Defining a vitamin A5/X specific deficiency – vitamin A5/X as a critical dietary factor for mental health

Diána Bánáti¹, Julian Hellman-Regen², Isabelle Mack³, Hayley A. Young⁴, David Benton⁴, Manfred Eggersdorfer⁵, Sascha Rohn⁶, Joanna Dulińska-Litewka⁷, Wojciech Krężel⁸, and Ralph Rühl⁹

- ¹ Department of Food Engineering, Faculty of Engineering, University of Szeged, Hungary
- ² Department of Psychiatry, Charité-Campus Benjamin Franklin, Section Neurobiology, University Medicine Berlin, Germany
- 3 Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany
- ⁴ Faculty of Medicine, Health and Life Sciences, Swansea University, UK
- Department of Healthy Ageing, University Medical Center Groningen (UMCG), The Netherlands
- 6 Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Germany
- ⁷ Chair of Medical Biochemistry, Medical College, Jagiellonian University, Krakow, Poland
- 8 Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
- ⁹ CISCAREX UG, Berlin, Germany

Abstract: A healthy and balanced diet is an important factor to assure a good functioning of the central and peripheral nervous system. Retinoid X receptor (RXR)-mediated signaling was identified as an important mechanism of transmitting major diet-dependent physiological and nutritional signaling such as the control of myelination and dopamine signalling. Recently, vitamin A5/X, mainly present in vegetables as provitamin A5/X, was identified as a new concept of a vitamin which functions as the nutritional precursor for enabling RXR-mediated signaling. The active form of vitamin A5/X, 9-cis-13,14-dehydroretinoic acid (9CDHRA), induces RXR-activation, thereby acting as the central switch for enabling various heterodimer-RXR-signaling cascades involving various partner heterodimers like the fatty acid and eicosanoid receptors/peroxisome proliferator-activated receptors (PPARs), the cholesterol receptors/liver X receptors (LXRs), the vitamin D receptor (VDR), and the vitamin A(1) receptors/retinoic acid receptors (RARs). Thus, nutritional supply of vitamin A5/X might be a general nutritionaldependent switch for enabling this large cascade of hormonal signaling pathways and thus appears important to guarantee an overall organism homeostasis. RXR-mediated signaling was shown to be dependent on vitamin A5/X with direct effects for beneficial physiological and neuro-protective functions mediated systemically or directly in the brain. In summary, through control of dopamine signaling, amyloid βclearance, neuro-protection and neuro-inflammation, the vitamin A5/X - RXR - RAR - vitamin A(1)-signaling might be "one of" or even "the" critical factor(s) necessary for good mental health, healthy brain aging, as well as for preventing drug addiction and prevention of a large array of nervous system diseases. Likewise, vitamin A5/X - RXR - non-RAR-dependent signaling relevant for myelination/re-myelination and phagocytosis/brain cleanup will contribute to such regulations too. In this review we discuss the basic scientific background, logical connections and nutritional/pharmacological expert recommendations for the nervous system especially considering the ageing brain.

Keywords: vitamin, vitamin A5/X, vitamin D, food, mental health, aging brain

A general introduction of dietary influence on the central and peripheral nervous system functions

A good mental health, a well-functioning central and peripheral nervous system, and the prevention of neurological diseases has been associated with many factors including genetic background ([1] and later summarised with multiple references), individual social background [2],

general lifestyle [3, 4] including sufficient physical exercise [5], and sufficient good-quality sleep [6] as well as a stimulating social and family environment [7], in addition to a healthy and balanced diet [8, 9, 10, 11, 12].

It is still not clear what exactly a healthy and balanced diet is and what it does with regard to mental health and a wellfunctioning brain and for prevention of neurological diseases, especially when considering healthy brain-aging, with relevance for general population convenience and its acceptance in daily life [13]. However, a key factor for a healthy and balanced diet is the provision of adequate amounts of a variety of foods which will cover the basic requirements for energy, macro-nutrient and micro-nutrient intake in order to sustain the basic metabolic rate, to keep a normal body weight and further additional muscular activities [14]. Malnutrition and over-nutrition leading to substantial body weight loss and obesity, respectively, are not only problematic with regard to the general health of our organism but also for mental health [15, 16].

In addition, a healthy and balanced diet can only be defined as such when being able to maintain (and/or improve) gut-health in terms of guaranteeing adequate bowel movements without gastrointestinal problems and keep the risk low for cancers of the gastrointestinal tract and beyond [17]. However, for people with an unbalanced Western diet - especially with certain gastrointestinal disorders, food allergies, food intolerances or food malabsorption - a composition of healthy and balanced diet may differ from that suitable for healthy individuals and its balancing may require nutritional supplementation. Besides, it is well reported that gastrointestinal disorders are indirectly impacting brain functions and can be associated with mental problems such as anxiety, depression [18] and even eating disorders [19], but also via the microbiota-gut-brain-axis [20].

In this contribution, a comprehensive overview is given on which diets, which specific combination of multicomponent diets, which individual nutrients, which nutrientderiving ligands or signaling molecules, and which potential signaling pathways may be important for the maintenance of general good mental health, for the general health of the nervous system, for healthy brain aging and the prevention of neurological diseases. In addition, we focus our discussion on the potential health relevance of the newly claimed vitamin, vitamin A5/X. Such health relevance is much based on existing knowledge of functions of retinoid X receptors (RXRs), a documented transcriptional effector of vitamin A5/X-signaling pathways. The emphasis is also placed on the fact that vitamin A5/X is a novel and food dependent pathway with expected high importance for mental health and the prevention of neurological diseases.

Effects of the diet on good mental health and prevention of neurological diseases

In general, a healthy and balanced diet is associated with good health, including good mental health [8, 12]. This notion is strongly supported by scientific data and summarised in expert nutritional recommendations [9, 10] of national and international regulatory bodies, and is gener-

ally defined as being rich in fruits and vegetables and low in meat and alcohol. Unfortunately, these recommendations are not widely accepted or applied by a large proportion of the Western society preferring a convenient lifestyle with processed food high in salt, fat and sugar [21, 22, 23]. Even, if a motivated younger and mainly female population in Western society are trying to adapt to general healthy lifestyle recommendations including a healthy diet [24, 25, 26, 27], a much larger percentage of this younger generation as well as the total population, living a westernized lifestyle, still prefers a convenient and unfortunately, not ideally balanced diet [28].

