the Ca²⁺/calmodulin-dependent protein kinase kinase β (CaMKK β) activity with AMP-activated protein kinase (AMPK) activation that is a target of rapamycin-dependent autophagy. Medrano et al. (2018) [47] showed that the active form of VD3, 1,25 (OH) 2D3, has the potential to down-regulate the "toll-like

receptor" TLR2 and TLR4 in monocytes and decline the inflammatory responses. Hence, VD promotes the innate immune system using two regulatory mechanisms: CYP24 (24 hydroxylase), and TLR for the prevention of tissue damage as a result of excessive inflammation.

Besides, the induction of cytolytic killing capacity of NK (Natural Killer) cells has been found in an NK cell line, but this effect has not been observed in the healthy control peripheral blood. Although, after adding 1,25(OH)2D3 to the in-vitro differentiating NK cells, the development of NK cells was ruined and their cytotoxicity and IFNγ production was decreased [48, 49]. Accordingly, Dankers et al. (2017) [50] suggested the hypothesis that 1,25(OH)2D3 is an immune homeostasis regulator instead of a general inhibitor of the immune response. Meanwhile, the different immune cells such as dendritic cells, monocytes, macrophages, T cells, and B cells can transform 25(OH)D3 into 1,25(OH)2D3 [51, 52].

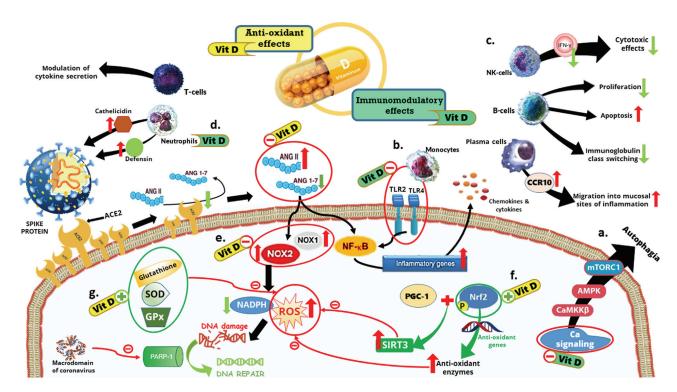
In the point of effects of 1,25(OH)2D3 on B cells, it seems that the effect of 1,25(OH)2D3 relies on the differentiation and activation status of B cells [50]. For instance, Chen et al. (2007) [53] reported that 1,25(OH)2D3 decreases the proliferation of B cells, inhibits immunoglobulin class switching, and induces their apoptosis. Shirakawa et al. (2008) [54] presented that after adding 1,25(OH)2D3 to terminally differentiating B cells, it stimulates the development of plasma cells. Moreover, 1,25(OH)2D3 induces the chemokine receptor CCR10 on these plasma cells, and enhances their migration into mucosal sites of inflammation. Moreover, von Essen et al. (2010) [55] determined that T cells are another immunological targets for 1,25(OH)2D3 through differentiation and modulation of cytokine secretion, however, VDR is also needed for the activation of T cells by spreading TCR signaling.

Furthermore, the preventive effect of 1,25(OH)2D3 supplement has been discovered in the initiation and progression of collagen-induced arthritis (CIA) and experimental autoimmune encephalomyelitis (EAE) in the experimental models of Rheumatoid Arthritis and Multiple Sclerosis, respectively. Meanwhile, the causal relationship between VD and autoimmune diseases has not been yet approved, and further investigations about VD supplementation benefits in at-risk individuals are needed [56, 57].

Jian et al. (2018) [58] found that high dose VD (1200 IU) is proper for seasonal influenza prevention by decreasing viral load, rapid alleviation from symptoms, and disease amelioration. Gruber-Bzura et al. (2020) [59] explored that 1,25(OH)2D induces the production of AMPs, such as defensin and cathelicidin, which as endogenous antibiotics can destroy the microbial pathogens and viruses, including the influenza virus. Hence, for a comprehensive outlook on VD effects against viral infections, more

randomized clinical trials and large studies are required (Figure 2).

Vitamin D and its antioxidant effects


A balance disruption in the oxidant/antioxidant ratio is defined as oxidative stress. It leads to generation of the ROS molecules that result in several events such as: releasing inflammatory mediator activation, and irreversible oxidative modification of lipids, proteins, and carbohydrates [60, 61].

VD and Calcitriol (its active form) have a vital role in the homeostasis of the body. VD anti-oxidant activity has been proposed since 1993, and it is currently known as a potent non-enzymatic anti-oxidant agent that prevents the ROS generation. VD facilitates the balanced state of mitochondrial activities, and also it prevents oxidative stress, and DNA damage [62, 63]. Tseng et al. (2013) [64] determined that the expression of a nuclear factor, erythroid-2(Nf-E2)related factor 2(Nrf2) is also increased by VD. Intracellular Nrf2 level is inversely associated with the accumulation of mitochondrial ROS. The interaction between Nrf2 and peroxisome proliferator-activated receptor-coactivator 1 (PGC-1) regulates the expression of mitochondrial deacetylase (SIRT3) which impacts on the oxidative stress cycle. All of these processes are influenced by VD [65, 66]. Moreover, Wimalawansa et al. (2019) [67] showed that the expression of glutathione peroxidase, converting the ROS molecule of H₂O₂ to water, is under the influence of VD. According to Mokhtari et al. (2017) [68], VD may regulate the oxidative stress via prompting the expression of glutathione, glutathione peroxidase, and superoxide dismutase (SOD) that have an antioxidant function by suppressing the expression of NADPH oxidase.

Ke et al. (2016) [69] in their experimental study displayed that oxidative stress due to superoxide dismutase (SOD) and catalase enzymes could reduce the muscular activity, associated with VD deficiency, in rats. Some other studies have determined that the administration of VD in diabetic mice led to suppression of the expression of the NADPH gene, assisting in reduction of the ROS production [70, 71].

Uberti et al. (2016) [72] showed the antioxidant effect of VD in the cultured gastric epithelial cells. They reported that bisphenols (Grisù) mixed with VD may protect gastric epithelium through an antioxidant pathway and reduced ROS production.

