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Abstract: A healthy and balanced diet is an important factor to assure a good functioning of the central and peripheral nervous system.
Retinoid X receptor (RXR)-mediated signaling was identified as an important mechanism of transmitting major diet-dependent physiological
and nutritional signaling such as the control of myelination and dopamine signalling. Recently, vitamin A5/X, mainly present in vegetables as
provitamin A5/X, was identified as a new concept of a vitamin which functions as the nutritional precursor for enabling RXR-mediated
signaling. The active form of vitamin A5/X, 9-cis-13,14-dehydroretinoic acid (9CDHRA), induces RXR-activation, thereby acting as the central
switch for enabling various heterodimer-RXR-signaling cascades involving various partner heterodimers like the fatty acid and eicosanoid
receptors/peroxisome proliferator–activated receptors (PPARs), the cholesterol receptors/liver X receptors (LXRs), the vitamin D receptor
(VDR), and the vitamin A(1) receptors/retinoic acid receptors (RARs). Thus, nutritional supply of vitamin A5/X might be a general nutritional-
dependent switch for enabling this large cascade of hormonal signaling pathways and thus appears important to guarantee an overall
organism homeostasis. RXR-mediated signaling was shown to be dependent on vitamin A5/X with direct effects for beneficial physiological
and neuro-protective functions mediated systemically or directly in the brain. In summary, through control of dopamine signaling, amyloid β-
clearance, neuro-protection and neuro-inflammation, the vitamin A5/X – RXR – RAR – vitamin A(1)-signaling might be “one of” or even “the”
critical factor(s) necessary for good mental health, healthy brain aging, as well as for preventing drug addiction and prevention of a large array
of nervous system diseases. Likewise, vitamin A5/X – RXR – non-RAR-dependent signaling relevant for myelination/re-myelination and
phagocytosis/brain cleanup will contribute to such regulations too. In this review we discuss the basic scientific background, logical
connections and nutritional/pharmacological expert recommendations for the nervous system especially considering the ageing brain.
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A general introduction of dietary
influence on the central and
peripheral nervous system functions

A good mental health, a well-functioning central and
peripheral nervous system, and the prevention of neurolog-
ical diseases has been associated with many factors includ-
ing genetic background ([1] and later summarised with
multiple references), individual social background [2],

general lifestyle [3, 4] including sufficient physical exercise
[5], and sufficient good-quality sleep [6] as well as a stimu-
lating social and family environment [7], in addition to a
healthy and balanced diet [8, 9, 10, 11, 12].

It is still not clearwhatexactly ahealthyandbalanceddiet
is and what it does with regard to mental health and a well-
functioning brain and for prevention of neurological dis-
eases, especially when considering healthy brain-aging,
with relevance for general population convenience and its
acceptance in daily life [13]. However, a key factor for a
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healthy and balanced diet is the provision of adequate
amounts of a variety of foods which will cover the basic
requirements for energy, macro-nutrient and micro-nutri-
ent intake in order to sustain the basic metabolic rate, to
keep a normal bodyweight and further additionalmuscular
activities [14]. Malnutrition and over-nutrition leading to
substantial body weight loss and obesity, respectively, are
not only problematic with regard to the general health of
our organism but also for mental health [15, 16].

In addition, a healthy and balanced diet can only be
defined as such when being able to maintain (and/or
improve) gut-health in terms of guaranteeing adequate
bowel movements without gastrointestinal problems and
keep the risk low for cancers of the gastrointestinal tract
and beyond [17]. However, for people with an unbalanced
Westerndiet – especiallywith certain gastrointestinal disor-
ders, food allergies, food intolerances or food malabsorp-
tion – a composition of healthy and balanced diet may
differ from that suitable for healthy individuals and its
balancing may require nutritional supplementation.
Besides, it is well reported that gastrointestinal disorders
are indirectly impacting brain functions and can be associ-
ated with mental problems such as anxiety, depression
[18] and even eating disorders [19], but also via the micro-
biota-gut-brain-axis [20].

In this contribution, a comprehensive overview is given
onwhich diets, which specific combination ofmulticompo-
nent diets, which individual nutrients, which nutrient-
deriving ligandsor signalingmolecules, andwhichpotential
signaling pathways may be important for the maintenance
of general good mental health, for the general health of
the nervous system, for healthy brain aging and the preven-
tion of neurological diseases. In addition, we focus our dis-
cussion on the potential health relevance of the newly
claimed vitamin, vitamin A5/X. Such health relevance is
much based on existing knowledge of functions of retinoid
X receptors (RXRs), a documented transcriptional effector
of vitamin A5/X-signaling pathways. The emphasis is also
placed on the fact that vitamin A5/X is a novel and food
dependent pathway with expected high importance for
mental health and the prevention of neurological diseases.

Effects of the diet on good mental
health and prevention of
neurological diseases

In general, a healthy and balanced diet is associated with
good health, including good mental health [8, 12]. This
notion is strongly supported by scientific data and sum-
marised in expert nutritional recommendations [9, 10] of
national and international regulatory bodies, and is gener-

ally defined as being rich in fruits and vegetables and low
in meat and alcohol. Unfortunately, these recommenda-
tions are not widely accepted or applied by a large propor-
tion of the Western society preferring a convenient
lifestyle with processed food high in salt, fat and sugar [21,
22, 23]. Even, if a motivated younger and mainly female
population inWestern society are trying to adapt to general
healthy lifestyle recommendations including a healthy diet
[24, 25, 26, 27], a much larger percentage of this younger
generation as well as the total population, living a western-
ized lifestyle, still prefers a convenient and unfortunately,
not ideally balanced diet [28].

A Mediterranean diet, for example, is a well-accepted
diet type by larger groups of societies offering a broad array
of valuable nutrients, because of high consumption of fruits
and vegetables, olive oil, and marine fish, while a low to
moderate consumption of processed food, meat products
and alcohol [29]. This Mediterranean diet is an example,
as it ismore a general life style than a simple food selection,
and is also associated with strong social connections and
sun exposure, factors which may additionally contribute
to such a holistic multicomponent dietary pattern [30]
and contribute especially via that social connection also to
ahealthy food selection insteadof aWestern single life style
associated with a high intake of processed food and alcohol
[31].

How such amulticomponent diet transmits its beneficial
activity mechanistically, via which food-derived nutrients,
viawhich single ormultiple food components andviawhich
pathways is just partially known. Especially when consider-
ing a complex combination of these nutrients in the diet
which might act via complex interaction pathways in the
human organism. Furthermore, many studies just focused
on individual single nutrients, how food in general and food
enriched with such individual nutrients are interacting
within thehumanorganism.These studiesweremainlyper-
formed in in vitroand in vivoexperimentalmodels topredict
how the diet and nutrients transmit potential positive and
negative effects within the human organism.

Prebiotics, probiotics and postbiotics
acting via the microbiota-gut-brain-axis
on mental health and prevention of
neurological diseases

Probiotics are defined as live microorganisms that, when
administered in adequate amounts, confer a health benefit
to the host [32]. Besides, depending on the mechanism of
action, inactivated bacteria or their fractions of probiotics
can deliver similar effects, being then defined as paraprobi-
otics or postbiotics [33, 34]. In contrast, prebiotics are
defined as substrates that are selectively utilized by host
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microorganisms conferring a health benefit and are charac-
terized by a great variety of substance classes [35]. Histori-
cally, probiotics and prebiotics found their application for
improving gastrointestinal disorders, delivering mixed
results with reasons discussed elsewhere [36, 37, 38].
Therefore, the American Gastrointestinal Association
encourages the intake of specific probiotics only for pre-
term, low birth-weight infants to prevent necrotizing ente-
rocolitis whereas for other gastrointestinal diseases the
probiotic intake is either not recommended or conditional
(with low quality of evidence) [38].

In short summary, a) as most probiotics are dietary sup-
plements and not drugs, the clinical trials usually do not
match the high standards of pharmaceutical trials; b) probi-
otics differ regarding the number of strains, type of strains
and selectionmethod therefore will not have the same effi-
cacy and c) they may not be effective across different
patient collectives and patient population subgroups [37].
For prebiotics, the situation becomes even more complex
due to the heterogeneity of substance classes (often being
fibers) and the variety of exerted effects in the gut [32].

As the gutmicrobiota also influences the central nervous
systemvia themicrobiota-gut-brain axis (reviewed in [20]),
therapeutics targeting the gastrointestinal microbiota
became of potential interest not only as adjunct treatment
of psychiatric and functional central nervous system disor-
ders, but also for modulating mood and stress resilience in
health anddisease [37, 39].However, the results on efficacy
are very promising in pre-clinical models, the situation in
humans is far less clear as recently reviewed [36, 37].

Questionnaire data about the psychological well-being
were similar between the probiotic and placebo groups.
Only six human studies investigated the impact of probi-
otics versus placebo using imaging technologies, 5 of them
indicated that selected probiotics may alter brain functions
in healthy volunteers. However, no conclusions for clinical
relevance for patients with respective disorders can be
drawn yet [36, 37]. For prebiotics, the current situation is
even less clear, due to the lack of imaging studies in
humans. Overall, next generation probiotics specifically
selected and developed to improve psychiatric condition
and potentially other central nervous system functions
may be promising [40].

The effect of individual diet-derived
nutrients and alternatively consumed
substances on mental health

Induction of short- and medium-term effects
Well known compounds used by our society for brain stim-
ulating effects (Figure 1), called nootropics, are accepted
consumed compounds present in food such as caffeine

and alcohol or are taken up via alternative pathways likeni-
cotine [41, 42]. This nicotine uptake originates from smok-
ing tobacco and is applied because of desired stimulating
effects onmental status/well-being [43], but its application
methods have a strong detrimental health aspect due to
oxidative stress [44], deeply ingested radioactivity [45], a
large mixture of pro-carcinogenic derivatives [44], and a
strong addictive potential towards nicotine [43]. These sin-
gular desired and beneficial seen stimulating effects of
nicotine result in a quick negative feedback of mental
well-being and an addiction towards to get back on “nor-
mal” mental well-being with follow up craving for further
nicotine stimuli. As a result, this singular positive effect on
mental well-being quickly turns into a long term negative
mental status followed by an addiction towards smoking
as an application method with high toxic burden [44] and
an increased risk for neurological diseases [46].