A Mediterranean diet, for example, is a well-accepted diet type by larger groups of societies offering a broad array of valuable nutrients, because of high consumption of fruits and vegetables, olive oil, and marine fish, while a low to moderate consumption of processed food, meat products and alcohol [29]. This Mediterranean diet is an example, as it is more a general life style than a simple food selection, and is also associated with strong social connections and sun exposure, factors which may additionally contribute to such a holistic multicomponent dietary pattern [30] and contribute especially via that social connection also to a healthy food selection instead of a Western single life style associated with a high intake of processed food and alcohol [31].

How such a multicomponent diet transmits its beneficial activity mechanistically, via which food-derived nutrients, via which single or multiple food components and via which pathways is just partially known. Especially when considering a complex combination of these nutrients in the diet which might act via complex interaction pathways in the human organism. Furthermore, many studies just focused on individual single nutrients, how food in general and food enriched with such individual nutrients are interacting within the human organism. These studies were mainly performed in *in vitro* and *in vivo* experimental models to predict how the diet and nutrients transmit potential positive and negative effects within the human organism.

Prebiotics, probiotics and postbiotics acting via the microbiota-gut-brain-axis on mental health and prevention of neurological diseases

Probiotics are defined as live microorganisms that, when administered in adequate amounts, confer a health benefit to the host [32]. Besides, depending on the mechanism of action, inactivated bacteria or their fractions of probiotics can deliver similar effects, being then defined as paraprobiotics or postbiotics [33, 34]. In contrast, prebiotics are defined as substrates that are selectively utilized by host

microorganisms conferring a health benefit and are characterized by a great variety of substance classes [35]. Historically, probiotics and prebiotics found their application for improving gastrointestinal disorders, delivering mixed results with reasons discussed elsewhere [36, 37, 38]. Therefore, the American Gastrointestinal Association encourages the intake of specific probiotics only for preterm, low birth-weight infants to prevent necrotizing enterocolitis whereas for other gastrointestinal diseases the probiotic intake is either not recommended or conditional (with low quality of evidence) [38].

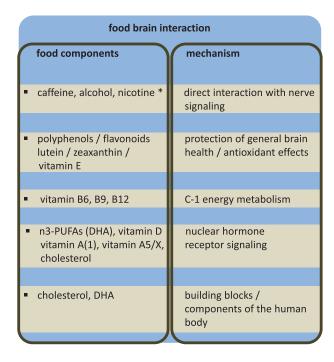
In short summary, a) as most probiotics are dietary supplements and not drugs, the clinical trials usually do not match the high standards of pharmaceutical trials; b) probiotics differ regarding the number of strains, type of strains and selection method therefore will not have the same efficacy and c) they may not be effective across different patient collectives and patient population subgroups [37]. For prebiotics, the situation becomes even more complex due to the heterogeneity of substance classes (often being fibers) and the variety of exerted effects in the gut [32].

As the gut microbiota also influences the central nervous system via the microbiota-gut-brain axis (reviewed in [20]), therapeutics targeting the gastrointestinal microbiota became of potential interest not only as adjunct treatment of psychiatric and functional central nervous system disorders, but also for modulating mood and stress resilience in health and disease [37, 39]. However, the results on efficacy are very promising in pre-clinical models, the situation in humans is far less clear as recently reviewed [36, 37].

Questionnaire data about the psychological well-being were similar between the probiotic and placebo groups. Only six human studies investigated the impact of probiotics versus placebo using imaging technologies, 5 of them indicated that selected probiotics may alter brain functions in healthy volunteers. However, no conclusions for clinical relevance for patients with respective disorders can be drawn yet [36, 37]. For prebiotics, the current situation is even less clear, due to the lack of imaging studies in humans. Overall, next generation probiotics specifically selected and developed to improve psychiatric condition and potentially other central nervous system functions may be promising [40].

The effect of individual diet-derived nutrients and alternatively consumed substances on mental health

Induction of short- and medium-term effects


Well known compounds used by our society for brain stimulating effects (Figure 1), called nootropics, are accepted consumed compounds present in food such as caffeine and alcohol or are taken up via alternative pathways like nicotine [41, 42]. This nicotine uptake originates from smoking tobacco and is applied because of desired stimulating effects on mental status/well-being [43], but its application methods have a strong detrimental health aspect due to oxidative stress [44], deeply ingested radioactivity [45], a large mixture of pro-carcinogenic derivatives [44], and a strong addictive potential towards nicotine [43]. These singular desired and beneficial seen stimulating effects of nicotine result in a quick negative feedback of mental well-being and an addiction towards to get back on "normal" mental well-being with follow up craving for further nicotine stimuli. As a result, this singular positive effect on mental well-being quickly turns into a long term negative mental status followed by an addiction towards smoking as an application method with high toxic burden [44] and an increased risk for neurological diseases [46].

Besides nicotine, **alcohol** is a widely consumed nootropic with a different mechanism of action for inducing positively evaluated effects on mental well-being [47, 48]. In addition, it is an "important" and well accepted part of the daily diet by a large number of humans [27]. The addiction potential and toxicity of alcohol is less severe compared to that of nicotine in tobacco products, although the high number of frequent and heavy drinkers, its relevance in Western society due to the widely used and high consumption of alcohol products is thereby an important public health concern [49].

Caffeine present in coffee, tea, sugary and sweetened soft drinks (like colas) as well as "energy drinks" have also well-known desired positive effects on mental performance [50, 51, 52]. Its addictive and tolerance potential is evaluated as "moderate" in comparison to alcohol, nicotine and other highly active drugs and drug-like substances [50], but its frequent consumption is associated with depression symptoms and anxiety [53]. On the beneficial side, coffee offers a high antioxidant potential [54]. Whether these antioxidant effects may lead to protective functions in the brain is not clear and has not yet been deeply examined in humans as reviewed in [55, 56].

Unfortunately, nicotine, alcohol and caffeine have just short-medium term desired alterating effects on the nervous system, among which are general stimulation and sleep deprivation (caffeine), happiness, decreased anxiety, sociability, impaired cognition-, memory- and sensory-functions, and a generalized depression of the central nervous system (alcohol) and alertness, reduced hunger feeling, reduced anxiety, improved memory and concentration (nicotine).