According to Cahova et al. (2015) [60], in diabetic patients, hyperglycemia can induce oxidative stress and inflammatory responses that are known as hepatocellular damaging factors. Accumulation of oxidative stress

Figure 2. An infographic picture illustrating the molecular pathway of anti-oxidant and immunomodulatory effects of vitamin D against SARS-CoV-2 pathogenesis: (a) Vitamin D controls the autophagy through calcium signaling at the mitochondrial and ER levels. CaMKKβ: Ca^{2+} /calmodulin-dependent protein kinase kinase β, AMPK: AMP-activated protein kinase, mTORC1: mammalian target of rapamycin complex 1; (b) Vitamin D down-regulates the "toll-like receptor" TLR2 and TLR4 in monocytes which declines the inflammatory responses. (c) Vitamin D has immunomodulatory effects on immune system cells. (d) Vitamin D stimulates production of AMPs, such as defensin and cathelicidin, which can destroy viruses. (e) Vitamin D prevents ROS generation, oxidative stress and DNA damage. It also suppresses the expression of NADPH oxidase. (f) The up-regulation of a nuclear factor, erythroid-2(Nf-E2)-related factor 2(Nrf2) by vitamin D leads to the over-expression of anti-oxidant enzymes. Moreover, the interaction between Nrf2 and Peroxisome proliferator-activated receptor-coactivator 1 (PGC-1) regulates the expression of mitochondrial deacetylase (SIRT3). These events that inhibit the oxidative stress cycle, are induced by Vitamin D. (g) The overexpression of glutathione, glutathione peroxidase, and superoxide dismutase are induced by Vitamin D to reduce the oxidative stress. ER: Endoplasmic reticulum, ANG: Angiotensin.

markers in diabetes mellitus (DM) is due to a reduced level of glutathione. It seems that secondary complications of DM are induced by oxidative stress [73]. Algasim et al. (2017) [74] demonstrated that VD administration in diabetic rats could reduce oxidative stress and improve the inflammation. Alatawi et al. (2018) reported the same results in their study [73]. Another study by Jamilian et al. (2019) showed that co-supplementation of magnesiumzinc-calcium-VD could reduce the inflammation and oxidative stress markers in patients with gestational diabetes [75]. Heidari et al. (2019) in a randomized clinical trial investigated the effect of VD supplementation in Premenstrual Syndrome (PMS). It appears that VD could improve the inflammation and antioxidant markers in VD deficient women with PMS [76]. Igde et al. (2018) exhibited a positive impact of VD on the reduction of plasma concentrations of oxidative stress markers in inflammation-related oxidative stress in asthmatic patients [77]. One another study that was done by Zhu et al. (2019) on human tubular epithelial cells revealed that VD might prevent high glucose concentration induced by oxidative stress [63] (Figure 2).

Vitamin D and cardiovascular protection

The cardiovascular system is commonly involved in the patients with COVID-19 and may be affected through three following ways [78]:

- 1) The severity of cardiovascular disease (CVD) can be increased in the patients with preexisting CVD;
- The incidence rate of multiple direct and indirect CVD-attributed complications will be raised including the acute myocardial injury, myocarditis, arrhythmias, and venous thromboembolism;
- 3) The side effects of therapeutic approaches for COVID-19 may be a threat for the cardiovascular tract.

According to Wang et al. (2020) [79], up to 40% of 138 patients admitted with COVID-19 had pre-existing CVD. Moreover, 7.2% of the patients had elevated cardiac troponin, suggestive for the virus-induced cardiac injury. Saad et al. (2014) [80] had already found that serious cardiac

complications may occur mainly in the form of arrhythmias, including variable tachyarrhythmias and severe bradycardia, which occurred in 15.7% of 70 cases. However, in Huang et al. (2020) [81] research among 41 patients with COVID-19 in China, 5 (12%) patients presented substantially an increased hypersensitive troponin I (hs-cTnI) due to the virus-related cardiac injury, as a common complication.

SARS-CoV-2 may result in downregulating the myocardial and pulmonary ACE2 pathways. ACE2 is expressed in the heart, providing a link between coronaviruse and the cardiovascular system, and its interaction with the virus may directly cause myocardial inflammation [82]. Besides, the up-regulation of 15 pro-inflammatory cytokines leads to a systemic inflammatory response syndrome that may provide a possible mechanism for multi-organ failure (usually involving the heart) in severe cases [83]. The RAS disturbance and increased Ang II have destructive effects on vascular endothelium by increasing the expression of some molecules like IL1B, IL-6, monocyte chemoattractant protein-1 (MCP-1), and the activation of NOX enzymes. These changes can interfere with NO cycle and cause cell damage. Also, elevated Ang II can lead to peroxynitrite damage on the vascular endothelial surface by the over-expression of Profilin-1 [84-86].

Researches about the effects of VD on the cardiovascular system suggest different and controversial outcomes. The findings determine that VD3 is a powerful trigger of nitric oxide, playing an important role in the enhancing of the hypercoagulability state in blood vessels and the control of blood flow. Khan et al. (2018) [87] determined that VD3 significantly reduces the oxidative stress in the vascular system and can reverse cardiovascular damages. Barbarawi et al. (2019) [88] in a meta-analysis on 21 randomized clinical trials involving more than 83,000 people, found that there is no decrease in the major cardiovascular events such as heart attack, stroke, and death in the people taking VD supplements. However, it seems that the relationship between 25-hydroxyVD and CVD is nonlinear and reaches a plateau between 20 and 30ng/ml. Moreover, the Third National Health and Nutrition Examination Survey (NHANES III) has presented no significant association between serum 25-hydroxyVD and CVD-induced mortality [89].

VD can also improve cardiac oxidative stress and inflammatory markers. Murr et al. [90] declared in their study that the chance of death from cardiovascular disease is 1.8 to 2.5 times more in patients with VD deficiency compared to patients with normal VD levels. Besides, Argacha et al. (2011) [91] in their study on VD deficient animal model demonstrated that VD deficiency leads to increased blood pressure and supported vascular oxidative stress in rats. It sounds that VD has a protective role against oxidative stress and inflammation in cardiac tissue.

The definite protection mechanism of VD against CVD has not been obvious, yet. Some studies have declared that the VD receptor is expressed in some cell types of vascular system including endothelial cells, vascular smooth muscle cells, and cardiomyocytes. These cells produce 1α -hydroxylase, converting 25-hydroxyVD to calcitriol. Calcitriol has been shown to improve glycemic control, inhibit vascular smooth muscle cell proliferation and deposit calcium in them, down-regulate the renin-angiotensin system, decrease coagulation, and represent anti-inflammatory properties [92, 93].

Li et al. (2002) [94] showed that VDR-knockout mice had an elevated activation of the renin-angiotensin-aldosterone system (RAAS), high blood pressure, and cardiac hypertrophy, which could be controlled by an ACE inhibitor. Furthermore, the mice given injections of calcitriol demonstrated the suppression of the renin mRNA expression.

Moreover, Plidoro et al. (2013) [95] represented that VD reduces superoxide anion generation and also endothelial cell apoptosis induced by H₂O₂. The activation of MEKs/ ERKs-signaling pathway, which inhibits apoptosis, is also occurred by the up-regulation of SirT-1. According to Al-Rashid et al. (2015) study on mice [96], VD down-regulates tumor necrosis factor- α (TNF- α), inducing cardiomyocyte hypertrophy, by inhibiting NF-κB/p65 signaling. Furthermore, Artaza et al. (2009) [97] had already shown that VD has an anti-fibrotic role in cardiovascular system by increasing the expression of several anti-fibrotic factors and reducing the expression of TGF-ß1, plasminogen activator inhibitor 1, and collagens I and III. Wiseman et al. (1993) [98] had earlier determined that VD protects the cell membranes against free radical-induced oxidative damage by inhibition of lipid peroxidation (Figure 3).