Besidesnicotine,alcohol is awidely consumednootropic
with a differentmechanismof action for inducing positively
evaluatedeffects onmentalwell-being [47,48]. In addition,
it is an “important” and well accepted part of the daily diet
by a large number of humans [27]. The addiction potential
and toxicity of alcohol is less severe compared to that of
nicotine in tobacco products, although the high number of
frequent and heavy drinkers, its relevance inWestern soci-
ety due to the widely used and high consumption of alcohol
products is thereby an important public health concern
[49].

Caffeine present in coffee, tea, sugary and sweetened
soft drinks (like colas) as well as “energy drinks” have also
well-knowndesired positive effects onmental performance
[50, 51, 52]. Its addictive and tolerance potential is evalu-
ated as “moderate” in comparison to alcohol, nicotine
and other highly active drugs and drug-like substances
[50], but its frequent consumption is associated with
depression symptoms and anxiety [53]. On the beneficial
side, coffee offers a high antioxidant potential [54].
Whether these antioxidant effects may lead to protective
functions in the brain is not clear and has not yet been dee-
ply examined in humans as reviewed in [55, 56].

Unfortunately, nicotine, alcohol and caffeine have just
short-medium term desired alterating effects on the ner-
vous system, among which are general stimulation and
sleep deprivation (caffeine), happiness, decreased anxiety,
sociability, impaired cognition-, memory- and sensory-
functions, and a generalized depression of the central
nervous system (alcohol) and alertness, reduced hunger
feeling, reducedanxiety, improvedmemoryandconcentra-
tion (nicotine).

In addition, there are commonly used, but legally and
from society generally non-well accepted non-food sub-
stances like amphetamines (i.e. 3,4-methylenedioxy-
methamphetamine (MDMA)/ecstasy (XTC)) [57, 58],
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cocaine [59] and cannabinoids [60, 61] which have short
time “desired” effects of enhancing nervous system func-
tions which are associated with unwanted strong addictive
potential and negative side effects. These short term “de-
sired”effects onbrain functions further inducenon-desired
feedbackmechanisms in the neuro-physiological pathways
especially in the vitamin A5/X – RXR-mediated signaling
pathways [62, 63].

In this context, RXR-signaling, induced also by vitamin
A5/X, may have a beneficial effect in fighting addiction to
these substances like recently suggested by Godino et al.
2023 [62, 63]. In addition, the craving to other substances
with addiction potential like the previously mentioned sub-
stances as well as general nutrients like fat and sugarwith
food intake dopamine-motivation feedback [64, 65, 66] is
directly or indirectly controlled by RXR-mediated signaling
due to transcriptional control of dopamine receptor’s
expression [67].

Induction of latent and/or long-lasting effects
In contrast, there are nutrients with long term general
beneficial health effects on the central and peripheral
nervous system [10, 12, 13, 68]. These are derivatives
which do not functionally interact with the nervous system-
signalingwith immediate and quickly observable effects on
the central nervous system. These nutrients mainly
influence brain development, general maintenance of ner-
vous system- signaling, neuronal regeneration, a general

well-functioning nervous system, inflammatory processes
systemically or directly within the brain, proteostasis, and
the maintenance of brain performance such as cognition/
memory but with no observable tolerogenic and addictive
potential.Thereby, their potential for improving thegeneral
mental well-being seems to be mainly based on a general
maintenance or protection of a healthy maintenance of
the nervous system via enabling an organised homeostatic
general macronutrient supply. They additionally function
itself as macronutrients or precursors being itself building
blocks/components of the nervous systems [69], or being
required for physiological-balanced regulation pathways
of nervous signaling and a balanced local nervous system-
based inflammatory process.

The mechanisms of such pleiotropic activities of nutri-
ents are diverse. An antioxidant response is part of this pro-
tection for a healthy maintenance of nervous system
functions [10]. Here the classical antioxidants are acting
mainly systemically like vitamin C [70], vitamin E
[71, 72], polyphenols [73, 74] and flavonoids [75, 76] as
well as local acting antioxidants within specific brain areas
like the non-provitamin A carotenoids lutein/zeaxan-
thin [77, 78] are involved in such general antioxidant pro-
tection. Furthermore, cholesterol [79] and the n3-fatty
acid docosahexaenoic acid (DHA) [80, 81] are building
blocks/components of cellular membranes [69], but also
studied as direct physiological activators or precursors of
bioactive molecules enabling optimal nervous system
signaling in the central and peripheral nervous system
[82, 83, 84]. Further derivatives like vitamin B12, B6,
and folate (vitamin B9) are involved in C1-body physiol-
ogy, which is of importance for a general energy homeosta-
sis in the peripheral nervous system and brain [85, 86].
These listed compounds are involved in neural functions
and thereby their deficiency is associatedwith dysfunctions
of the central and peripheral nervous system [87]. These
compounds are required in sufficient amounts in the daily
diet [88].

Anumberofmicronutrientsact alsoas ligands fornuclear
hormone receptor (NHR) mediated-signaling to control
transcriptional regulation of basic homeostasis of the
human organism, but also adaptive responses. Thus ner-
vous system homeostasis and its optimal performance
requires balanced signaling via the peroxisome prolifera-
tor-activated receptors (PPARs) with fatty acid-metabolites
or fatty acids like the n3-fatty acid/DHA as ligands [84],
the liver X receptors (LXRs) with cholesterol derivatives
as ligands [89], the vitaminD receptor (VDR) with vitamin
D derivatives as ligands [89] and the retinoic acid recep-
tors (RARs) with vitamin A(1)/pro-vitamin A(1) carote-
noids as precursors for all-trans retinoic acid as the
ligand, for which a physiological homeostatic regulation is
of physiological and homeostatic importance [90, 91, 92,

Figure 1. General mechanisms of how food interacts with brain
health. *Representing a non food, but alternatively consumed
substance.
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93]. Even additive or “boosting” effects of supplementa-
tions with selected nutrients like DHA can be observed
when applied beyond recommended daily intake amounts
for better nervous system functions [80, 94, 95, 96, 97].
Crucial partners for such nuclear hormone receptor medi-
ated signaling are the retinoid X receptors (RXRs), as they
act as obligatory heterodimerisation partners for several
alternative nuclear hormone receptors to enable their bind-
ing toDNA and further individual transcriptional activities.
In this review we will focus on these RXR-dependent path-
ways involving the newly found endogenous RXR ligand
and its recently identified nutritional precursors [98, 99].
These compounds represent novel physiologically impor-
tant factors for the central and peripheral nervous system,
requiring an optimal diet for maintenance but also offering
possibilities for boosting beneficial effects following addi-
tive supplementations beyond the advised recommended
amounts [99, 100, 101, 102, 103, 104].

Effects of provitamin A(1) and vitamin A(1)
on mental health and prevention of
neurological disorders

ProvitaminA(1), suchasβ-caroteneandalternative provita-
min A(1) carotenoids, in addition to vitamin A(1) alcohol,
such as all-trans-retinol (ATROL), and its esters are the
major relevant food derived precursors of all-trans-retinoic
acid (ATRA)/vitaminA(1)-acid as the endogenous ligand of
theRARs (Figure 2, [102]). RARs act as transcription factors
controlling a wide range of RAR-response pathways [102,
103]. Relevant RAR-response proteins are involved in an
array of crucial physiological processes like differentiation,
proliferation, apoptosis, metabolism, inflammation and an
overall macro- and micro-nutrient homeostasis [102,
105]. Various proteins are thereby directly involved in a
general homeostasis of macro- and micro-nutrient nutriki-
netics systemically, but also within the nervous systems
[90, 106, 107], like for structural proteins [108, 109, 110],
proteostasis with relevance for amyloid aggregates [111,
112, 113], developmentalprocesses andneurogenesiswithin
the brain. These proteins have important functions with
respect to growth and plasticity of various cells types within
the brain, including neurons [114, 115, 116], astrocytes [117,
118], oligodendrocytes [119, 120, 121], and microglia [122,
123, 124] as well as being enzymes and receptors enabling
homeostatic synaptic plasticity [125, 126].

In general, aprimary vitaminA(1) deficiency [127, 128]
refers to insufficient nutritional vitamin A(1) intake and in
real life is mostly associated with low intake of vitamin
A(1)/provitamin A(1), while a secondary vitamin A(1)
deficiency is the notion which refers to decreased activity
of vitamin A(1)-mediated signalling in the organism which

is a result from dysfunctional or compromised vitamin
A(1)-uptake, bioactivation/metabolism as well as vitamin
A(1)-RAR-mediated signaling through its receptors and
associated factors.

In such a primary vitaminA(1)-deficiency often, an insuf-
ficient intake of additional macro- and micro-nutrients
co-occurs. This condition is encounteredmostly in develop-
ing countries of Africa and South-East Asia. The World
Health Organization (WHO) reports that in these regions
250 million preschool children suffer from insufficient
vitamin A(1) intake and 500,000 of these children become
blind. Vitamin A(1) deficiency, resulting from selective
insufficient vitamin A(1) intake or general insufficient
micro- and macro-nutrient intake [129], is life-threatening
and causes death of about 250,000 children, mainly
because of immune deficits. Despite these facts there are
no dedicated studies on neurological effects of vitamin A
deficiency in these populations.