In addition, there are commonly used, but legally and from society generally non-well accepted non-food substances like **amphetamines** (i.e. 3,4-methylenedioxy-methamphetamine (MDMA)/ecstasy (XTC)) [57, 58],

Figure 1. General mechanisms of how food interacts with brain health. *Representing a non food, but alternatively consumed substance.

cocaine [59] and cannabinoids [60, 61] which have short time "desired" effects of enhancing nervous system functions which are associated with unwanted strong addictive potential and negative side effects. These short term "desired" effects on brain functions further induce non-desired feedback mechanisms in the neuro-physiological pathways especially in the vitamin A5/X – RXR-mediated signaling pathways [62, 63].

In this context, RXR-signaling, induced also by vitamin A5/X, may have a beneficial effect in fighting addiction to these substances like recently suggested by Godino et al. 2023 [62, 63]. In addition, the craving to other substances with addiction potential like the previously mentioned substances as well as general nutrients like **fat** and **sugar** with food intake dopamine-motivation feedback [64, 65, 66] is directly or indirectly controlled by RXR-mediated signaling due to transcriptional control of dopamine receptor's expression [67].

Induction of latent and/or long-lasting effects

In contrast, there are nutrients with long term general beneficial health effects on the central and peripheral nervous system [10, 12, 13, 68]. These are derivatives which do not functionally interact with the nervous systemsignaling with immediate and quickly observable effects on the central nervous system. These nutrients mainly influence brain development, general maintenance of nervous system-signaling, neuronal regeneration, a general

well-functioning nervous system, inflammatory processes systemically or directly within the brain, proteostasis, and the maintenance of brain performance such as cognition/memory but with no observable tolerogenic and addictive potential. Thereby, their potential for improving the general mental well-being seems to be mainly based on a general maintenance or protection of a healthy maintenance of the nervous system via enabling an organised homeostatic general macronutrient supply. They additionally function itself as macronutrients or precursors being itself building blocks/components of the nervous systems [69], or being required for physiological-balanced regulation pathways of nervous signaling and a balanced local nervous system-based inflammatory process.

The mechanisms of such pleiotropic activities of nutrients are diverse. An antioxidant response is part of this protection for a healthy maintenance of nervous system functions [10]. Here the classical antioxidants are acting mainly systemically like vitamin C [70], vitamin E [71, 72], polyphenols [73, 74] and flavonoids [75, 76] as well as local acting antioxidants within specific brain areas like the non-provitamin A carotenoids lutein/zeaxanthin [77, 78] are involved in such general antioxidant protection. Furthermore, cholesterol [79] and the n3-fatty acid docosahexaenoic acid (DHA) [80, 81] are building blocks/components of cellular membranes [69], but also studied as direct physiological activators or precursors of bioactive molecules enabling optimal nervous system signaling in the central and peripheral nervous system [82, 83, 84]. Further derivatives like vitamin B12, B6, and folate (vitamin B9) are involved in C1-body physiology, which is of importance for a general energy homeostasis in the peripheral nervous system and brain [85, 86]. These listed compounds are involved in neural functions and thereby their deficiency is associated with dysfunctions of the central and peripheral nervous system [87]. These compounds are required in sufficient amounts in the daily diet [88].

A number of micronutrients act also as ligands for nuclear hormone receptor (NHR) mediated-signaling to control transcriptional regulation of basic homeostasis of the human organism, but also adaptive responses. Thus nervous system homeostasis and its optimal performance requires balanced signaling via the peroxisome proliferator-activated receptors (PPARs) with fatty acid-metabolites or fatty acids like the **n3-fatty acid/DHA** as ligands [84], the liver X receptors (LXRs) with **cholesterol derivatives** as ligands [89], the vitamin D receptor (VDR) with **vitamin D derivatives** as ligands [89] and the retinoic acid receptors (RARs) with **vitamin A(1)/pro-vitamin A(1) carotenoids** as precursors for all-*trans* retinoic acid as the ligand, for which a physiological homeostatic regulation is of physiological and homeostatic importance [90, 91, 92,

93]. Even additive or "boosting" effects of supplementations with selected nutrients like DHA can be observed when applied beyond recommended daily intake amounts for better nervous system functions [80, 94, 95, 96, 97]. Crucial partners for such nuclear hormone receptor mediated signaling are the retinoid X receptors (RXRs), as they act as obligatory heterodimerisation partners for several alternative nuclear hormone receptors to enable their binding to DNA and further individual transcriptional activities. In this review we will focus on these RXR-dependent pathways involving the newly found endogenous RXR ligand and its recently identified nutritional precursors [98, 99]. These compounds represent novel physiologically important factors for the central and peripheral nervous system, requiring an optimal diet for maintenance but also offering possibilities for boosting beneficial effects following additive supplementations beyond the advised recommended amounts [99, 100, 101, 102, 103, 104].

Effects of provitamin A(1) and vitamin A(1) on mental health and prevention of neurological disorders

Provitamin A(1), such as β-carotene and alternative provitamin A(1) carotenoids, in addition to vitamin A(1) alcohol, such as all-trans-retinol (ATROL), and its esters are the major relevant food derived precursors of all-trans-retinoic acid (ATRA)/vitamin A(1)-acid as the endogenous ligand of the RARs (Figure 2, [102]). RARs act as transcription factors controlling a wide range of RAR-response pathways [102, 103]. Relevant RAR-response proteins are involved in an array of crucial physiological processes like differentiation, proliferation, apoptosis, metabolism, inflammation and an overall macro- and micro-nutrient homeostasis [102, 105]. Various proteins are thereby directly involved in a general homeostasis of macro- and micro-nutrient nutrikinetics systemically, but also within the nervous systems [90, 106, 107], like for structural proteins [108, 109, 110], proteostasis with relevance for amyloid aggregates [111, 112, 113], developmental processes and neurogenesis within the brain. These proteins have important functions with respect to growth and plasticity of various cells types within the brain, including neurons [114, 115, 116], astrocytes [117, 118], oligodendrocytes [119, 120, 121], and microglia [122, 123, 124] as well as being enzymes and receptors enabling homeostatic synaptic plasticity [125, 126].