Vitamin D and neuroprotection

By presentation of neurological manifestations in the patients with COVID-19, possible neuroinvasive feature of COVID-19 is a remarkable topic of new papers [99]. For example, Mao et al. (2020) [100] reported that 78 (36.4%) of 214 patients had neurological symptoms including CNS symptoms (53 [24.8%]) such as dizziness and headache, PNS symptoms (19 [8.9%]) like hypogeusia and hyposmia and also muscle injury symptoms (23 [10.7%]). In another study, Giacomelli et al. (2020) [101] in Italy reported that 20 (33.9%) of 59 patients had at least one olfactory or taste disorder. Gu et al. (2005) [102] already had determined that rather than cerebral edema and degeneration of neurons in 6 of 8 SARS autopsies, SARS genome sequences were detected by RT-PCR in the brain of all these autopsies. In another autopsy study by Xu et al. (2005) [103] on SARS dead patients, neuronal necrosis, glial hyperplasia, and

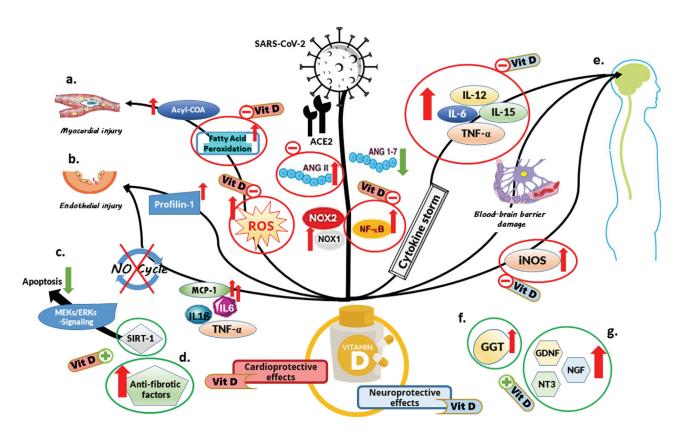


Figure 3. An infographic picture illustrating the molecular pathway of destructive effects of SARS-CoV-2 on cardiovascular and nervous systems in COVID-19 and also the molecular mechanism of vitamin D effects against them: (a) The Interaction of SARS-CoV-2 and ACE2 leads to the RAS disturbance. Hence, myocardial injury is caused by inducing reactive oxygen species and lipid peroxidation, both inhibited by vitamin D. (b) The cytokine storm in which some inflammatory molecules like IL-6, IL-1β, TNF-α, monocyte chemoattractant protein-1 (MCP-1) are increased, interferes with nitric cycle and leads to the endothelial damage. The over-expression of profiling-1 may cause peroxynitrite damage on the vascular endothelial. Vitamin D counteracts this cytokine storm by inhibiting NF-κB/p65 signaling. (c) The up-regulation of SirT-1 inhibits apoptosis through MEKs/ERKs-signaling activation. (d) Vitamin D has anti-fibrotic role by increasing some anti-fibrotic factors. (e) Vitamin D down-regulates the pro-inflammatory cytokines such as IL-6, IL-12, TNF-α and iNOS which have destructive effects on the brain. (f) The increase of γ-glutamyl transpeptidase (GGT) activity induced by vitamin D, regulates the glutathione cycle. (g) The regulation of nerve growth factor (NGF), neurotrophin 3 (NT3), glial cell line-derived neurotrophic factor (GDNF) counteracts the toxicity of SARS-CoV-2 on nervous system. ANG: Angiotensin; RAS: Renin-Angiotensin System.

edema with the presence of SARS-CoV in brains had been detected. The separation of SARS-COV-2 RNA from the CSF of the patients also strongly suggests that this new virus can also cause neurologic damages [104, 105]. The reported cases of acute myelitis, acute hemorrhagic necrotizing encephalopathy, and meningitis/encephalitis associated with SARS-CoV-2 are also indicative for the neuroinvasive potential of the virus [105-107]. Netland et al (2008) [108] had been already reported that SARS-CoV can spread to CNS through blood circulation or trans-neuronal from the olfactory bulb. Meanwhile, according to some studies, the expression of ACE2, possible receptor of SARS-CoV-2, is detected in neurons and astroglial cells of different parts of CNS especially in cardiovascularrelated brain regions [109, 110]. Hence, SARS-COV infection of the regions like the dorsal vagal complex, a critical zone for cardiorespiratory function, could be the cause of mice death primarily as a direct result of CNS involvement, not pulmonary infection [108]. Interaction of the virus and ACE2 can interfere with the balance of the RAS which leads to organ damage by enhancement of Ang II/Ang (1-7) ratio [33]. In addition, interaction of ACE2 in the capillary endothelium and SARS-CoV-2 spike protein may also damage the blood-brain barrier [111].

Putting results of other researches together amplifies the possibility of excessive increase in levels of proinflammatory cytokines/chemokines, as a cytokine storm, in the brain of COVID-19 patients; for example, animal studies on mice revealed that upregulation of and IL-6, tumor necrosis factor-alpha, IL-1, gamma interferon, CCL2, and CCL12 in SARS-COV infected neurons can play an immunopathological role in inflamed brains [108, 112]. Goshal et al. (2007) [113] had already represented an increase of proinflammatory mediators, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (Cox-2), IL-6, IL-1β, TNF-α, and MCP-1 in microglia of animal

models due to Japanese encephalitis virus infection. Additionally, Bohmwald et al. (2018) [114] showed that culturedCoV-infected glial cells could secrete inflammatory factors such as IL-6, IL-12, IL-15, and TNF- α .

1,25-dihydroxyvitamin D₃ receptor (VDR) is expressed widely in glial cells and neurons of the different regions of the adult brain especially throughout the olfactory system [115, 116]. Also, 1α -hydroxylase (1α -OHase), the enzyme responsible for the formation of the active vitamin, was found by Eyles et al. (2005) in both neurons and glial cells [116]. Thus, VD affects some mechanisms including neurogenesis, neuroprotection, regulation of neurotrophic factors, maintaining neuronal signaling by enhancing neurotransmission, synaptogenesis, and inhibition of degenerative processes including apoptosis [117, 118]. VD can also interfere with the regulation of inflammation, neurodegeneration, and repair processes within the CNS [119]. It also regulates some neurotrophic agents like nerve growth factor (NGF), neurotrophin 3 (NT3), and glial cell line-derived neurotrophic factor (GDNF) [120-122]. GDNF works against ischemia, injury, and 6-hydroxydopamine (6-OHDA) toxicity [123-125].

d'Hellencourt et al. (2002) [126] determined that VD has an anti-inflammatory potency by inhibiting the production of IL-6, TNFα, and NO in activated microglia in vitro. Meanwhile, according to Furman et al. (1996) earlier study [127] on 1,25-(OH)2D3-treated astrocytes, a reduction in tumor necrosis factor α (TNF- α) and macrophage colony-stimulating factor (M-CSF) was reported in them. Moreover, some studies have determined that VD has neuroprotective roles through induction of Ca²⁺-binding proteins, such as parvalbumin and inhibition of the synthesis of inducible nitric oxide synthase (iNOS), producing nitrite oxide that damages both neurons and oligodendrocytes [128-130]. Dringen et al. (2001) [131] showed that VD has a strong antioxidant function in brain through regulating the y-glutamyl transpeptidase activity which is involved in the glutathione cycle, in rat brain. In another study by Ascherio et al. (2010), it is revealed that VD also can decrease multiple sclerosis (MS) development by modulation of immune responses [132] (Figure 3).