In the Western society reduced blood levels of vitamin
A(1) are associatedwith biological aging [130, 131], although
some studies did not detect any significant changes [132,
133].Suchdiscrepancymayreflect –at leastpartially–hetero-
geneity of data resulting from differences in inclusion crite-
ria of these studies. For example, analyses of an aged
population assessing their cognitive performance revealed
that individuals with compromised learning and memory
capacity displayed lower levels of ATROL/vitamin A(1)-
alcohol [134, 135]. Such data suggest that low vitamin A(1)
levels may be causally associated with cognitive deficits
[136], which is further supported by rare clinical trials and
animal studies. Accordingly, aged rats displayed decreased
levels of ATROL and ATRA, which were correlated with
compromised learningandmemory [137, 138]. Suchdeficits
were observed in the hippocampus, the structure directly
involved in learning and memory. Importantly, aged rats
or mice displayed also reduced expression of several reti-
noid receptors in the samebrain region,which could further
contribute to deficits in vitamin A(1)-signaling and underlie
thereby learning andmemorydeficits associatedwith aging
[132, 139, 140, 141]. Such dysfunctional or compromised
vitamin A(1)-signaling can be defined as a secondary vita-
min A(1) deficiency [128]. In support of this hypothesis,
both, the selected aging related molecular changes and
the memory deficits could be prevented or normalized by
chronic or acute treatments with vitamin A(1) or selected
retinoids [137, 138, 142].

In addition to aging-related cognitive deficits, compro-
mised vitamin A(1) signaling was also observed in several
neurological conditions. In the case of Alzheimer’s disease
(AD), a reduced retinaldehyde-dehydrogenase 2 (Raldh2/
ALDH1A2, a key enzyme synthesizing ATRA) expression
and lower ATRA production was observed within specific
brain regions [143, 144]. Amyloid beta (Aβ) was shown to
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further compromise vitamin A(1)-signaling by downregula-
tion of retinoic acid receptor α (RARα) expression, syner-
gizing thereby with lower (blood) ATRA levels in inducing
memory deficits. Reduced levels of vitamin A(1) in form
of ATROL in blood were also reported in plasma of AD-
patients [145, 146]. A significant involvement of compro-
mised ATRA signaling in AD is supported by deposition
of Aβ aggregates in vitamin A(1)-deficient rats [143] and
beneficial effects of ATRA treatment including anti-
inflammatory andneuro-protective effects aswell as inhibi-
tion of Aβ aggregates deposition [107, 141].

Compromised synthesis of ATRA was also suggested to
be associated with Parkinson’s disease (PD). Indeed, sev-
eral reports described reduced expression of retinalde-
hyde-dehydrogenase 1 (Raldh1/ALDH1A1, an alternative
enzyme synthesizing ATRA), by midbrain dopaminergic
neurons in PD patients [147, 148, 149]. In fact, Raldh1 is
one of the specificmarkers of a subpopulation of those neu-
rons [150] and its reduction in PD was associated not only
with loss of these neurons, but also to be reduced in remain-
ingdopaminergic neurons [147, 148]. Similarly, a combined

genetic ablation ofmurine Raldh1 and retinol-dehydrogen-
ase 5 (Adh5), a further rate-limiting enzyme to synthesize
retinaldehyde from vitamin A(1)/ATROL, leads to progres-
sive motor deficits and loss of dopaminergic neurons [151].
In this context, several controlled or prospective studies
explored the possibility, that reduced intake of vitamin
A(1) or provitamin A(1) may act as sensitivity factor to
develop PD.Whereasmost of these studies did not provide
anyclear correlation [152, 153, 154, 155]. Furthermore,Yang
et al. 2017 [156] reported that increased consumption of β-
carotene/provitamin A(1) from a natural diet is associated
with a reduced rate of PD prevalence.

Locomotor deficits and reduced signaling of dopaminer-
gic receptors in the striatum, was reported in RARβ-/- null
mutant mice and in compound RARβ-/-; RXRγ-/- null
mutant mice [101, 157]. A recent transcriptome analysis of
the striatum of RARβ-/- mice, and combined with gen-
ome-wide identification of RARβ-binding sites using high-
throughput chromatin immunoprecipitation (ChIPseq)
[158], pointed to severalmechanistic hypotheses for neuro-
protective activities of RARβ. Collectively, these data

Figure 2. The vitamin A5/X concept: Summarized are the metabolic pathways of vitamin A5/X / provitamin A5/X starting from nutritionally-derived
retinoids and carotenoids towards RXR-mediated signaling. Abbreviations: ATROL-ES: all-trans-retinyl esters; ATROL: all-trans-retinol; ATBC: all-
trans-β,β-carotene; 9CDHROL-ES: 9-cis-13,14-dihydroretinyl esters; 9CDHROL: 9-cis-13,14-dihydroretinol; 9CDHBC: 9-cis-13,14-dihydro-β,β-
carotene; 9CBC: 9-cis-β,β-carotene; 9CDHRA: 9-cis-13,14-dihydroretinoic acid.
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suggest a strong contribution of RARβ in controlling neuro-
transmission, energymetabolism (with aparticular involve-
ment of G-proteins), cAMP and calcium signaling. Striatum
relatedactivitiesofRARβmightbeof special importance for
understanding the pathogenesis of Huntington disease, a
rare disease in which RARβ expression was found reduced
([158, 159] and references therein).

Effects of the sunshine vitamin, vitamin D,
on mental health and prevention of
neurological diseases

In the last years, there is an increasing attention towards
vitamin D for mechanisms of action involved in immune
response, cardio-vascular functions as well as an active
involvement in the nervous system [160, 161]. In general,
vitaminD in the form of vitaminD2 andmainly asD3 (ergo-
calciferol or cholecalciferol) can be taken up by the diet or
synthesized by UV-irradiation from 7-dehydrocholesterol
(provitamin D3). This vitamin D, especially vitamin D3, is
further metabolized to 25-hydroxy-vitamin D3, which is
homeostatically regulated and transported in the blood,
while the further active vitamin D derivative is 1,25-dihy-
droxy-vitamin D3/1,25(OH)2VD3 [162]. This active vitamin
D3derivatives binds, similarly to the active vitaminA(1) and
vitamin A5 derivatives, to specific nuclear hormone recep-
tors which control transcriptional regulation via DNA bind-
ing [89, 163]. For this vitamin D-mediated regulation the
nuclear hormone receptor, the vitamin D receptor (VDR),
must be ligand activated by the active vitamin D derivative
1,25(OH)2VD3 [162]. This liganded and thereby activated
VDR needs further the retinoid X receptor (RXR) as a
dimerization partner for DNA-binding and for regulation
of vitamin D-mediated transcriptional regulation [163,
164]. Many studies favor the fact, that this VDR-RXR com-
plex can exclusively be activated by the VDR-ligand [89,
163, 165], although alternative studies confirm activation
via the RXR partner additionally [166]. Recent data
describe a correlation of the active VDR-ligand as well as
the active RXR-ligand present in human serum with a vita-
min D-regulated immune target also present in human
serum samples [167].

VitaminD-mediated signalingoccurs invariousorgansof
the mammalian organism and regulates a large array of
physiological mechanisms [168]. Here alsomany pathways
involving the VDR in the general maintenance of the ner-
vous systems are of high importance, especially during
development of the nervous system [161, 169, 170], high-
lighting a sufficient nutritional intake of this vitamin being
important for good mental health and the prevention from
a large array of neurological disorders like psychiatric/psy-
chotic, neurodegenerativeanddemyelinatingdiseases [171,
172, 173, 174].

Nutritional supplementation with vitamin D seems to be
of high importance as vitaminD intake appears to be below
the suggested dietary recommendations inWestern society
[27]. Many supplementation studies with sufficient vitamin
Damounts [172, 175] orwith vitaminDamounts beyond the
recommendeddaily dietary levelswere shown to be benefi-
cial taken either alone or in combination with additional
nutrients, like the previously discussed B-vitamins and
n3-PUFAs [176, 177]. Unfortunately, many supplementa-
tion studies showed no improvement on mental health,
reviewed in [178].

In summary, sufficient vitamin D intake seems to be
related to goodmental health and the prevention of neuro-
logical diseases mainly mediated via RXR – VDR-mediated
signaling pathways. Adietary supplementation, food fortifi-
cation and at its best a healthy balanced diet seems to be
beneficial for human health considering the risk of a low
basic vitamin D intake and low sun exposure. If at condi-
tions with optimal sufficient vitamin D intake and status,
an additional vitamin D supplementation is needed and
beneficial on the long term, seems to be questionable.

Macronutrients and mental health

Macronutrients like fat and carbohydrates are a broad
group of compounds in the human diet mainly functioning
as constructionmaterial for thehumanorganismwith focus
here on brain/nerves, as energy providing precursors as
well as important precursors for hormone regulatory path-
ways in our human organism. These functional derivatives
are further involved in the control of various pathways for
communication between the human organism and the ner-
vous system especially to control energy homeostasis via a
hunger/satiety regulation mainly via interaction within the
human brain [179, 180].

The main food-derived macronutrients are of complex
macromolecular structures like polysaccharides and com-
plex lipid structures. These compounds are metabolized
in the human organism to smaller units such as simple sug-
ars/monosaccharides and non-esterified free unbranched
fatty acids, which are also directly ingested with the diet
but in much smaller quantity. However, smaller molecules
can be used to build up larger macromolecules, which are
needed in our organism as crucial construction materials,
while, more interestingly, in the present case as bioactive
molecules like various hydroxyl-metabolites of DHA
[181, 182].