In general, a **primary vitamin A(1) deficiency** [127,128] refers to insufficient nutritional vitamin A(1) intake and in real life is mostly associated with low intake of vitamin A(1)/provitamin A(1), while a **secondary vitamin A(1) deficiency** is the notion which refers to decreased activity of vitamin A(1)-mediated signalling in the organism which

is a result from dysfunctional or compromised vitamin A(1)-uptake, bioactivation/metabolism as well as vitamin A(1)-RAR-mediated signaling through its receptors and associated factors.

In such a primary vitamin A(1)-deficiency often, an insufficient intake of additional macro- and micro-nutrients co-occurs. This condition is encountered mostly in developing countries of Africa and South-East Asia. The World Health Organization (WHO) reports that in these regions 250 million preschool children suffer from insufficient vitamin A(1) intake and 500,000 of these children become blind. Vitamin A(1) deficiency, resulting from selective insufficient vitamin A(1) intake or general insufficient micro- and macro-nutrient intake [129], is life-threatening and causes death of about 250,000 children, mainly because of immune deficits. Despite these facts there are no dedicated studies on neurological effects of vitamin A deficiency in these populations.

In the Western society reduced blood levels of vitamin A(1) are associated with biological aging [130, 131], although some studies did not detect any significant changes [132, 133]. Such discrepancy may reflect - at least partially - heterogeneity of data resulting from differences in inclusion criteria of these studies. For example, analyses of an aged population assessing their cognitive performance revealed that individuals with compromised learning and memory capacity displayed lower levels of ATROL/vitamin A(1)alcohol [134, 135]. Such data suggest that low vitamin A(1) levels may be causally associated with cognitive deficits [136], which is further supported by rare clinical trials and animal studies. Accordingly, aged rats displayed decreased levels of ATROL and ATRA, which were correlated with compromised learning and memory [137, 138]. Such deficits were observed in the hippocampus, the structure directly involved in learning and memory. Importantly, aged rats or mice displayed also reduced expression of several retinoid receptors in the same brain region, which could further contribute to deficits in vitamin A(1)-signaling and underlie thereby learning and memory deficits associated with aging [132, 139, 140, 141]. Such dysfunctional or compromised vitamin A(1)-signaling can be defined as a secondary vitamin A(1) deficiency [128]. In support of this hypothesis, both, the selected aging related molecular changes and the memory deficits could be prevented or normalized by chronic or acute treatments with vitamin A(1) or selected retinoids [137, 138, 142].

In addition to aging-related cognitive deficits, compromised vitamin A(1) signaling was also observed in several neurological conditions. In the case of Alzheimer's disease (AD), a reduced retinaldehyde-dehydrogenase 2 (Raldh2/ALDH1A2, a key enzyme synthesizing ATRA) expression and lower ATRA production was observed within specific brain regions [143, 144]. Amyloid beta (Aβ) was shown to

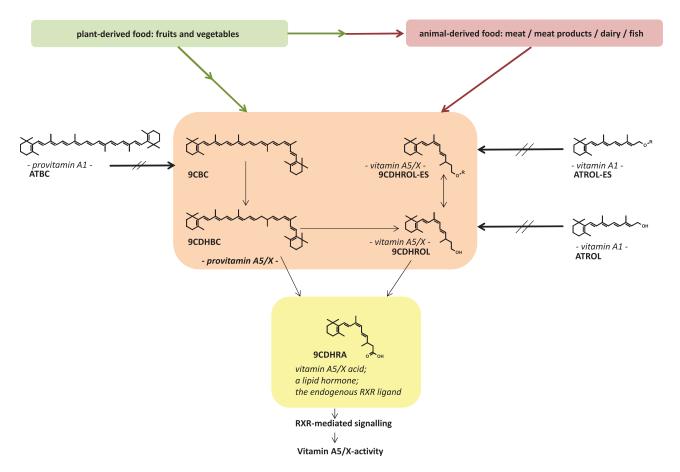


Figure 2. The vitamin A5/X concept: Summarized are the metabolic pathways of vitamin A5/X provitamin A5/X starting from nutritionally-derived retinoids and carotenoids towards RXR-mediated signaling. Abbreviations: ATROL-ES: all-trans-retinyl esters; ATROL: all-trans-retinol; ATBC: all-trans-β,β-carotene; 9CDHROL-ES: 9-cis-13,14-dihydroretinyl esters; 9CDHROL: 9-cis-13,14-dihydroretinol; 9CDHBC: 9-cis-13,14-dihydroretinoic acid.

further compromise vitamin A(1)-signaling by downregulation of retinoic acid receptor α (RAR α) expression, synergizing thereby with lower (blood) ATRA levels in inducing memory deficits. Reduced levels of vitamin A(1) in form of ATROL in blood were also reported in plasma of ADpatients [145, 146]. A significant involvement of compromised ATRA signaling in AD is supported by deposition of A β aggregates in vitamin A(1)-deficient rats [143] and beneficial effects of ATRA treatment including anti-inflammatory and neuro-protective effects as well as inhibition of A β aggregates deposition [107, 141].

Compromised synthesis of ATRA was also suggested to be associated with Parkinson's disease (PD). Indeed, several reports described reduced expression of retinaldehyde-dehydrogenase 1 (Raldh1/ALDH1A1, an alternative enzyme synthesizing ATRA), by midbrain dopaminergic neurons in PD patients [147, 148, 149]. In fact, Raldh1 is one of the specific markers of a subpopulation of those neurons [150] and its reduction in PD was associated not only with loss of these neurons, but also to be reduced in remaining dopaminergic neurons [147, 148]. Similarly, a combined

genetic ablation of murine Raldh1 and retinol-dehydrogenase 5 (Adh5), a further rate-limiting enzyme to synthesize retinaldehyde from vitamin A(1)/ATROL, leads to progressive motor deficits and loss of dopaminergic neurons [151]. In this context, several controlled or prospective studies explored the possibility, that reduced intake of vitamin A(1) or provitamin A(1) may act as sensitivity factor to develop PD. Whereas most of these studies did not provide any clear correlation [152, 153, 154, 155]. Furthermore, Yang et al. 2017 [156] reported that increased consumption of β -carotene/provitamin A(1) from a natural diet is associated with a reduced rate of PD prevalence.