Vitamin D and clinical outcomes of COVID-19

Some recent studies on COVID-19 patients suggest a reverse correlation between VD serum levels and the severity of their clinical symptoms [133–135]. According to the Alipio study [130] on 212 cases of COVID-19, the serious cases presented the lowest level of 25(OH)D in their serum, while the mild patients showed the highest level. Moreover,

the serum level of VD was significantly associated with clinical outcomes. In another report published by Glicio [131], 176 patients with COVID-19 were investigated and it was revealed that most of them had 25(OH)D level below 30 ng/ml, and were classified as severe. Meanwhile, most of the cases with the pre-existing conditions had 25(OH)D level below 30 ng/ml. In a retrospective cohort study including 780 cases with PCR-positive of SARS-CoV-2 in Indonesia, it was revealed that VD deficiency was associated with increased odds of death [136]. Other recent reports have been also presented similar findings [137, 138]. A causal inference model has been also proposed for the highly beneficial role of VD in improving the disease symptoms in COVID-19 and other respiratory infections [13]. It seems that VD supplementation can relieve the clinical outcomes and prevent acute organ damages, particularly among the at-risk patients [139, 140].

Conclusions

SARS-CoV-2, the viral cause of COVID-19, leads to lethal infection with multiple organ damages, particularly in the respiratory and cardiovascular tracts, through upregulation of the RAS pathway and inducing a cytokine storm. Vitamin D and its metabolites have immunomodulatory effects via the development of the immune cells, anti-inflammatory effects, and production of some anti-microbial molecules such as defensins and cathelicidins. VD also has antioxidant effects through modulating the mitochondrial activities, upregulating of glutathione, glutathione peroxidase and superoxide dismutase, and down-regulating the NADPH oxidase. RAS pathway can also be down-regulated by VD which may prevents the cardiovascular complications induced by COVID-19. Moreover, there are many experimental studies because of the potential protective effects of VD against the COVID-19-induced morbidities. The recommended dose for prevention of the infection is 10,000 IU/d of VD for a few weeks, which should be followed by 5000 IU/d, in at-risk people. If the person has not been taking vitamin D, a higher dose for a shorter time is also recommended. It seems VD supplementation therapy, at-least in VD deficient patients, can prevent the lethal side-effects of the infection; An issue needed to be evaluated at the next well-designed clinical trials (Figure 1).

References

 World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020 [Internet]. Available from: https://www.who.int/dg/speeches/ detail/who-director-general-s-opening-remarks-at-themedia-briefing-on-covid-19—11-march-2020

- Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, Evaluation and Treatment Coronavirus (COVID-19) [Internet]. Treasure Island, FL: StatPearls Publishing; 2020. Available from: http://www.ncbi.nlm.nih.gov/books/NBK554776/
- Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun. 2020;525(1):135-40.
- 4. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS. J Virol. 2020;94(7):e00127-20.
- Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C. Vitamin D: Modulator of the immune system. Curr Opin Pharmacol. 2010;10(4):482–96.
- 6. Aranow C. Vitamin D and the immune system. J Investig Med. 2011;59(6):881–6.
- Chun RF, Liu PT, Modlin RL, Adams JS, Hewison M. Impact of vitamin D on immune function: Lessons learned from genome-wide analysis [Internet]. 2014;5:151. Available from: https://www.frontiersin.org/articles/10.3389/fphys.2014.00151/ full
- Polidoro L, Properzi G, Marampon F, Gravina GL, Festuccia C, Di Cesare E, et al. Vitamin D protects human endothelial cells from H₂O₂ oxidant injury through the Mek/Erk-Sirt1 axis activation. J Cardiovasc Transl Res. 2013;6(2):221–31.
- Carrara D, Bruno RM, Bacca A, Taddei S, Duranti E, Ghiadoni L, et al. Cholecalciferol treatment downregulates reninangiotensin system and improves endothelial function in essential hypertensive patients with hypovitaminosid D. J Hypertens. 2016;34(11):2199–205.
- Satou R, Penrose H, Navar LG. Inflammation as a regulator of the renin-angiotensin system and blood pressure. Curr Hypertens Rep. 2018;20(12):100.
- 11. McMullan CJ, Borgi L, Curhan GC, Fisher N, Forman JP. The effect of vitamin d on renin-angiotensin-system activation and blood pressure a randomized control trial. J Hypertens. 2017;35(4):822–9.
- 12. McMullan CJ, Borgi L, Curhan GC, Fisher N, Forman JP. The effect of vitamin D on renin-angiotensin system activation and blood pressure: A randomized control trial. J Hypertens. 2017;35(4):822-9.
- 13. Davies G, Garami AR, Byers JC. Evidence supports a causal model for vitamin D in COVID-19 outcomes [Internet]. 2020. https://doi.org/10.1101/2020.05.01.20087965v1
- Ghavideldarestani M, Honardoost M, Khamseh ME. Role of vitamin D in pathogenesis and severity of COVID-19 infection. 2020. Available from: https://www.preprints.org/manuscript/ 202004 0355/v1
- De Smet D, De Smet K, Herroelen P, Gryspeerdt S, Martens GA. Vitamin D deficiency as risk factor for severe COVID-19: A convergence of two pandemics [Internet]. 2019. https://doi. org/10.1101/2020.05.01.20079376v2
- Schoenmakers I, Jones KS. Pharmacology and Pharmacokinetics. In: Feldman D, editor. Vitamin D. 4th ed. London, San Diego, Cambridge, Oxford: Academic Press; 2018. p. 635–61.
 Available from: http://www.sciencedirect.com/science/article/pii/B9780128099650000379
- 17. Dovnik A, Dovnik NF. Vitamin D and ovarian cancer: systematic review of the literature with a focus on molecular mechanisms. Cells. 2020;9(2):335.
- 18. Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. 2014;21(3):319-29.
- 19. Ritter CS, Haughey BH, Armbrecht HJ, Brown AJ. Distribution and regulation of the 25-hydroxyvitamin D3 1α -hydroxylase in human parathyroid glands. J Steroid Biochem Mol Biol. 2012;130(1-2):73-80.