Monosaccharides are key substances for energymetabo-
lism and seemalso to be recognized by specific areaswithin
the human brain [183]. This brain-nutrient interaction is an
important regulator of selective food intake and homeo-
static regulation, while also dopamine feedback cascades
are involved [184]. At this level monosaccharide levels
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and its feedback regulation on selective craving/hunger/
satiety is among others also controlled via vitamin A5 –

RXR-mediated signalling [67]. Thereby, these macronutri-
ents like fat and sugar have also an addiction potential, as
dopamine-motivation feedback is triggered [64, 65, 66].
This feedbackregulation ishighlydependingon the individ-
ual ingestion of a food with parameters such as food quan-
tity, diet composition, and individual dietary requirements
[185]. In several studies it was shown that added carbohy-
drates in the human diet are negatively associated with
individual mental health [185]. Especially food rich in
monosaccharides like fructose and glucose seems to be
here of relevance [186]. Fructose ingestion is directly inter-
acting with the brain in further hormonal regulation [187]
and further modification of incidence of depression [188]
or depressive-like behavior [189]. This involves the dopa-
mine-mediated reward signaling and the inhibition of the
neurotransmission controlled by γ-aminobutyric acid
(GABA) [64].

Sugar-sweetened beverages and “fast food” consump-
tionhigh in carbohydrates and fat are oftenpart of clustered
foodpatterns, thus,morenegative synergistic effects on the
whole human organism and especially our mental health
can be expected [190]. Besides these direct effects onmen-
tal health a continuous excess of sugar and fat in our diet
impairs glucoseand lipidmetabolismandpromotes general
and local inflammatory processes [191] with an indirect
negative impact on mental health.

An additional pathway involved is the feedback regula-
tion of insulin secretion being also regulated by vitamin
A5 – RXR-mediated signalling pathways [192, 193]. Insulin
directly interacts within specific brain areas and is thereby
responsible for controlling food intake and regulating cog-
nitive functions, particularly memory [194]. An excess of
free saturated fatty acids leads to a dysregulation of glucose
homeostasis and insulin resistance with its consequence
described above [195]. Moreover, the free saturated fatty
acids affect cognitive function with ending in diseases such
as dementia, including Alzheimer’s disease [196].

In summary, macronutrients especially carbohy-
drates/sugars as well as fats/fatty acids are also directly
involved in mental well-being with positive and negative
effects depending on the individual dietary intake via con-
trol of insulin-secretion and dopamine-signalling regula-
tion of these direct and indirect macronutrient-induced
pathways which are also co-regulated by vitamin A5 –

RXR-mediated signalling.

A general summary of food for brain health

In summary, based on various studies and summarizing
review articles we can conclude that these various dietary
factors individually or as composites of a general holistic

approach with a healthy and balanced diet are of impor-
tance for a good functioning of the central and peripheral
nervous system, although in many cases the mechanisms
of action are not clearly identified. A general relevance of
specificmicro- andmacro-nutrient deficiencies in develop-
ing/low-income countries and societies within theWestern
society with general food shortage are well docu-
mented [197]. For a large array of these nutrients a dietary
deficiency must be compensated by an adequate diet or
by fortification of aWesternised diet low in these nutrients
to recover fromadeficiency syndrome likely relevant for B-
vitamins, D-vitamins and antioxidants. Other nutrients can
ameliorate a specific deficiency but also partly induce
desired boosting/“plus”-activities on brain performance
and general functions of the central and peripheral
nervous system like observed for n3-fatty acids and
vitamin D [80, 94, 95, 96, 97] and also predicted for
vitamin A5/X derivatives [99, 101].

Specifically, a primary and secondary vitamin A(1) defi-
ciency is associated with dysfunctional or compromised
functions of the central and peripheral nervous system
resulting in various indicators of non-optimalmental health
like mental stress, anxiety, depression, cognitive decline,
nervousness, as well as in consequence, due to the involved
signaling pathways, a general loss of enjoyment of life, irri-
tability, insecurity,dissatisfaction, listlessness inaddition to
ahigher prevalenceof drug addiction andan increased inci-
dence of neurological diseases [106, 107].

Vitamin A5/X in nutrition and mental
health

The general vitamin A5/X concept

In 2015, 9-cis-13,14-dihydro-retinoic acid (9CDHRA) was
identifiedas theendogenous ligand for the retinoidXrecep-
tors (RXRs) with an overlapping endogenous/nutritional-
relevant concentration range sufficient to switch “on –

off” RXR-mediated signaling (Figure 2, [102]). Due to its
similar structure to vitamin A(1) it was suggested to be
sub-ordinated to vitamin A as vitamin A5 [198]. Alterna-
tively due to its distinct mechanisms of action it may be
described as an individual new group of vitamin, named
vitamin X [98, 99, 198]. Various other endogenous RXR-
ligands were already identified with questionable physio-
logical/nutritional relevance profile [84, 199] indicating,
that 9CDHRA is the most likely relevant physiological/
nutritional RXR ligand [102].

Thebiological occurrence of9CDHRAwas later found to
be independent of vitamin A(1) nutritional precursors like
retinol/retinyl esters and provitamin A(1) carotenoids
[99]. The endogenous occurring and nutritional-relevant
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direct precursor 9-cis-13,14-dihydroretinol (9CDHROL)
was identified and associated as vitamin A5/X, a vitamin
A(1) independent source for9CDHRAandenablingvitamin
A5/X-receptor (RXR)-mediated signaling [99]. In parallel,
to 9CDHROL, as vitamin A5/X-alcohol, present in animal
derived food sources [99] we also identified 9-cis-13,14-
dihydro-β,β-carotene (9CDHBC)and itsnutritional precur-
sor 9-cis-β,β-carotene (9CBC) as plant derived precursors
[99] (Figure 2). Unfortunately, the involved binding pro-
teins and enzymes in themetabolic pathways havenot been
identifieduntil nowindetail.Weassumeahighoverlapwith
binding proteins/enzymes of the vitamin A(1) metabolic
pathwaydue toahighsimilarity ofvitaminA5/Xderivatives
especially considering9-cis-retinoids [102]. Due to the sim-
ilarity in vitamin A(1) and vitamin A5/X physicochemical
features and possibly metabolic pathways designing nutri-
tionalmodels specific to vitaminA5/Xpathway for detailed
analysis of metabolic, physiological and nutritional func-
tions might be impossible to distinguish. Although genetic
manipulations like ablation of retinol binding protein 1
(Rbp1) is a more plausible approach, it will require identifi-
cation of othermolecular actors of vitamin A5/Xmetabolic
pathway.

Functional relevance of enabling vitamin A5/X – RXR-
mediated signaling was demonstrated by enhancement of
cognitive functions [99], as well as, prevention of depres-
sive-like behaviours in response to chronic stress [101] in
an RXR-dependent manner. In consequence a new food
derivative to specific food component associated function
was identified, proven, patented and published [198] for
further valorisation in food- and pharma-applications.

In summary, the nutritionally-relevant vitamin A5/X
derivatives like 9CDHROL and 9CDHROL-esters as well
as provitamin A5/X, 9CBC via 9CDHBC, act as direct pre-
cursors of the active vitamin A5/X-ligand 9CDHRA. This
9CDHRA can directly modify RXR-mediated signaling via
interactionwith optional nuclear hormone receptor as part-
ner of different heterodimers and thereby further induce
transcriptional alteration of targeted gene regulation. In
consequence, the term vitamin A5/X indicates all food
derived substances, which are proximate precursors of
9CDHRA and are thereby modifying proximately RXR-
mediated signaling.

Relevance and function of vitamin A5/X –

RXR-mediated signaling

RXRs are crucial binding partner for other heterodimer-
partners of nuclear hormone receptor (NHR) group [98,
163, 200, 201, 202] and functions as the vitamin A5/X
receptor. Among these NHRs, here we mainly focus on
themost relevant oneswith a“health”- and“food”-applica-
tion potential like the RARs, PPARs, LXRs, VDR and the

NR4A2 (Figure 3), all known to be involved in NHR-signal-
ing pathways with relevance for the human health.

ThisRXR-mediated signaling isof importance forvarious
general physiological pathways like cell differentiation,
general development, embryogenesis, cell cycle regulation,
apoptosis, and systemically specific pathways like gen-
eral inflammation/immune response, micro-circulation/
enabling sufficient blood flow, the general lipid and glucose
metabolism [200, 202] as well as brain-specific pathways
like control of dopamine signaling [203], neuro-protection
[204], control of local inflammation [205, 206], and Aβ-
clearance [207]. These general and brain-specific physio-
logical pathwaysarenot singularly regulatedbyone specific
RXR heterodimer, but most probably in a complementary
manner by different RXR heterodimers including in partic-
ular RAR-RXR heterodimers and are thereby likely depen-
dentonsufficientnutritional vitaminA(1) andvitaminA5/X
supply, as outlined in Figure 3.

Recently these dietary intake suggestions for vitamin
A5/Xwerecalculated tobe in the rangeof0,5 – 1,8mgprovi-
tamin A5/X per/day for healthy adults [198], which corre-
sponds to �1 mg provitamin A5/X / 400 g of general
mixed vegetables. This is exactly in the range of the sug-
gested “5 A Day” recommendations by the World Health
Organization (WHO)[208], theUKNationalHealthService
(NHS) [209] and the German Nutrition Society (Deutsche
Gesellschaft für Ernährung, DGE) [210], when “one hand
full of fruits and vegetables” weights �80 g of these food
components [208], resulting in the five suggested handful
portions calculated by this simplified approach.

Other functions are independent of RAR –RXR-signaling
and thus exclusively regulated by vitamin A5/X-dependent
RXR – “plus other NHR”-pathways. Examples are hair
development, mainly regulated via RXR – VDR pathways
[211], while cholesterol efflux [212], local brain phagocyto-
sis/brain cleanup [205, 213] and myelination/re-myelina-
tion [120] are LXR – and PPAR – RXR co-mediated
pathways [213, 214, 215] (Figure 4).