Locomotor deficits and reduced signaling of dopaminer-gic receptors in the striatum, was reported in RARβ-/- null mutant mice and in compound RARβ-/-; RXRγ-/- null mutant mice [101, 157]. A recent transcriptome analysis of the striatum of RARβ-/- mice, and combined with genome-wide identification of RARβ-binding sites using high-throughput chromatin immunoprecipitation (ChIPseq) [158], pointed to several mechanistic hypotheses for neuro-protective activities of RARβ. Collectively, these data

suggest a strong contribution of RAR β in controlling neurotransmission, energy metabolism (with a particular involvement of G-proteins), cAMP and calcium signaling. Striatum related activities of RAR β might be of special importance for understanding the pathogenesis of Huntington disease, a rare disease in which RAR β expression was found reduced ([158, 159] and references therein).

Effects of the sunshine vitamin, vitamin D, on mental health and prevention of neurological diseases

In the last years, there is an increasing attention towards vitamin D for mechanisms of action involved in immune response, cardio-vascular functions as well as an active involvement in the nervous system [160, 161]. In general, vitamin D in the form of vitamin D₂ and mainly as D₃ (ergocalciferol or cholecalciferol) can be taken up by the diet or synthesized by UV-irradiation from 7-dehydrocholesterol (provitamin D₃). This vitamin D, especially vitamin D₃, is further metabolized to 25-hydroxy-vitamin D₃, which is homeostatically regulated and transported in the blood, while the further active vitamin D derivative is 1,25-dihydroxy-vitamin D₃/1,25(OH)₂VD₃ [162]. This active vitamin D₃ derivatives binds, similarly to the active vitamin A(1) and vitamin A5 derivatives, to specific nuclear hormone receptors which control transcriptional regulation via DNA binding [89, 163]. For this vitamin D-mediated regulation the nuclear hormone receptor, the vitamin D receptor (VDR), must be ligand activated by the active vitamin D derivative 1,25(OH)₂VD₃ [162]. This liganded and thereby activated VDR needs further the retinoid X receptor (RXR) as a dimerization partner for DNA-binding and for regulation of vitamin D-mediated transcriptional regulation [163, 164]. Many studies favor the fact, that this VDR-RXR complex can exclusively be activated by the VDR-ligand [89, 163, 165], although alternative studies confirm activation via the RXR partner additionally [166]. Recent data describe a correlation of the active VDR-ligand as well as the active RXR-ligand present in human serum with a vitamin D-regulated immune target also present in human serum samples [167].

Vitamin D-mediated signaling occurs in various organs of the mammalian organism and regulates a large array of physiological mechanisms [168]. Here also many pathways involving the VDR in the general maintenance of the nervous systems are of high importance, especially during development of the nervous system [161, 169, 170], highlighting a sufficient nutritional intake of this vitamin being important for good mental health and the prevention from a large array of neurological disorders like psychiatric/psychotic, neurodegenerative and demyelinating diseases [171, 172, 173, 174].

Nutritional supplementation with vitamin D seems to be of high importance as vitamin D intake appears to be below the suggested dietary recommendations in Western society [27]. Many supplementation studies with sufficient vitamin D amounts [172, 175] or with vitamin D amounts beyond the recommended daily dietary levels were shown to be beneficial taken either alone or in combination with additional nutrients, like the previously discussed B-vitamins and n3-PUFAs [176, 177]. Unfortunately, many supplementation studies showed no improvement on mental health, reviewed in [178].

In summary, sufficient vitamin D intake seems to be related to good mental health and the prevention of neurological diseases mainly mediated via RXR – VDR-mediated signaling pathways. A dietary supplementation, food fortification and at its best a healthy balanced diet seems to be beneficial for human health considering the risk of a low basic vitamin D intake and low sun exposure. If at conditions with optimal sufficient vitamin D intake and status, an additional vitamin D supplementation is needed and beneficial on the long term, seems to be questionable.

Macronutrients and mental health

Macronutrients like fat and carbohydrates are a broad group of compounds in the human diet mainly functioning as construction material for the human organism with focus here on brain/nerves, as energy providing precursors as well as important precursors for hormone regulatory pathways in our human organism. These functional derivatives are further involved in the control of various pathways for communication between the human organism and the nervous system especially to control energy homeostasis via a hunger/satiety regulation mainly via interaction within the human brain [179, 180].

The main food-derived macronutrients are of complex macromolecular structures like polysaccharides and complex lipid structures. These compounds are metabolized in the human organism to smaller units such as simple sugars/monosaccharides and non-esterified free unbranched fatty acids, which are also directly ingested with the diet but in much smaller quantity. However, smaller molecules can be used to build up larger macromolecules, which are needed in our organism as crucial construction materials, while, more interestingly, in the present case as bioactive molecules like various hydroxyl-metabolites of DHA [181, 182].

Monosaccharides are key substances for energy metabolism and seem also to be recognized by specific areas within the human brain [183]. This brain-nutrient interaction is an important regulator of selective food intake and homeostatic regulation, while also dopamine feedback cascades are involved [184]. At this level monosaccharide levels

and its feedback regulation on selective craving/hunger/ satiety is among others also controlled via vitamin A5 -RXR-mediated signalling [67]. Thereby, these macronutrients like fat and sugar have also an addiction potential, as dopamine-motivation feedback is triggered [64, 65, 66]. This feedback regulation is highly depending on the individual ingestion of a food with parameters such as food quantity, diet composition, and individual dietary requirements [185]. In several studies it was shown that added carbohydrates in the human diet are negatively associated with individual mental health [185]. Especially food rich in monosaccharides like fructose and glucose seems to be here of relevance [186]. Fructose ingestion is directly interacting with the brain in further hormonal regulation [187] and further modification of incidence of depression [188] or depressive-like behavior [189]. This involves the dopamine-mediated reward signaling and the inhibition of the neurotransmission controlled by γ-aminobutyric acid (GABA) [64].

Sugar-sweetened beverages and "fast food" consumption high in carbohydrates and fat are often part of clustered food patterns, thus, more negative synergistic effects on the whole human organism and especially our mental health can be expected [190]. Besides these direct effects on mental health a continuous excess of sugar and fat in our diet impairs glucose and lipid metabolism and promotes general and local inflammatory processes [191] with an indirect negative impact on mental health.

An additional pathway involved is the feedback regulation of insulin secretion being also regulated by vitamin A5 – RXR-mediated signalling pathways [192, 193]. Insulin directly interacts within specific brain areas and is thereby responsible for controlling food intake and regulating cognitive functions, particularly memory [194]. An excess of free saturated fatty acids leads to a dysregulation of glucose homeostasis and insulin resistance with its consequence described above [195]. Moreover, the free saturated fatty acids affect cognitive function with ending in diseases such as dementia, including Alzheimer's disease [196].