- 20. Deuster E, Jeschke U, Ye Y, Mahner S, Czogalla B. Vitamin D and VDR in gynecological cancers A systematic review. Int J Mol Sci. 2017;18(11):2328.
- 21. Hossein-Nezhad A, Holick MF. Vitamin D for health: A global perspective. Mayo Clin Proc. 2013;88(7):720-55.
- 22. Thacher TD, Clarke BL. Vitamin D Insufficiency. Mayo Clin Proc. 2011;86(1):50-60.
- 23. Holick MF. Cancer, sunlight and vitamin D. J Clin Transl Endocrinol. 2014;1(4):179-86.
- 24. Kilmister EJ, Paterson C, Brasch HD, Davis PF, Tan ST. The Role of the Renin-Angiotensin System and Vitamin D in Keloid Disorder – A Review. Front Surg. 2019;6:67. https://doi.org/ 10.3389/fsurg.2019.00067
- 25. Pludowski P, Holick MF, Grant WB, Konstantynowicz J, Mascarenhas MR, Haq A, et al. Vitamin D supplementation guidelines. J Steroid Biochem Mol Biol. 2018;175:125–35.
- 26. Haq A, Wimalawansa SJ, Pludowski P, Al Anouti F. Clinical practice guidelines for vitamin D in the United Arab Emirates. J Steroid Biochem Mol Biol. 2018;175:4–11.
- 27. Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: What clinicians need to know. J Clin Endocrinol Metab. 2011;96(1):53–8.
- 28. Płudowski P, Karczmarewicz E, Bayer M, Carter G, Chlebna-Sokół D, Czech-Kowalska J, et al. Practical guidelines for the supplementation of vitamin D and the treatment of deficits in Central Europe Recommended vitamin D intakes in the general population and groups at risk of vitamin D deficiency. Endokrynol Pol. 2013;64(4):319–27.
- 29. Haq A, Wimalawansa SJ, Pludowski P, Al Anouti F. Clinical practice guidelines for vitamin D in the United Arab Emirates. J Steroid Biochem Mol Biol. 2018;175:4–11.
- 30. Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL, et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020;12(4):988.
- 31. Heaney RP, Davies KM, Chen TC, Holick MF, Barger-Lux J. Human Serum 25-hydroxycholecalciferol Response to Extended Oral Dosing with Cholecalciferol. Am J Clin Nutr [Internet]. 2003;77(1):204–10. Available from: https://pubmed.ncbi.nlm.nih.gov/12499343/
- 32. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875-9.
- 33. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112-6.
- 34. Meftahi GH, Jangravi Z, Sahraei H, Bahari Z. The possible pathophysiology mechanism of cytokine storm in elderly adults with COVID-19 infection: The contribution of "inflame-aging". Inflamm Res [Internet]. 2020. https://doi.org/10.1007/s00011-020-01372-8.
- 35. Phillips MI, Kagiyama S. Angiotensin II as a pro-inflammatory mediator. Curr Opin Investig Drugs. 2002;3(4):569-77.
- Ferrario CM, Strawn WB. Role of the renin-angiotensinaldosterone system and proinflammatory mediators in cardiovascular disease. Am J Cardiol. 2006;98(1):121–8.
- Ago T, Kuroda J, Kamouchi M, Sadoshima J, Kitazono T. Pathophysiological roles of NADPH oxidase/nox family proteins in the vascular system-Review and perspective. Circ J Off J Jpn Circ Soc. 2011;75(8):1791-800.
- 38. Kryston TB, Georgiev AB, Pissis P, Georgakilas AG. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res. 2011;711(1-2):193-201.
- 39. Mathews MT, Berk BC. PARP-1 inhibition prevents oxidative and nitrosative stress-induced endothelial cell death via

- transactivation of the VEGF receptor 2. Arterioscler Thromb Vasc Biol. 2008;28(4):711-7.
- Kouhpayeh S, Shariati L, Boshtam M, Rahimmanesh I, Mirian M, Zeinalian M, et al. The molecular story of COVID-19; NAD+ depletion addresses all questions in this infection. Preprints [Internet]. 2020. Available from: https://www.preprints.org/ manuscript/202003.0346/v1
- Aygun H. Vitamin D can prevent COVID-19 infection-induced multiple organ damage. Naunyn Schmiedebergs Arch Pharmacol [Internet]. 2020;393:1157-60. https://doi.org/10.1007/ s00210-020-01911-4
- 42. Chirumbolo S, Bjørklund G, Sboarina A, Vella A. The role of vitamin d in the immune system as a pro-survival molecule. Clin Ther. 2017;39(5):894–916.
- 43. Prietl B, Treiber G, Pieber TR, Amrein K. Vitamin D and immune function. Nutrients. 2013;5(7):2502-21.
- 44. Ricciardi CJ, Bae J, Esposito D, Komarnytsky S, Hu P, Chen J, et al. 1,25-Dihydroxyvitamin D3/vitamin D receptor suppresses brown adipocyte differentiation and mitochondrial respiration. Eur J Nutr. 2015;54(6):1001–12.
- 45. Świderska M, Mostowska A, Grzegorzewska AE. T helper cell-related cytokine gene polymorphisms and vitamin D pathway gene polymorphisms as predictors of survival probability in patients on renal replacement therapy. Pol Arch Med Wewn. 2015;125(7–8):511–20.
- Rizzuto R, De Stefani D, Raffaello A, Mammucari C. Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol. 2012;13(9):566–78.
- Medrano M, Carrillo-Cruz E, Montero I, Perez-Simon JA. Vitamin D: effect on haematopoiesis and immune system and clinical applications. Int J Mol Sci [Internet]. 2018;19(9):2663.
 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC6164750/
- 48. Weeres MA, Robien K, Ahn YO, Neulen ML, Bergerson R, Miller JS, et al. The effects of 1,25-dihydroxyvitamin D3 on in vitro human NK cell development from hematopoietic stem cells. J Immunol. 2014;193(7):3456-62.
- 49. Ota K, Dambaeva S, Kim MW-I, Han A-R, Fukui A, Gilman-Sachs A, et al. 1,25-Dihydroxy-vitamin D3 regulates NK-cell cytotoxicity, cytokine secretion, and degranulation in women with recurrent pregnancy losses. Eur J Immunol. 2015;45(11):3188-99.
- Dankers W, Colin EM, Van Hamburg JP, Lubberts E. Vitamin D in autoimmunity: molecular mechanisms and therapeutic potential. Front Immunol [Internet]. 2017;7:697. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2016. 00697/full
- 51. Jeffery LE, Wood AM, Qureshi OS, Hou TZ, Gardner D, Briggs Z, et al. Availability of 25-hydroxyvitamin D(3) to APCs controls the balance between regulatory and inflammatory T cell responses. J Immunol. 2012;189(11):5155–64.
- 52. Kongsbak M, Von Essen MR, Levring TB, Schjerling P, Woetmann A, Ødum N, et al. Vitamin D-binding protein controls T cell responses to vitamin D. BMC Immunol. 2014;15:35.
- 53. Chen S, Sims GP, Chen XX, Gu YY, Chen S, Lipsky PE. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol. 2007;179(3):1634-47.
- 54. Shirakawa A-K, Nagakubo D, Hieshima K, Nakayama T, Jin Z, Yoshie O. 1,25-dihydroxyvitamin D3 induces CCR10 expression in terminally differentiating human B cells. J Immunol. 2008;180(5):2786–95.
- 55. Von Essen MR, Kongsbak M, Schjerling P, Olgaard K, Odum N, Geisler C. Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nat Immunol. 2010;11(4): 344-9.