This puts vitamin A5/X and the RXRs, as the vitamin
A5/X-receptors, in the center and as the major switch
enabling nuclear hormone receptor mediated signaling
via activation of RXR as part of NHR-heterodimers,
thereby, enabling a larger array ofNHR-mediated signaling
pathways ranging from RAR-, PPAR-, LXR-, VDR- and
NR4A-mediated signaling pathways [89, 163]. The RXR-
mediated pathways were reviewed recently by Evans and
Mangelsdorf [202], who actually pointed out ligand-depen-
dent control of RXRs as a “Big Bang” of molecular
endocrinology. However, as summarized in various review
articles [84,99, 102, 198] and based on analytical data [98],
9CRA initially put forward as “the” physiological RXR
ligand in the mammalian organism is highly questionable.
Therefore, the vitamin A5/X-acid, 9CDHRA, appears as
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Figure 3. Nuclear hormone receptor (NHR) signaling pathways involving retinoid X receptors (RXR)-mediated signaling and are initiated by the
endogenous RXR-ligand, 9-cis-13,14-dihydroretinoic acid (9CDHRA). Abbreviations: VitD2/3: Vitamin D2/3; proVitA1: provitamin A1; proVitA5/X:
provitamin A5/X; CAL: calcitriols; ATBC: all-trans-β,β-carotene; 9CBC: 9-cis-β,β-carotene; CHOL: cholesterol; FAs: fatty acids; 1,25VD3: 1,25-
dihydroxy-vitamin D3; ATRA: all-trans-retinoic acid; HETEs: hydroxy-eicosatetraenoic acids; HODEs: hydroxy-docosahexaenoic acids; PGs:
prostaglandins; VDR: vitamin D receptor; RARs: retinoic acid receptors; LXRs: liver X receptors; PPARs: peroxisome proliferator-activated
receptors; NR4A2: nuclear receptor subfamily 4 group A member 2.
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themost likely physiological ligand of RXRs, as the vitamin
A5/X receptors, placing vitamin A5/X as the nutrition-
dependent spark, including further vitamin A5/X – RXR-
mediated signaling, for the real “Big Bang” in human life
[102, 198].

A large array of physiological processes is thereby
enabled by vitamin A5/X summarized in an evolved figure
4 shown in our previous article [198]. Physiological pro-
cesses like cholesterol homeostasis, bile acid homeostasis,
fatty acid homeostasis, xenoprotection, basal metabolic
rate, calcium- and phosphate-homeostasis, and develop-
ment are vitamin A5/X – RXR-co-regulated physiological
pathways important for a large array of important life
remaining functions within a mammalian organism.

Physiological- and nutritional-relevance
of RXR-mediated signalling in the brain

Retinoid signaling, particularly RXR-mediated pathways,
play a crucial role not only during development of the cen-
tral and peripheral nervous system, but are also involved in
variousmaintenance functions of the adult central nervous
system. Besides the pivotal involvement of RXR-mediated
signaling in themodulation of immune-mediated processes

[201, 216, 217, 218], these RXR-dependent pathways have
been found to be involved in neuronal homeostasis at
various levels. These various physiological events in the
central and peripheral nervous system, that depend on
RXR-mediated signaling are thus likely dependent in
consequence on a nutritional supply of vitamin A5/X
compounds [99].

A large array of physiological events directly and
indirectly relevant for the central and peripheral nervous
systemaremediatedbyRXR-mediatedsignaling (Figure4).
Further, we evaluated and focussed on physiological
events, which are non-RXR – RAR-mediated. At the first
step, in summary, we started evaluating the large num-
ber of physiological events which are multifactorial and
rely on RXR – RAR-mediated signaling as summarised
in Figure 4, while specific events like myelination/
re-myelination and local phagocytosis/pathogen clearance
asbrain cleanupareexclusively non-RXR –RAR-dependent
involving alternative NHR heterodimers.

Examples of such RXR-dependent activities is neuro-
protection of dopaminergic neurons, through activation of
RXR –NR4A2heterodimers [219, 220], or neuro-protection
of retinal ganglion cells by RXR heterodimers with a yet
unknown partner [221]. Ligand-induced activation of

Figure 4. Direct and indirect effects of RXR-mediated signaling on brain and nervous systems functions. Abbreviations: RAR: retinoic acid
receptor; NHR: nuclear hormone receptor; Aβ: amyloid β; alt: alternative.
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RXRs was also demonstrated for enhanced macrophage/
microglia-mediated clearance via phagocytosis as brain
cleanup of myelin debris [222] or clearance of neuronal
debris following stroke [205]. Finally, macrophage or
microglia RXR-activation was also demonstrated to
minimize inflammatory signaling which is detrimental in
a number of neurologic conditions [223, 224].

In summary, these mechanisms are exclusively focusing
on the peripheral and central nervous system are a) myeli-
nation/re-myelination, b) dopamine receptor 2 (D2DR)
expression control and thereby a general regulation of
dopamine signaling, c) brain specific phagocytosis with
general relevance for brain cleanup, d) neuro-inflamma-
tion, e) general neuro-protection and f) Aβ-clearance, as
summarised in Figure 4 and as further discussed.

While RXR-signaling will here regulate direct targets in
the brain, indirect pathways are also of relevant with an
impact on the brain, althoughmediated on a systemic basis.
These are: a) general nervous tissue-located glucose and
lipid homeostasis, b) enabling sufficient blood circulation
in the microvascular system of the brain, c) systemic lipid
andglucosehomeostatic control andd) a local and systemic
regulation of the inflammatory response with a large focus
on Th1-Th2-regulation [225, 226, 227].

In summary, directly brain-mediated as well as general
systemically-regulated mechanisms dependent on vitamin
A5/X –RXR-mediated signaling are important for a healthy
maintenance of crucial functions of the central and periph-
eral nervous system with relevance for mental health,
healthy brain aging as well as protection from drug addic-
tion and from various neurological disorders.

Pathology of dysfunctional vitamin A5/X –

RXR-mediated signaling in the nervous
system with relevance for neurological
disorders

As described earlier, various pathways involving RXR-
mediated signaling are directly and indirectly relevant for
the central and peripheral nervous system. Furthermore,
we focus on the mechanisms involved in neurological dis-
eases, which are probably caused not just by one single dys-
functional mechanism but by a broader array of multiple
underlying mechanisms. However, neurological diseases
like a) mental/psychotic diseases, b) neurodevelopmental
diseases, c) neurodegenerative diseases, d) demyelinating
diseases and e) neuro-inflammatory diseases have been
associated with dysregulation of vitamin A5/X – RXR-
mediated signaling (Figure 4).

RXR-mediated signaling has been linked at multiple
levels to neurodegenerative diseases, such as Alzheimer’s
and Parkinson’s disease [228, 229, 230], inflammation-

anddemyelination-associateddisorders suchas the various
forms of multiple sclerosis and neurological disorders with
a pathophysiological basis in atherosclerosis, including
stroke and vascular dementia, reviewed in [231]. Last but
not least, there is the group of socio-economically highly
relevant psychiatric disorders, particularly major depres-
sion and schizophrenia, which have both been linked to
abnormal retinoid signaling [232]. Several of the RXR-
mediated mechanisms associated with mental/psychiatric
disordersmaybeconsidered“disease-spanning”, including
neuro-inflammation, general inflamm-aging, synaptic plas-
ticity, dopamine signaling, myelination/re-myelination,
phagocytosis/brain-cleanup, homeostatic maintenance
mechanisms within the central nervous system [204].

In Alzheimer’s Disease (AD), RXR-mediated patho-
physiological pathways include neuroinflammatory pro-
cesses with microglial activation [233, 234], altered lipid
homeostasis, particularly involving ApoE that is produced
by astrocytes and microglia and affected by inflammatory
activation of the latter. Moreover, the balance between
the synthesis of amyloidogenic and non-amyloidogenic
variants of amyloid-β peptides has been demonstrated
to be under the control of retinoid signaling [235, 236].
Finally, RXR-agonists have been demonstrated to directly
impact ApoE synthesis, restoring cognitive function in an
AD mouse-model [237]. Altered retinoid-mediated ApoE
synthesis in human macrophages upon inflammatory acti-
vation may represent an important link between RXR-
mediated signaling, inflammation, ApoE homeostasis and
AD [238]. In addition, in AD, abnormal myelin repair and
demyelination are important dysfunctions [239] associated
with dysfunctional RXR-mediated signaling [120, 240],
which have been found to be associated with ApoE AD-risk
alleles [241], and it was suggested that promyelinating
strategies may ameliorate AD pathology and cognitive
decline (reviewed in [242]). Even dopamine levels, dopa-
mine receptors and dopamine signaling are reduced, as
summarised in a systematic review [243], indicating there
are multiple dysfunctions present in AD [244].

InParkinson’sdisease (PD), where the degeneration of
midbrain dopaminergic neurons represents a pathophysio-
logical hallmark, retinoid- and particularly RXR-mediated
signaling plays a pivotal role at numerous levels: At the level
of retinoid synthesis, midbrain dopaminergic neurons
highly express aldehyde dehydrogenases (ALDH1A),
enzymes involved in both, dopamine and retinoid metabo-
lism.At the level of RXR-mediated signaling, these neurons
also characteristically express Nurr1/NR4A2, a heterodi-
meric binding partner to RXRs that has been found to be
involved in the pathogenesis of PD [245, 246]. Therapeutic
approaches, like BRF110, targeting heterodimers between
Nurr1/NR4A2 and RXRα have been identified as neuro-
protective agents in the preclinical setting [219]. Various
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dysfunctions are present in PD including demyelination
[247, 248] and altered dopamine, dopamine receptor levels
and signaling [249, 250, 251].

Multiple sclerosis (MS), despite being recognized as an
autoimmunedisorder, involvesboth immunedysregulation
and other aspects of (secondary) neurodegeneration that
results in demyelination. Involvement of RXR-mediated
signaling in both immunomodulatory and neuroprotective
mechanisms is clearly evident and the efficacy of
immunomodulatory treatments like bexaroten have been
reported [252].Treatments targetingRXR-mediated signal-
ing have demonstrated efficacy in preclinical models with
respect to enhancing re-myelination [253] and have
recently entered clinical testing [254]. Moreover, minocy-
cline, an antibiotic which can enhance local brain retinoid
concentrations [233], has been demonstrated effective
in the treatment of MS in independent clinical trials [255].
Also dopaminergic drugs are recently in discussion for
treatment of selected MS symptoms [256], due to the fact
that dopamine mediated signaling is altered in MS [257,
258].