In summary, macronutrients especially carbohydrates/sugars as well as fats/fatty acids are also directly involved in mental well-being with positive and negative effects depending on the individual dietary intake via control of insulin-secretion and dopamine-signalling regulation of these direct and indirect macronutrient-induced pathways which are also co-regulated by vitamin A5 – RXR-mediated signalling.

A general summary of food for brain health

In summary, based on various studies and summarizing review articles we can conclude that these various dietary factors individually or as composites of a general holistic approach with a healthy and balanced diet are of importance for a good functioning of the central and peripheral nervous system, although in many cases the mechanisms of action are not clearly identified. A general relevance of specific micro- and macro-nutrient deficiencies in developing/low-income countries and societies within the Western society with general food shortage are well documented [197]. For a large array of these nutrients a dietary deficiency must be compensated by an adequate diet or by fortification of a Westernised diet low in these nutrients to recover from a deficiency syndrome likely relevant for Bvitamins, D-vitamins and antioxidants. Other nutrients can ameliorate a specific deficiency but also partly induce desired boosting/"plus"-activities on brain performance and general functions of the central and peripheral nervous system like observed for n3-fatty acids and vitamin D [80, 94, 95, 96, 97] and also predicted for vitamin A5/X derivatives [99, 101].

Specifically, a primary and secondary vitamin A(1) deficiency is associated with dysfunctional or compromised functions of the central and peripheral nervous system resulting in various indicators of non-optimal mental health like mental stress, anxiety, depression, cognitive decline, nervousness, as well as in consequence, due to the involved signaling pathways, a general loss of enjoyment of life, irritability, insecurity, dissatisfaction, listlessness in addition to a higher prevalence of drug addiction and an increased incidence of neurological diseases [106, 107].

Vitamin A5/X in nutrition and mental health

The general vitamin A5/X concept

In 2015, 9-cis-13,14-dihydro-retinoic acid (9CDHRA) was identified as the endogenous ligand for the retinoid X receptors (RXRs) with an overlapping endogenous/nutritional-relevant concentration range sufficient to switch "on off" RXR-mediated signaling (Figure 2, [102]). Due to its similar structure to vitamin A(1) it was suggested to be sub-ordinated to vitamin A as vitamin A5 [198]. Alternatively due to its distinct mechanisms of action it may be described as an individual new group of vitamin, named vitamin X [98, 99, 198]. Various other endogenous RXR-ligands were already identified with questionable physiological/nutritional relevance profile [84, 199] indicating, that 9CDHRA is the most likely relevant physiological/nutritional RXR ligand [102].

The biological occurrence of 9CDHRA was later found to be independent of vitamin A(1) nutritional precursors like retinol/retinyl esters and provitamin A(1) carotenoids [99]. The endogenous occurring and nutritional-relevant

direct precursor 9-cis-13,14-dihydroretinol (9CDHROL) was identified and associated as vitamin A5/X, a vitamin A(1) independent source for 9CDHRA and enabling vitamin A5/X-receptor (RXR)-mediated signaling [99]. In parallel, to 9CDHROL, as vitamin A5/X-alcohol, present in animal derived food sources [99] we also identified 9-cis-13,14dihydro-β,β-carotene (9CDHBC) and its nutritional precursor 9-cis-β,β-carotene (9CBC) as plant derived precursors [99] (Figure 2). Unfortunately, the involved binding proteins and enzymes in the metabolic pathways have not been identified until now in detail. We assume a high overlap with binding proteins/enzymes of the vitamin A(1) metabolic pathway due to a high similarity of vitamin A5/X derivatives especially considering 9-cis-retinoids [102]. Due to the similarity in vitamin A(1) and vitamin A5/X physicochemical features and possibly metabolic pathways designing nutritional models specific to vitamin A5/X pathway for detailed analysis of metabolic, physiological and nutritional functions might be impossible to distinguish. Although genetic manipulations like ablation of retinol binding protein 1 (Rbp1) is a more plausible approach, it will require identification of other molecular actors of vitamin A5/X metabolic pathway.

Functional relevance of enabling vitamin A5/X - RXR-mediated signaling was demonstrated by enhancement of cognitive functions [99], as well as, prevention of depressive-like behaviours in response to chronic stress [101] in an RXR-dependent manner. In consequence a new food derivative to specific food component associated function was identified, proven, patented and published [198] for further valorisation in food- and pharma-applications.

In summary, the nutritionally-relevant vitamin A5/X derivatives like 9CDHROL and 9CDHROL-esters as well as provitamin A5/X, 9CBC via 9CDHBC, act as direct precursors of the active vitamin A5/X-ligand 9CDHRA. This 9CDHRA can directly modify RXR-mediated signaling via interaction with optional nuclear hormone receptor as partner of different heterodimers and thereby further induce transcriptional alteration of targeted gene regulation. In consequence, the term vitamin A5/X indicates all food derived substances, which are proximate precursors of 9CDHRA and are thereby modifying proximately RXR-mediated signaling.

Relevance and function of vitamin A5/X – RXR-mediated signaling

RXRs are crucial binding partner for other heterodimerpartners of nuclear hormone receptor (NHR) group [98, 163, 200, 201, 202] and functions as the vitamin A5/X receptor. Among these NHRs, here we mainly focus on the most relevant ones with a "health"- and "food"-application potential like the RARs, PPARs, LXRs, VDR and the NR4A2 (Figure 3), all known to be involved in NHR-signaling pathways with relevance for the human health.

This RXR-mediated signaling is of importance for various general physiological pathways like cell differentiation, general development, embryogenesis, cell cycle regulation, apoptosis, and systemically specific pathways like general inflammation/immune response, micro-circulation/ enabling sufficient blood flow, the general lipid and glucose metabolism [200, 202] as well as brain-specific pathways like control of dopamine signaling [203], neuro-protection [204], control of local inflammation [205, 206], and Aβclearance [207]. These general and brain-specific physiological pathways are not singularly regulated by one specific RXR heterodimer, but most probably in a complementary manner by different RXR heterodimers including in particular RAR-RXR heterodimers and are thereby likely dependent on sufficient nutritional vitamin A(1) and vitamin A5/X supply, as outlined in Figure 3.