- 56. Lemire JM, Archer DC. 1,25-dihydroxyvitamin D3 prevents the in vivo induction of murine experimental autoimmune encephalomyelitis. J Clin Invest. 1991;87(3):1103-7.
- 57. Cantorna MT, Hayes CE, DeLuca HF. 1,25-Dihydroxyvitamin D3 reversibly blocks the progression of relapsing encephalomyelitis, a model of multiple sclerosis. Proc Natl Acad Sci USA. 1996;93(15):7861-4.
- 58. Zhou J, Du J, Huang L, Wang Y, Shi Y, Lin H. Preventive effects of vitamin d on seasonal influenza a in infants: a multicenter, randomized, open, controlled clinical trial. Pediatr Infect Dis J. 2018;37(8):749–54.
- 59. Gruber-Bzura BM. Vitamin D and influenza prevention or therapy? Int J Mol Sci [Internet] 2018;19(8):2419. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6121423/
- Cahova M, Palenickova E, Dankova H, Sticova E, Burian M, Drahota Z, et al. Metformin prevents ischemia reperfusioninduced oxidative stress in the fatty liver by attenuation of reactive oxygen species formation. Am J Physiol Gastrointest Liver Physiol. 2015;309(2):G100-11.
- 61. Parveen K, Khan MR, Mujeeb M, Siddiqui WA. Protective effects of Pycnogenol on hyperglycemia-induced oxidative damage in the liver of type 2 diabetic rats. Chem Biol Interact. 2010;186(2):219–27.
- 62. Farhangi MA, Nameni G, Hajiluian G, Mesgari-Abbasi M. Cardiac tissue oxidative stress and inflammation after vitamin D administrations in high fat- diet induced obese rats. BMC Cardiovasc Disord. 2017;17(1):161.
- 63. Zhu X, Wu S, Guo H. Active vitamin D and vitamin D receptor help prevent high glucose induced oxidative stress of renal tubular cells via AKT/UCP2 signaling pathway. BioMed Res Int. 2019;2019:1–7.
- 64. Tseng AHH, Shieh S-S, Wang DL. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radic Biol Med. 2013;63:222–34.
- 65. Chen Y, Zhang J, Lin Y, Lei Q, Guan K-L, Zhao S, et al. Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep. 2011;12 (6):534-41.
- Song C, Fu B, Zhang J, Zhao J, Yuan M, Peng W, et al. Sodium fluoride induces nephrotoxicity via oxidative stress-regulated mitochondrial SIRT3 signaling pathway. Sci Rep. 2017;7(1):672.
- 67. Wimalawansa SJ, Vitamin D. Deficiency: effects on oxidative stress, epigenetics, gene regulation, and aging. Biology. 2019;8(2):30.
- 68. Mokhtari Z, Hekmatdoost A, Nourian M. Antioxidant efficacy of vitamin D. J Parathyr Dis. 2017;5(1):6.
- 69. Ke CY, Yang FL, Wu WT, Chung CH, Lee RP, Yang WT, et al. Vitamin D3 Reduces Tissue Damage and Oxidative Stress Caused by Exhaustive Exercise. Int J Med Sci. 2016;13(2): 147–53.
- 70. Labudzynskyi DO, Zaitseva OV, Latyshko NV, Gudkova OO, Veliky MM. Vitamin D3 contribution to the regulation of oxidative metabolism in the liver of diabetic mice. Ukr Biochem J. 2015;87(3):75–90.
- 71. Kono K, Fujii H, Nakai K, Goto S, Kitazawa R, Kitazawa S, et al. Anti-oxidative effect of vitamin d analog on incipient vascular lesion in non-obese type 2 diabetic rats. Am J Nephrol. 2013;37:167–74.
- 72. Uberti F, Bardelli C, Morsanuto V, Ghirlanda S, Molinari C. Role of vitamin D3 combined to alginates in preventing acid and oxidative injury in cultured gastric epithelial cells. BMC Gastroenterol. 2016;16(1):127.
- 73. Alatawi FS, Faridi UA, Alatawi MS. Effect of treatment with vitamin D plus calcium on oxidative stress in streptozotocin-induced diabetic rats. Saudi Pharm J. 2018;26(8):1208-13.

- Alqasim AA, Noureldin EEM, Hammadi SH, Esheba GE. Effect of melatonin versus vitamin D as antioxidant and Hepatoprotective agents in STZ-induced diabetic rats. J Diabetes Metab Disord. 2017;16(1):41.
- 75. Jamilian M, Mirhosseini N, Eslahi M, Bahmani F, Shokrpour M, Chamani M, et al. The effects of magnesium-zinc-calcium-vitamin D co-supplementation on biomarkers of inflammation, oxidative stress and pregnancy outcomes in gestational diabetes. BMC Pregnancy Childbirth. 2019;19(1):107.
- Heidari H, Amani R, Feizi A, Askari G, Kohan S, Tavasoli P. Vitamin D Supplementation for Premenstrual Syndrome-Related inflammation and antioxidant markers in students with vitamin D deficient: A randomized clinical trial. Sci Rep. 2019;9(1):14939.
- 77. Igde M, Baran P, Oksuz B, Topcuoglu S, Karatekin G,. Association between the oxidative status, vitamin D levels and respiratory function in asthmatic children. Niger J Clin Pract. 2018;21(1):63–8.
- Driggin E, Madhavan MV, Bikdeli B, Chuich T, Laracy J, Bondi-Zoccai G, et al. Cardiovascular considerations for patients, health care workers, and health systems during the Coronavirus Disease 2019 (COVID-19) pandemic. J Am Coll Cardiol [Internet]. 2020;75(18):2352-71. Available from: http://www.sciencedirect.com/science/article/pii/S0735109720346374
- 79. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–9.
- Saad M, Omrani AS, Baig K, Bahloul A, Elzein F, Abdul M, et al. Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a singlecenter experience in Saudi Arabia. Int J Infect Dis [Internet]. 2014;29:301–6. Available from: https://www.sciencedirect. com/science/article/pii/S1201971214016221
- 81. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395(10223):497–506.
- 82. Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005;111(20): 2605–10.
- 83. Xiong T-Y, Redwood S, Prendergast B, Chen M. Coronaviruses and the cardiovascular system: Acute and long-term implications. Eur Heart J. 2020;41(19):1789–1800.
- 84. Chen N, Yang M, Zhou M, Xiao J, Guo J, He L. L-Carnitine can extinguish the COVID19 fire: A review on molecular aspects. Cochrane Database Sys Rev [Internet]. 2017;3:CD009374.
- 85. Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, et al. The ACE2/angiotensin-(1-7)/MAS axis of the renin-angiotensin system: Focus on angiotensin-(1-7). Physiol Rev. 2018;98(1):505-53.
- Alghamri MS, Weir NM, Anstadt MP, Elased KM, Gurley SB, Morris M. Enhanced angiotensin II-induced cardiac and aortic remodeling in ACE2 knockout mice. J Cardiovasc Pharmacol Ther. 2013;18(2):138–51.
- 87. Paddock C. Vitamin D-3 could "reverse" damage to heart [Internet]. Medical News Today. 2018. February; 1 [cited 2020 Mar 24]. Available from: https://www.medicalnewstoday.com/articles/320802
- 88. Gordon S.Vitamin D Supplements May Not Help Your Heart [Internet]. WebMD [cited 2020 Mar 24]. Available from: https://www.webmd.com/heart/news/20190619/vitamin-d-supplements-may-not-help-your-heart#1