In schizophrenia dysregulation of the dopaminergic
neurotransmission has long been established as a hallmark
of the disease, which is of particular relevance to retinoid
signaling, as the key dopaminergic receptor (DRD2) is
under the control of retinoic acid-response elements, thus
directly regulatedbyRXR-signaling [229].Besidesdysfunc-
tions in dopaminergic signaling myelination abnormalities
were also reported in schizophrenia [259, 260], and may
depend on abnormal RXR-signaling (as described above).
Moreover, RXR-signaling has been found to regulate affec-
tive behaviour [203, 229, 261]. While early associative evi-
dence [262] was recently confirmed at a genome-wide
level [232, 263], one recent study confirmed a dysregulated
retinoid homeostasis in schizophrenia patients and further-
more demonstrated pronounced involvement of retinoid
signaling for one of the most important anti-psychotic
drugs, supporting the strategy of a retinoid-based therapeu-
tic approach [264]. Interestingly, RXR-directed therapeutic
approaches using bexaroten havebeen pursued earlierwith
success [264, 265, 266, 267].

Inmajor depression disorder, a pathophysiological rel-
evance of retinoid signaling has long been established by
epidemiological evidence from therapies interfering with
cerebral retinoidhomeostasis [268,269].More recent stud-
ies in post-stroke depression have demonstrated altered
retinoid levels in patients and therapeutic efficacy of
RXR-targeting strategies [270]. As already mentioned,
RXR-mediated signaling has also been shown to modulate
affective behaviour [203, 271]. Most importantly, retinoid
signaling controls so-called meta-plasticity or homeostatic
synaptic plasticity, which represents a well-defined type of
synaptic plasticity that has also been termed “synaptic scal-

ing” [272, 273, 274]. This process, which was most recently
demonstrated to crucially involve retinoid homeostasis
[275, 276], will likely also be affected by RXR agonists, as
suggested by earlier reports on RAR – RXR-mediated plas-
ticity [277, 278]. In major depression disorder also a severe
dysfunction in myelination and the myelin content were
observed [279, 280].

In summary, when comparing the individual patho-
physiological background of these listed vitamin A5/X –

RXR-signaling dependent diseases, then three major
RXR-signaling dependent pathways are consistently pre-
sent and likely to be “one of” or even “the” key relevant
mechanisms of these multifactorial diseases. Indeed, as
shown in Figure 4, these major pathways are dependent
on RXR-mediated signaling and thereby the presence
of sufficient endogenous RXR-ligand. Problems in a)
myelination/re-myelination as well as b) dopamine signal-
ing and c) phagocytosis/brain cleanup, neuro-protection
and neuro-inflammation are known to be present in all five
mentioned diseases. Focusing on one or even multiple
vitaminA5/X –RXR-mediated pathwayswill offer valuable
options not only to better understand pathogenesis of these
complexmulti-mechanistic diseases, but alsooffer targeted
prevention and treatment options using nutritionally or/
and pharmacological intervention strategies with selected
vitamin A5/X-derivatives.

Indirect evidence and consequences of
nervous system relevant RXR-mediated
pathways

RXRexhibits a key role in nuclear receptor signaling by act-
ing as universal heterodimeric partners for approximately
one third of the nuclear receptor superfamily. While a few
“non-permissive” RXR heterodimers (RXR – RAR, RXR –

thyroid hormone receptor (TR) and RXR – VDR) require
an agonist of the partner receptor for activation, several
other “permissive” heterodimers can be activated by the
sole binding of an RXR agonist. RXR ligands can therefore
act through several heterodimers among which relevance
for the nervous system [90] which has been demonstrated
especially for the RXR – LXR, RXR – PPARγ and RXR –

NR4A2 dimers.
Taillesshomologue (TLX,NR2E1): In addition, dimeriza-

tion of RXR with TLX has been observed in vitro [281, 282]
which plays a critical role in neuronal health as regulator of
neuronal stem cell homeostasis [283, 284]. Further studies
are needed to evaluate the relevance of RXR – TLX dimer-
ization and whether activation by RXR agonists can act
through such dimer.

LXRs: The LXRs [285] are intracellular cholesterol sen-
sors and endogenously activated by oxidized cholesterol
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metabolites (so-called oxysterols) such as 24(S),25-epoxy-
cholesterol and 24(S)-hydroxycholesterol [286, 287]. They
control cholesterol homeostasis by regulating the expres-
sion of key genes involved in cholesterol transport
and metabolism. LXR activation, for example, induces
expression of the ATP-binding cassette transporters A1
(ABCA1 and ABCG1) and the apolipoproteins ApoE and
ApoC. Both LXR subtypes LXRα (NR1H2) and LXRβ
(NR1H3) form permissive heterodimers with RXRs and
are found in the brain where they regulate central nervous
system cholesterol homeostasis and have an anti-inflam-
matory role [287, 288]. Cholesterol is a key component of
neuronal cell membranes and myelin sheaths, and thus
highly important for the brain [79, 289, 290]. Central ner-
vous systemcholesterolmainly stems fromdenovo synthe-
sis in astrocytes and transport to neurons, both of which are
regulated by LXRs [287, 291]. LXR activation, for example,
induces cholesterol efflux transporters ABCA1 and ABCG1
as well as ApoE for cholesterol transport to neurons [291,
292]. Lack of LXR, especially LXRβ, caused severe
neuronal impairmentwith neuronal degeneration and thin-
ner myelin sheaths as well as learning and motor deficits
[215, 293, 294]. Moreover, LXR activation has anti-inflam-
matory effects in microglial cells, in particular by reducing
cyclooxygenase 2 (COX-2) and inducible NO-synthase
(iNOS) expression and NFκB activity [295, 296]. LXR-sig-
naling is hence essential for neuronal health and RXR ago-
nists might contribute to these aspacts through RXR – LXR
dimer activation.

In addition to cholesterol homeostasis and anti-inflam-
matory activity, LXR-dependent mechanisms are specu-
lated to have beneficial effects in neurodegenerative
diseases. In AD, there is evidence for an involvement of
LXR signaling in Aβ elimination/clearance [297, 298] and
a strong connection appears from theApoEepsilon-4 allele,
which is a risk factor for the disease [299]. ApoE, whose
expression is regulated by LXR, mediates brain cholesterol
transport. The protein is therefore highly abundant in the
CNSandwas found to associatewithAβ plaques suggesting
a potential protective role [299, 300, 301]. Interestingly,
LXRα or LXRβ knockout in transgenic APP/PS1 mice
(amousemodel for AD), led to an increased Aβ plaque bur-
den [296]. In multiple sclerosis, LXR activity is thought to
contribute to beneficial effects by promoting anti-
inflammatory effects in microglia [302] and by controlling
homeostasis of cholesterol – a critical component ofmyelin
sheaths – in myelinating oligodendrocytes [303]. In addi-
tion to providing cholesterol for re-myelination, LXR seems
to be involved in regulating phagocytosis of myelin and cell
debris after demyelination and the subsequent switch to an
anti-inflammatory remyelinating phase [302]. Moreover, it
was found that LXRactivation enhanced,while LXRknock-
out reduced, expression of myelin basic protein and prote-

olipid protein, as two major compounds of myelin [215].
LXRs and the RXR-LXR dimers thus hold therapeutic
potential in neurodegeneration.

PPARs: Similar to LXR, the PPARs are activated by fatty
acid and lipid metabolites [304, 305, 306, 307, 308].
They are crucially involved in the regulation of adipose tis-
sue differentiation [309], glucose and lipidmetabolismand
in inflammation. All three PPAR isotypes are expressed in
the brain [310], but a role in neuronal health is especially
speculated for PPARγ. Evidence for a neuroprotective
potential of PPARγ arises from the observation that treat-
ment with glitazones reduced the risk to develop dementia
[311, 312, 313] and PD [314]. Moreover, elevated PPARγ
levels were detected in the cerebrospinal fluid of multiple
sclerosis patients [315] while PPARγ expression in macro-
phages was diminished [316]. In the experimental autoim-
mune encephalomyelitis (EAE) mouse model of MS,
PPARγ agonist treatment ameliorated the disease [317,
318] and synergized with RXR agonist treatment [320].
The beneficial effects of PPARγ in neurodegenerative dis-
eases are mechanistically referred to as mitochondrial pro-
tection, enhanced oligodendrocyte differentiation, anti-
inflammatory effects, enhanced phagocytic activity of
macrophages andmicroglia, improved clearance of myelin
debris andmodulationofT-cell differentiation [91,318,319,
322, 323, 324, 325, 326, 327]. In dementia and related dis-
eases, PPARγ activation is additionally hypothesized to
reduce Aβ and tau burden [91, 319] by induction of insu-
lin-degrading enzyme, which can also degrade Aβ [328,
329] and downregulation of β-secretase expression which
is involved in the formation of Aβ from amyloid precursor
protein (APP) [329, 330, 331]. Although theneuroprotective
effects have mainly been demonstrated with PPARγ ago-
nists, the fact that PPARγ forms an obligate RXR heterodi-
mer supports the assumption that RXR agonists can act
through the permissive RXR – PPARγ heterodimer to exhi-
bit beneficial effects on neuronal health.