Recently these dietary intake suggestions for vitamin A5/X were calculated to be in the range of 0,5–1,8 mg provitamin A5/X per/day for healthy adults [198], which corresponds to ~1 mg provitamin A5/X / 400 g of general mixed vegetables. This is exactly in the range of the suggested "5 A Day" recommendations by the World Health Organization (WHO) [208], the UK National Health Service (NHS) [209] and the German Nutrition Society (Deutsche Gesellschaft für Ernährung, DGE) [210], when "one hand full of fruits and vegetables" weights ~80 g of these food components [208], resulting in the five suggested handful portions calculated by this simplified approach.

Other functions are independent of RAR – RXR-signaling and thus exclusively regulated by vitamin A5/X-dependent RXR – "plus other NHR"-pathways. Examples are hair development, mainly regulated via RXR – VDR pathways [211], while cholesterol efflux [212], local brain phagocytosis/brain cleanup [205, 213] and myelination/re-myelination [120] are LXR – and PPAR – RXR co-mediated pathways [213, 214, 215] (Figure 4).

This puts vitamin A5/X and the RXRs, as the vitamin A5/X-receptors, in the center and as the major switch enabling nuclear hormone receptor mediated signaling via activation of RXR as part of NHR-heterodimers, thereby, enabling a larger array of NHR-mediated signaling pathways ranging from RAR-, PPAR-, LXR-, VDR- and NR4A-mediated signaling pathways [89, 163]. The RXR-mediated pathways were reviewed recently by Evans and Mangelsdorf [202], who actually pointed out ligand-dependent control of RXRs as a "Big Bang" of molecular endocrinology. However, as summarized in various review articles [84, 99, 102, 198] and based on analytical data [98], 9CRA initially put forward as "the" physiological RXR ligand in the mammalian organism is highly questionable. Therefore, the vitamin A5/X-acid, 9CDHRA, appears as

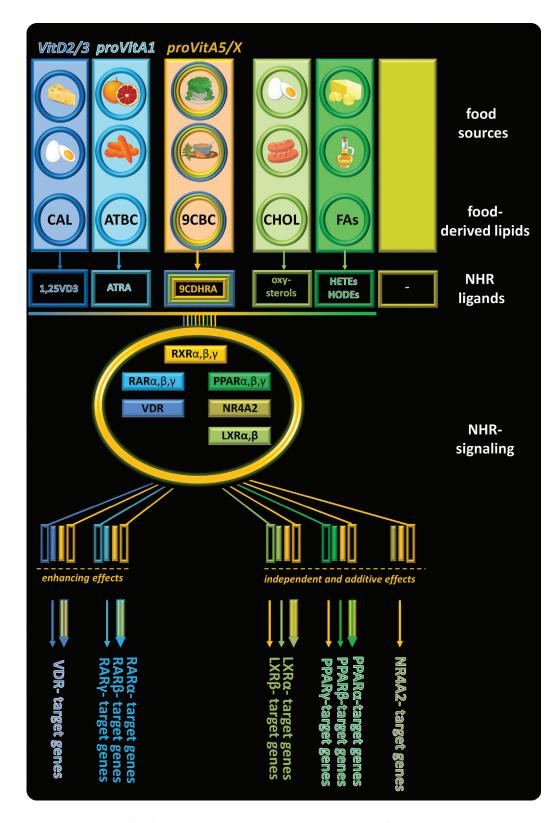
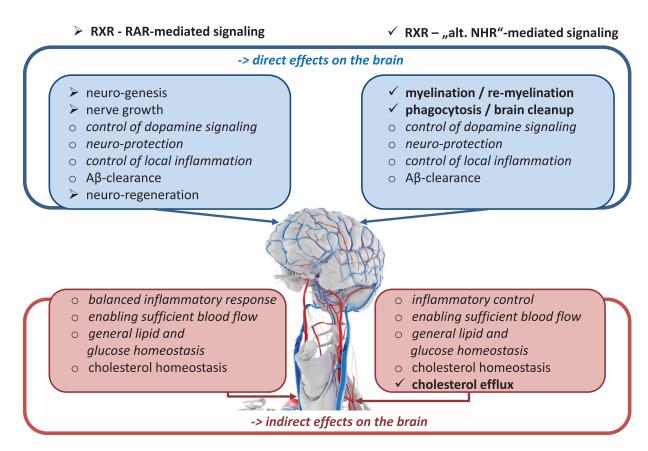



Figure 3. Nuclear hormone receptor (NHR) signaling pathways involving retinoid X receptors (RXR)-mediated signaling and are initiated by the endogenous RXR-ligand, 9-cis-13,14-dihydroretinoic acid (9CDHRA). Abbreviations: VitD2/3: Vitamin D2/3; proVitA1: provitamin A1; proVitA5/X: provitamin A5/X; CAL: calcitriols; ATBC: all-trans-β,β-carotene; 9CBC: 9-cis-β,β-carotene; CHOL: cholesterol; FAs: fatty acids; 1,25VD3: 1,25-dihydroxy-vitamin D3; ATRA: all-trans-retinoic acid; HETEs: hydroxy-eicosatetraenoic acids; HODEs: hydroxy-docosahexaenoic acids; PGs: prostaglandins; VDR: vitamin D receptor; RARs: retinoic acid receptors; LXRs: liver X receptors; PPARs: peroxisome proliferator-activated receptors; NR4A2: nuclear receptor subfamily 4 group A member 2.

Figure 4. Direct and indirect effects of RXR-mediated signaling on brain and nervous systems functions. *Abbreviations:* RAR: retinoic acid receptor; NHR: nuclear hormone receptor; A β : amyloid β ; alt: alternative.

the most likely physiological ligand of RXRs, as the vitamin A5/X receptors, placing vitamin A5/X as the nutrition-dependent spark, including further vitamin A5/X – RXR-mediated signaling, for the real "Big Bang" in human life [102, 198].

A large array of physiological processes is thereby enabled by vitamin A5/X summarized in an evolved figure 4 shown in our previous article [198]. Physiological processes like cholesterol homeostasis, bile acid homeostasis, fatty acid homeostasis, xenoprotection, basal metabolic rate, calcium- and phosphate-homeostasis, and development are vitamin A5/X - RXR-co-regulated physiological pathways important for a large array of important life remaining functions within a mammalian organism.