- 89. Melamed ML, Michos ED, Post W, Astor B. 25-Hydroxyvitamin D Levels and the Risk of Mortality in the General Population. Arch Intern Med. 2008;168(15):1629-37.
- 90. Murr C, Pilz S, Grammer TB, Kleber ME, Meinitzer A, Boehm BO, et al. Vitamin D deficiency parallels inflammation and immune activation, the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Clin Chem Lab Med. 2012;50(12): 2205–12.
- 91. Argacha JF, Egrise D, Pochet S, Fontaine D, Lefort A, Libert F, et al. Vitamin D deficiency-induced hypertension is associated with vascular oxidative stress and altered heart gene expression. J Cardiovasc Pharmacol. 2011;58(1):65–71.
- 92. Danik JS, Manson JE Vitamin D and cardiovascular disease. Curr Treat Options Cardiovasc Med. 2012;14(4):414-24.
- 93. Zittermann A, Schleithoff SS, Koerfer R. Vitamin D and vascular calcification. Curr Opin Lipidol. 2007;18(1):41-6.
- 94. Li YC, Kong J, Wei M, Chen Z-F, Liu SQ, Cao L-P. 1, 25-Dihydroxyvitamin D 3 is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest. 2002;110(2): 229-38.
- 95. Polidoro L, Properzi G, Marampon F, Gravina GL, Festuccia C, Di Cesare E, et al. Vitamin D protects human endothelial cells from H₂O₂ oxidant injury through the Mek/Erk-Sirt1 axis activation. J Cardiovasc Transl Res. 2013;6(2):221–31.
- Al-Rasheed NM, Al-Rasheed NM, Bassiouni YA, Hasan IH, Al-Amin MA, Al-Ajmi HN, et al. Vitamin D attenuates proinflammatory TNF-α cytokine expression by inhibiting NF-κB/ p65 signaling in hypertrophied rat hearts. J Physiol Biochem. 2015;71(2):289-99.
- 97. Artaza JN, Mehrotra R, Norris KC. Vitamin D and the cardiovascular system. Clin J Am Soc Nephrol. 2009;4(9): 1515-22.
- 98. Wiseman H. Vitamin D is a membrane antioxidant Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action. FEBS Lett. 1993;326(1-3):285-8.
- 99. Wu Y, Xu X, Chen Z, Duan J, Hashimoto K, Yang L, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun [Internet]. 2020;87:18–22. Available from: http://www.sciencedirect.com/science/article/pii/S0889159120303573
- 100. Ling M, Mengdie W, Shanghai C, Quanwei H, Jiang C, Candong H, et al. Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: A retrospective case series study [Internet]. 2020. https://doi.org/ 10.1101/2020.02.22.20026500v1.article-info
- 101. Giacomelli A, Pezzati L, Conti F, Bernacchia D, Siano M, Oreni L, et al. Self-reported olfactory and taste disorders in SARS-CoV-2 patients: A cross-sectional study. Clin Infect Dis. 2020;ciaa330.
- 102. Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415-24.
- 103. Xu J, Zhong S, Liu J, Li L, Li Y, Wu X, et al. Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the Chemokine Mig in pathogenesis. Clin Infect Dis. 2005;41(8):1089–96.
- 104. Hung EC, Chim SS, Chan PK, Tong YK, Ng EKO, Chiu RWK, et al. Detection of SARS coronavirus RNA in the cerebrospinal fluid of a patient with severe acute respiratory syndrome. Clin Chem. 2003;49(12):2108-9.
- 105. Moriguchi T, Harii N, Goto J, Harada D, Sugawara H, Takamino J, et al. A first Case of Meningitis/Encephalitis associated with SARS-Coronavirus-2 – ScienceDirect. Int J Infect Dis [Internet]. 2020;94:55–8. Available from: https://