NR4A2: A strong neuroprotective role is also ascribed to
Nurr1/NR4A2 which can act as monomer and homodimer
but also as heterodimer with RXRs [332, 333, 334]. It is a
member of the nerve growth factor-induced clone B
(NGFI-B) [335] subfamily (NR4A) of nuclear hormone
receptors for which endogenous ligands remain elusive.
NR4A2 lacks the canonical ligand-binding site of nuclear
receptors [336] but canbemodulated throughother regions
of the ligand-binding domain with small molecules [337,
338, 339,340,341]. It ismainly expressed in the central ner-
vous system [342], where it regulates dopaminergic neuron
development and survival [245] as well as inflammatory
processes [343, 344]. Neuroprotective potential of NR4A2
is supported by several observations from animal models
and human patients. Decreased neuronal levels of NR4A2
(knockdown or heterozygous knockout) in mice caused a
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phenotype with features of PD [345] and worsened the
pathology of AD models [346] and experimental autoim-
mune encephalomyelitis [347]. Furthermore, diminished
levels of NR4A2 were detected in rodent models of PD
[348, 349] and AD [350], and in human patients
[351, 352]. Preliminary data also suggest that pharmacolog-
ical NR4A2 activation counteracts neurodegenerative
pathologies [341, 346, 353] although high-quality chemical
tools for modulating NR4A2 activity are not available yet.
The lack of potent and selective NR4A2 modulators and
the fact that NR4A2 forms a permissive heterodimer with
RXR has inspired the development of RXR – NR4A2
dimer-selective RXR agonists such as BRF110 [219] and
IRX4204 [220], which have been shown to exhibit neuro-
protective activity in vitro and in vivo. These findings sup-
port potential neuroprotection by RXR-agonists in the
central nervous system via activation of the RXR – NR4A2
heterodimer.

In summary, vitaminA5/Xcan influence viaRXR-activa-
tion and in addition to ligands of partner nuclear hormone
receptors many pathways with impact on mental health,
healthy brain aging and the prevention of neurological dis-
eases and thereby vitamin A5/X may serve as a master
switch enabling these response pathways [98, 102, 198].

Nutrition and RXR-mediated signaling; the
prediction of a primary vitamin A5/X
deficiency

Key processes that are both RXR-mediated and found to be
dysregulated in neurological disorders include cholesterol
metabolism, systemic immune-mediated mechanisms,
general neuro-protection, phagocytosis/brain cleanup,
Aβ-clearance, myelination/re-myelination, homeostatic
synaptic plasticity anddopamine signaling (Figure4).Here,
we propose that a primary vitamin A5/X deficiency,
defined by a non-sufficient nutritional supply of vitamin
A5/X / provitamin A5/X, which is present mainly in fruits
and vegetables [198] and postulated via a logical step by
step cascade might contribute to the large prevalence of
neurological disorders in the Western society [354).

These neurological disorders represent a growing socio-
economic burden and are expected to become one of the
leading causes of disability worldwide along with the
projected demographical changes [354, 355]. Current com-
mercial data from thepharma-industry confirms the impor-
tance of neurological diseases while a large share of all
pharma sales in the Western world relying on neuro-phar-
maceuticals [354, 356].

A deficiency of nutritional supply is named a primary
deficiency, in this case a primary vitamin A5/X defi-
ciency (Figure 5). These primary vitamin deficiencies can

easily be prevented by simply adding food components rich
in these specific vitamins to our daily food.

ProvitaminA5/X is present, likemany other carotenoids,
in various vegetables with a focus on leafy and root vegeta-
bles [198]. A larger range of fruits and vegetables was until
now not analysed and is under investigation. Studies will
focus especially on processed fruits and vegetables and
products containing them, as thermal food processing was
associatedwith induced isomerisationof all-trans-β,β-caro-
tene/provitamin A(1) towards 9-cis-β,β-carotene/provita-
min A5/X [357, 358, 359]. Regarding animal-derived food
products screening will focus on meat and meat products
from various nutritional relevant species, and animal-
derived food products like eggs, milk and dairy products
[99]. In addition, a large array of seafood products from
fishes, crustaceans and others, which life are based directly
or indirectly on a plankton/algae-based diet [360], are
under screening. The Dunaliella algae strains [361], are
known to be very high in 9-cis-β,β-carotene/provitamin
A5/X [198, 362].Whether these algae have a broader nutri-
tional relevance for aquatic and terrestrial animals is ques-
tionable because especially this carotenoid, 9-cis-β,β-
carotene/provitamin A5/X, accumulations depends on
stress exposure [361, 363], these algae are naturally limited
to high saline environment and are present in very
restricted territories world-wide [364].

Polymorphisms in genes of the RXR-
signaling pathways as a secondary vitamin
A5/X deficiency

Besides nutritional intake as the cause of a primary vita-
min A5/X deficiency genetic polymorphism in the genes
of the RXR-signalling cascade are causes of a secondary
vitamin A5/X deficiency (Figures 5 and 6). To dissect
RXR-mediated signaling a large overlap between RAR –

RXR-mediated signaling mediated by the endogenous
RAR-ligandATRAaswell asby theendogenousRXR-ligand
9CDHRA must be dissected and evaluated [102]. A large
overlap in nutrikinetics for both ligands is likely given
for synthesizing metabolic enzymes like beta-carotene-
oxygenase 1 (BCO1) and retinaldehyde dehydrogenases
(ALDH1A1/2), retinoidbindingproteins like retinol binding
protein 4 (RBP4) and the cellular retinoic acid binding pro-
teins (CRABP1/2) in addition to theRARs,which aremainly
associated to ATRA – RAR-mediated signaling [103, 365].
Due to the high similarity in their chemical structure of
9CDHRA and ATRA, it is highly likely that these enzymes
and binding-proteins are also involved in the regulation
and control of ligand-regulated 9CDHRA –RXR – “alterna-
tive NHR” -mediated signaling.

Retinol binding protein 1 (RBP1) seems to be more
specific for9CDHRA –RXR – “alternativeNHR”-mediated
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signaling while an involvement of RBP1 in RAR - RXR-
mediated signalling is also given [98, 100, 366]. In conse-
quence, by controlling 9CDHRA production, RBP1 is
thereby also involved in the individual alternative NHR -
RXR-mediated signalling like for the RXRs, the LXRs, the
PPARs, the VDR and the NR4A2 for 9CDHRA – RXR -
“alternative NHR”-mediated signalling [98, 102, 198].

For all of these gene polymorphisms, it is known, which
have a local [261, 367, 368, 369, 370, 371, 372, 373, 374,
375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386,
387, 388] or systemic [378, 389, 390, 391, 392, 393, 394,
395, 396, 397, 398, 399, 401, 402, 403, 404, 405, 406,
407, 408] relevance for prevention of nervous system
diseases and drug addiction as well as for general healthy
aging and optimal mental health (Figure 6).

When evaluating these polymorphisms present in
humans then individual nutritional strategies are possibly
relevant for an individual, to be tested for its genetic back-
ground and the possible cause of a secondary vitamin

A5/X deficiency. Such secondary vitamin deficiency can
be targeted with different pharmaceutical or nutritional
strategies to ameliorate or even prevent these specific
deficiency syndromes.

Is there a specific vitamin A5/X
deficiency in humans?

Basedona general definition the term “vitamindeficiency”
relates to two different kinds of scenarios; a) a deficiency
based on too low intake of the vitamin defining thereby a
primary vitamin VA5/X deficiency and b) a deficiency
of uptake and further bioactivation as well as further pro-
cessing of vitamin-mediated signaling, as a secondary
vitamin A5/X deficiency, outlined in Figures 5 and 6. As
the primary deficiency relates to a non-appropriate
nutrition while the secondary deficiency related more to a

Figure 5. Summarized figure of mechanisms leading to a primary and secondary vitamin A5/X deficiency. Abbreviations: 9CDHRA: 9-cis-13,14-
dihydroretinoic acid; RXR: retinoid X receptor; NHR: nuclear hormone receptor; alt: alternative.
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disease/dysfunctional status or genetic variety, where
vitamin-mediated signaling is dysfunctional.

Basedon thecurrentknowledge inRXR-mediated signal-
ing the following medium-term effects on general mental
health and well-being like mental stress, anxiety, nervous-
ness, depression, general loss enjoyment of life, irritability,
insecurity, dissatisfaction, listlessness, sleeping disorders,
restlessness, cognitivedecline, addictive behaviors todrugs
and drug-like stimuli and an increased incidence of
neurological diseases are likely dependent on physiological

pathways directly or indirectly involving vitamin A5/X-
signaling. Dysfunctional signaling within these pathways
may be associated with a vitamin A5/X deficiency. In addi-
tion, abnormal expression of (and/or signaling by) RXRs or
pathways directly regulated by RXRs can be observed in a
number of neurological diseases like neurodevelopmental
diseases [204] andpsychiatric diseases [92] thereby includ-
ing autism, attention deficient hyperactivity disorder
(ADHD),mental/psychotic disorders likemajordepression
disorder, drug addiction, alcoholism, schizophrenia and

Figure 6. Gene mutations and polymorphisms occurring in indirect and direct brain and nervous system functions involved in RXR-mediated
signaling pathways. Abbreviations: RXR: retinoid X receptor; NHR: nuclear hormone receptor; alt.: alternative; VDR: vitamin D receptor; RAR:
retinoic acid receptor; LXR: liver X receptor; PPAR: peroxisome proliferator-activated receptor; NR4A2: nuclear receptor subfamily 4 group A
member 2; BCO1: beta carotene oxygenase 1; RBP4: retinol binding protein 4; CRABP2: cellular retinoic acid binding protein 2; ALDH1A: aldehyde
dehydrogenase 1A; RBP1: retinol binding protein 1; RAI1: retinoic acid induced gene 1; CoA: coenzyme A.
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bipolar disorder, or neurodegenerative diseases [93] like
AD, PD, dementia, amyotrophic lateral sclerosis (ALS),
Huntington’s disease and demyelinating diseases like MS
and Guillain-Barré syndrome. Such observation suggest,
that abnormal RXR-mediated signaling including its
modulation by vitamin A5/X might be involved in the
physiopathology of these diseases and/or that modulation
of vitamin A5/X and RXR-mediated signaling might be an
efficient method to normalize or prevent at least some
aspects of thephysiopathologyof thesediseases and related
symptoms. In summary, when evaluating and summarizing
based on a step by step cascade then a primary medium-
term/or long-termvitaminA5/Xdeficiencymight in logical
consequence result in non-optimal mental health/
well-being,drugaddiction,non-optimalbrain-aging, aswell
as is a potential cause of listed neurological diseases
(Figure 7).

As analytical monitoring of provitamin A5/X, vitamin
A5/X and active derivatives of vitamin A5/X was just
recently established for thehumanbody and food examina-
tion it is difficult to associate specific neurological diseases
with reduced vitamin A5/X levels in specific easy andmore
advanced accessible compartments of the organisms. In
addition even more importantly reduced vitamin A5/X
dietary intakes by specific food components enriched in
vitamin A5/X of the daily ingested diet should be studied.
However, as important specific functions were already
outlined (Figure 4), it would not be surprising and thereby
in consequence logical, that – due to low intake of vitamin
A5/X and provitamin A5/X – potential deficiency syn-
dromes occur.

Especially vegetables are high in vitamin A5/X [198]
and therefor likely reduced intakes of vegetables are
co-associated with compromised RXR – vitamin A5/
X-signalling, thereby increasing the incidence not only of
neurological and psychiatric conditions [409] and mental
well-being [410], but also cardio-vascular diseases [411],
cancer [412] and allergies [413]. A clear causal and proven
step by step connection that reduced vegetable intake
results in reduced endogenous vitamin A5/X-derivatives,
reduced vitamin A5/X – RXR-mediated signaling and an
increased incidence of specific diseases and other RXR-
co-associated physiological dysfunctions resulting in
non-optimal health and increased prevalence of specific
diseases was until now not identified, but appears highly
likely and is under current evaluation by us.

The logic approach of the vitamin A5/X
concept; a step by step approach

The intake of sufficient vegetables and fruits is associated
with low incidences of neurological diseases as major
depression disorder, neurodegenerative diseases, demyeli-

nating disorders [414, 415, 416, 417], reduced carving for
drugs and drug-like stimuli [418], healthy brain aging
[409, 419], a low incidence of cognitive disorder [420] as
well as with a general good mental health [409, 419]. To
selectively delete vitamin A5/X from the animal or human
diet for further targeted evaluation of the effects of a selec-
tive vitamin A5/X deficiency is not possible, because fruits
and vegetables are not just rich in carotenoids in addition to
provitamin A5/X. Indeed, they also contain other carote-
noids like lutein/zeaxanthin with beneficial brain-asso-
ciated effects [421], but also many other food bioactives
with beneficial health effects [422]. A clear connection of
exclusively the provitamin A5/X content in vegetableswith
mental health based on RXR-mediated signaling is not
possible to examine, while it seems partly logic and reason-
able and worth to be studied in further details.

In addition, vitamin A5/X derivatives were synthetically
synthesized [99, 100] and tested in relevant models for
cognition, stress and anxiety [99, 100, 101]. In these
experimental models, these substances selectively
confirmed effects on stress and anxiety prevention and
improving memory/cognitive functions [99, 100, 101],
which can be observed from correlation-based studies
with a diet high in vegetables and especially leafy and root
vegetables [409, 414, 415, 417, 419]. Not surprisingly,
vegetables and especially leafy vegetables are high in
provitamin A5/X [198].

In summary, let us conclude that we identified an impor-
tant food factor which originates from vegetables/leafy
vegetables which is likely “one of” or “the” relevant food
factor for a general mental health, a well-functioning
central and peripheral nervous system, healthy brain aging,
drug addiction potential and for the preventionof neurolog-
ical diseases involving RXR-mediated signaling pathways
depending on dietary intake of vitamin A5/X.

Proof of concept in translational clinical
supplementation studies

Algae/microalgae extracts have been given not only to
animal models [423, 424, 425, 426], but have also been
tested and given to human volunteers [427, 428, 429].
These supplementations were targeting diseases where an
RXR-mediated dysfunction was observed and this disease
phenotype is based on dysfunctional immune responses
as well as a dysfunctional lipids and glucose homeostasis
[427]. Protection or even a partly reversal of an RXR-
dependent phenotype was possible by Dunaliella algae
supplementations [427] and associated with their vitamin
A5/X – RXR-ligand – precursor function [99, 101]. The
direct RXR – LXR target was HDL-cholesterol [430, 431],
which was under control of RXR-ligand and serves as an
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easy accessible marker of RXR-mediated signaling
[100]. These clinical interventions clearly link vitamin
A5/X / provitamin A5/X supplementations with improved
RXR-mediated signaling in humans. Recently, a correlation
of serum 9CDHRA levels, in physiological and non-
pathophysiological conditions, with the RXR-target, IL4,
as a marker of general Th2-immune response, was found
in humans [167]. Interestingly, IL4 is also associated with
critical functions in the normal brain, such as memory
and learning [432].

Based on these clinical studies and chosen application
dosages of the algae extracts given, which can easily be
calculated as equivalent to vitamin A5/X-units, similar
beneficial effects on further targets of RXR-mediated

signaling for good mental health, drug addiction potential,
healthy brain aging and for the prevention of neurological
diseases can be logically foreseen and will deserve further
investigation [98, 99].

What is urgently or prospectively missing
in vitamin A5/X research?

Our recommendations for future research and actions
taken by governmental authorities:
- What are the direct food sources of vitamin A5/X and

provitamin A5/X? How much of these food sources do
individual groups eat on a daily or monthly basis? Do
we eat sufficient amounts of these food components to

Figure 7. Summary: What are the potential effects of the step by step highlighted vitamin A5/X deficiency?
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have enough vitamin A5/X in our daily diet? Are these
vitamin A5/X sources sufficient to maintain optimal
RXR-mediated signaling for a good mental health?

- Are there population groups which eat less vitamins
A5/X and which have a higher incidence of RXR-
signaling dependent diseases or dysfunctions? Are
these diseased persons or person like pregnant woman,
elderly or children just dependent on a primary vitamin
A5/X deficiency based on food intake or is a secondary
vitamin A5/X deficiency being fully, additive or partly
present?

- How can we detect such a vitamin A5/X deficiency?
Which direct and indirect measures must be per-
formed? Which biological matrix is needed to deter-
mine a vitamin A5/X deficiency? Would there be an
easy option “to do” in daily doctor’s life or even
options to be performed by health-conscious individu-
als on a daily base?

- Are there crucial metabolic steps or selective food
compounds which are vitamin A(1) - RAR - RXR-inde-
pendent and specific for the vitamin A5/X-RXR sig-
nalling cascade to selectively examine a vitamin A5/
X-selective vitamin A5/X deficiency in genetic manip-
ulated animals of even in humans

- Are there preventive or even treatment-based supple-
mentation options in development for people with a
non-well mental health, drug addiction or even with
mental diseases/neurological diseases as novel options
in the food and pharma area?

Summary

A healthy balanced diet, rich in vegetables, especially root
and leafy vegetables, is associated with a good mental
health and well-functioning central and peripheral nervous
system [10, 12, 13, 68]. Compounds present especially in
these vegetables may contribute as key factors for
medium-/long-term effects on mental well-being, healthy
brain aging, drug addiction potential and for the prevention
of neurological diseases.

While many nutrients were associated with a healthy
well-performing brain, no clear “food – nutrient – signaling
– clinically proven positive impact”was identified so far for
anyspecific substance.Manydietary suggestions formental
health were summarised indicating to be rich in nutritional
precursors for the nuclear hormone receptorsmentioned in
this article, while even leafy vegetables rich in RXR-ligand
precursors are always included in these recommendations
[433]. We now added vitamin A5/X and interaction of
further signaling via the vitamin A5/X-receptors, the
RXRs, as a new piece to this large puzzle as a food
component and specific nutrient towards an optimal
physiological/nutritional signaling concept.

Using a logical step by step cascade approach summa-
rized in this review, we associate a low dietary intake of
green vegetables, which are high in vitamin A5/X, like pre-
sent in large parts of the Western society with non-optimal
brain health and cognitive performance; thismay represent
asignificantpublichealthproblem,whichcould –basedona
logical step by step cascade – be easily corrected by advising
higher dietary intakes of provitamin A5/X / vitamin A5/X
via: a) natural food components, b) food fortification with
natural based extracts rich in vitaminA5/X, or c) additional
dietary supplementation of vitamin A5/X for medium-/
long-term effects in improving and maintaining brain
health, enabling healthy brain aging, prevention of drug
addiction potential and prevention of high prevalence of
common neurological diseases in the Western society.

Just recently, this new vitamin pathway, with direct and
indirect influence on brain-/nervous-system functions,
was found. Based on nutritional calculations this vitamin
seems tobe too low in thegeneralWesterndiet [198].Ahigh
daily dietary vegetable (especially green vegetables) intake
of provitamin A5/X, optimal serum levels of provitamin
A5/X / vitamin A5/X, further optimal vitamin A5/X recep-
tor (RXR)-mediated signaling and further transcrip-
tional regulation directly or indirectly are all of relevance
for the brain based on current scientific evidence [104,
198, 421].

These facts are all proven on a step by step cascade in a
comparable manner like established for most other
vitamins, while the whole cascade starting from A) veg-
etable intake via B) systemic vitamin A5/X levels via C)
local vitamin A5/X-receptor (RXR)-mediated signaling
via D) alteration of gene transcriptional regulation of
response ways in the brain and E) towards direct effects
ongoodmental health andperformance, awell-functioning
central and peripheral nervous system, healthy brain aging
as well as the prevention of drug addiction potential and
neurological diseases have not been proven in human-
based clinical studies, which is again comparable to most
other vitamins.

Novel nutritional strategies and pharma-options based
on the vitamin A5/X cluster derivatives aiming a mainte-
nance or even additive/”plus”-activity for a good mental
health and pharma options for treatment of neuro-
logical diseases are discussed and partly in current
development.
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