- www.sciencedirect.com/science/article/pii/S1201971220301958
- 106. Zhao K, Huang J, Dai D, Feng Y, Liu L, Nie S. Acute myelitis after SARS-CoV-2 infection: A case report. Neurology [Internet]. 2020. Available from: http://doi.org/10.1101/2020. 03.16.20035105
- 107. Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology. 2020; 201187
- 108. Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82(15):7264-75.
- 109. Miller AJ, Arnold AC. The renin-Angiotensin system in cardiovascular autonomic control: Recent developments and clinical implications. Clin Auton Res. 2019;29(2):231–43.
- 110. Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression profiling of ACE 2, A novel homologue of angiotensin converting enzyme. FEBS Lett. 2002;532(1-2): 107-10.
- 111. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020;11(7):995–8.
- 112. McCray PB, Pewe L, Wohlford-Lenane C, Hickey M, Manzel L, Shi L, et al. Lethal Infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol. 2007;81(2):813-21.
- 113. Goshal A, Das S, Gosh A, Mishra MK, Sharma V, Koli P, et al. Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis. Glia [Internet]. 2007;55:483-96. https://doi.org/10.1002/glia.20474
- 114. Bohmwald K, Gálvez NMS, Ríos M, Kalergis AM. Neurologic alterations due to respiratory virus infections. Front Cell Neurosci [Internet]. 2018. https://doi.org/10.3389/fncel.2018. 00386/full
- 115. Stumpf WE, Sar M, Clark SA, DeLuca HF. Brain target sites for 1,25-dihydroxyvitamin D3. Science [Internet]. 1982;215 (4538):1403-5. Available from: https://science.sciencemag.org/content/215/4538/1403
- 116. Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ. Distribution of the Vitamin D receptor and 1α -hydroxylase in human brain. J Chem Neuroanat. 2005;29(1):21-30.
- 117. Groves NJ, McGrath JJ, Burne TH. Vitamin D as a neurosteroid affecting the developing and adult brain. Ann Rev Nutr. 2014;34:117-41.
- 118. Cui X, Gooch H, Groves NJ, Sah P, Burne TH, Eyles DW, et al. Vitamin D and the brain: Key questions for future research. J Steroid Biochem Mol Biol. 2015;148:305-9.
- Fernandes de Abreu DA, Eyles D, Féron F. Vitamin D, a neuro-immunomodulator: Implications for neurodegenerative and autoimmune diseases. Psychoneuroendocrinology. 2009;34(Suppl 1):S265-77.
- 120. Dion D, Macgrogan D, Neveu I, Jehan F, Houlgatte R, Brachet P. 1,25-Dihydroxyvitamin D3 is a potent inducer of nerve growth factor synthesis. J Neurol Sci [Internet]. 1991. https://doi.org/10.1002/jnr.490280111
- 121. Neveu I, Naveilhan P, Baudet C, Brachet P, Metsis M. 1,25-dihydroxyvitamin D3 regulates NT-3, NT-4 but not BDNF mRNA in astrocytes. NeuroReport [Internet]. 1994;6(1):124-6. Available from: https://europepmc.org/article/med/7703399
- 122. Naveilhan P, Neveu I, Baudet C, Ohyama KY, Brachet P, Wion D. Expression of 25(OH) vitamin D3 24-hydroxylase gene in glial cells. NeuroReport. 1993;5(3):255-7.

- 123. Wang Y, Chang CF, Morales M, Chiang YH, Hoffer J. Protective effects of glial cell line-derived neurotrophic factor in ischemic brain injury. Ann NY Acad Sci. 2002;962(1): 423–37.
- 124. Kearns CM, Cass WA, Smoot K, Kryscio R, Gash DM. GDNF protection against 6-OHDA: time dependence and requirement for protein synthesis. J Neurosci [Internet]. 1997;17(18): 7111–8. Available from: https://www.jneurosci.org/content/17/18/7111.short
- 125. Gash DM, Zhang Z, Gerhardt G. Neuroprotective and neurorestorative properties of GDNF. Ann Neurol [Internet]. 2014. https://doi.org/10.1002/ana.410440718.
- 126. Lefebvre d'Hellencourt C, Montero-Menei CN, Bernard R, Couez D. Vitamin D3 inhibits proinflammatory cytokines and nitric oxide production by the EOC13 microglial cell line. J Neurosci Res [Internet]. 2002. https://doi.org10.1002/jnr. 10491
- 127. Furman I, Baudet C, Brachet P. Differential expression of M-CSF, LIF, and TNF-α genes in normal and malignant rat glial cells: Regulation by lipopolysaccharide and vitamin D. J Neurosci Res [Internet]. 1996. https://doi.org/10.1002/(SICI) 1097-4547(19961101)46:3<360::AID-JNR9>3.0.CO;2-I
- 128. De Viragh PA, Haglid KG, Celio MR. Parvalbumin increases in the caudate putamen of rats with vitamin D hypervitaminosis. Proc Natl Acad Sci. 1989;86(10):3887–90.
- 129. Garcion E, Nataf S, Berod A, Darcy F, Brachet P. 1,25-Dihydroxyvitamin D3 inhibits the expression of inducible nitric oxide synthase in rat central nervous system during experimental allergic encephalomyelitis. Mol Brain Res. 1997;45(2):255-67.
- 130. Dawson VL, Dawson TM. Nitric oxide actions in neurochemistry. Neurochem Int. 1996;29(2):97–110.
- 131. Dringen R, Gutterer JM, Hirrlinger J, Glutathione metabolism in brain. Eur J Biochem [Internet]. 2001. https://doi.org/10.1046/j.1432-1327.2000.01597.x
- 132. Ascherio A, Munger KL, Simon KC. Vitamin D and multiple sclerosis. Lancet [Internet]. 2010;9(6):555. Available from: https://www.sciencedirect.com/science/article/pii/S1474442210700867?casa_token=c65bs0l0bV8AAAAA: Eb4i8dTs7geklo3PPM2XqpjK2LPGq4Sibe upq0v8OadG004C61WFKfgaBzpdbJyuvxDgoJtr1Q
- 133. Alipio M. Vitamin D Supplementation Could Possibly Improve Clinical Outcomes of Patients Infected with Coronavirus-2019 (COVID-19) [Internet]. Rochester, NY: Social Science Research Network; 2020 April; Available from: https://papers.ssrn.com/abstract=3571484
- 134. Glicio EJ. Vitamin D level of mild and severe elderly cases of COVID-19: A preliminary report [Internet]. Rochester, NY: Social Science Research Network; 2020 May; Available from: https://papers.ssrn.com/abstract=3593258
- 135. Lau FH, Majumder R, Torabi R, Sage F, Hoffmann R, Cirillo JD, et al. Vitamin D insufficiency is prevalent in severe COVID-19. medRxiv [Internet]. 2020. https://doi.org/10.1101/2020.04.24.20075838v1
- 136. Raharusun P, Priambada S, Budiarti C, Agung E, Budi E. Patterns of COVID-19 mortality and vitamin D: an Indonesian study. Emerginnova [Internet]. 2020. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3585561
- 137. D'Avolio A, Avataneo V, Manca A, Cusato J, De Nicolò A, Lucchini R, et al. 25-Hydroxyvitamin D Concentrations Are Lower in Patients with Positive PCR for SARS-CoV-2. Nutrients. 2020;12(5).
- 138. De Smet D, De Smet K, Herroelen P, Gryspeerdt S, Martens GA. Vitamin D deficiency as risk factor for severe COVID-19: A convergence of two pandemics. 2020. Available from: https://europepmc.org/article/ppr/ppr158640

- 139. Lee J, Van Hecke O, Roberts N. Vitamin D: A rapid review of the evidence for treatment or prevention in COVID-19. CEBM, University of Oxford [Internet]; 2020.
- 140. Ebadi M, Montano-Loza AJ. Perspective: improving vitamin D status in the management of COVID-19. Eur J Clin Nutr. 2020;74:856-9.

History

Received May 11, 2020 Accepted July 17, 2020 Published online August 19, 2020

Conflict of interest

The authors declare that there are no conflicts of interest.

ORCID

Mehrdad Zeinalian

https://orcid.org/0000-0003-1381-0582

Dr Mehrdad Zeinalian, MD, MPH, PhD

Department of Genetics and Molecular Biology School of Medicine Isfahan University of Medical Sciences Isfahan Iran m.zeinalian@med.mui.ac.ir