Physiological- and nutritional-relevance of RXR-mediated signalling in the brain

Retinoid signaling, particularly RXR-mediated pathways, play a crucial role not only during development of the central and peripheral nervous system, but are also involved in various maintenance functions of the adult central nervous system. Besides the pivotal involvement of RXR-mediated signaling in the modulation of immune-mediated processes

[201, 216, 217, 218], these RXR-dependent pathways have been found to be involved in neuronal homeostasis at various levels. These various physiological events in the central and peripheral nervous system, that depend on RXR-mediated signaling are thus likely dependent in consequence on a nutritional supply of vitamin A5/X compounds [99].

A large array of physiological events directly and indirectly relevant for the central and peripheral nervous system are mediated by RXR-mediated signaling (Figure 4). Further, we evaluated and focussed on physiological events, which are non-RXR – RAR-mediated. At the first step, in summary, we started evaluating the large number of physiological events which are multifactorial and rely on RXR – RAR-mediated signaling as summarised in Figure 4, while specific events like myelination/re-myelination and local phagocytosis/pathogen clearance as brain cleanup are exclusively non-RXR – RAR-dependent involving alternative NHR heterodimers.

Examples of such RXR-dependent activities is neuroprotection of dopaminergic neurons, through activation of RXR-NR4A2 heterodimers [219, 220], or neuro-protection of retinal ganglion cells by RXR heterodimers with a yet unknown partner [221]. Ligand-induced activation of RXRs was also demonstrated for enhanced macrophage/microglia-mediated clearance via phagocytosis as brain cleanup of myelin debris [222] or clearance of neuronal debris following stroke [205]. Finally, macrophage or microglia RXR-activation was also demonstrated to minimize inflammatory signaling which is detrimental in a number of neurologic conditions [223, 224].

In summary, these mechanisms are exclusively focusing on the peripheral and central nervous system are a) myelination/re-myelination, b) dopamine receptor 2 (D2DR) expression control and thereby a general regulation of dopamine signaling, c) brain specific phagocytosis with general relevance for brain cleanup, d) neuro-inflammation, e) general neuro-protection and f) A β -clearance, as summarised in Figure 4 and as further discussed.

While RXR-signaling will here regulate direct targets in the brain, indirect pathways are also of relevant with an impact on the brain, although mediated on a systemic basis. These are: a) general nervous tissue-located glucose and lipid homeostasis, b) enabling sufficient blood circulation in the microvascular system of the brain, c) systemic lipid and glucose homeostatic control and d) a local and systemic regulation of the inflammatory response with a large focus on Th1-Th2-regulation [225, 226, 227].

In summary, directly brain-mediated as well as general systemically-regulated mechanisms dependent on vitamin A5/X – RXR-mediated signaling are important for a healthy maintenance of crucial functions of the central and peripheral nervous system with relevance for mental health, healthy brain aging as well as protection from drug addiction and from various neurological disorders.

Pathology of dysfunctional vitamin A5/X – RXR-mediated signaling in the nervous system with relevance for neurological disorders

As described earlier, various pathways involving RXR-mediated signaling are directly and indirectly relevant for the central and peripheral nervous system. Furthermore, we focus on the mechanisms involved in neurological diseases, which are probably caused not just by one single dysfunctional mechanism but by a broader array of multiple underlying mechanisms. However, neurological diseases like a) mental/psychotic diseases, b) neurodevelopmental diseases, c) neurodegenerative diseases, d) demyelinating diseases and e) neuro-inflammatory diseases have been associated with dysregulation of vitamin A5/X – RXR-mediated signaling (Figure 4).

RXR-mediated signaling has been linked at multiple levels to neurodegenerative diseases, such as Alzheimer's and Parkinson's disease [228, 229, 230], inflammation-

and demyelination-associated disorders such as the various forms of multiple sclerosis and neurological disorders with a pathophysiological basis in atherosclerosis, including stroke and vascular dementia, reviewed in [231]. Last but not least, there is the group of socio-economically highly relevant psychiatric disorders, particularly major depression and schizophrenia, which have both been linked to abnormal retinoid signaling [232]. Several of the RXR-mediated mechanisms associated with mental/psychiatric disorders may be considered "disease-spanning", including neuro-inflammation, general inflamm-aging, synaptic plasticity, dopamine signaling, myelination/re-myelination, phagocytosis/brain-cleanup, homeostatic maintenance mechanisms within the central nervous system [204].

In Alzheimer's Disease (AD), RXR-mediated pathophysiological pathways include neuroinflammatory processes with microglial activation [233, 234], altered lipid homeostasis, particularly involving ApoE that is produced by astrocytes and microglia and affected by inflammatory activation of the latter. Moreover, the balance between the synthesis of amyloidogenic and non-amyloidogenic variants of amyloid-β peptides has been demonstrated to be under the control of retinoid signaling [235, 236]. Finally, RXR-agonists have been demonstrated to directly impact ApoE synthesis, restoring cognitive function in an AD mouse-model [237]. Altered retinoid-mediated ApoE synthesis in human macrophages upon inflammatory activation may represent an important link between RXRmediated signaling, inflammation, ApoE homeostasis and AD [238]. In addition, in AD, abnormal myelin repair and demyelination are important dysfunctions [239] associated with dysfunctional RXR-mediated signaling [120, 240], which have been found to be associated with ApoE AD-risk alleles [241], and it was suggested that promyelinating strategies may ameliorate AD pathology and cognitive decline (reviewed in [242]). Even dopamine levels, dopamine receptors and dopamine signaling are reduced, as summarised in a systematic review [243], indicating there are multiple dysfunctions present in AD [244].

In Parkinson's disease (PD), where the degeneration of midbrain dopaminergic neurons represents a pathophysiological hallmark, retinoid- and particularly RXR-mediated signaling plays a pivotal role at numerous levels: At the level of retinoid synthesis, midbrain dopaminergic neurons highly express aldehyde dehydrogenases (ALDH1A), enzymes involved in both, dopamine and retinoid metabolism. At the level of RXR-mediated signaling, these neurons also characteristically express Nurr1/NR4A2, a heterodimeric binding partner to RXRs that has been found to be involved in the pathogenesis of PD [245, 246]. Therapeutic approaches, like BRF110, targeting heterodimers between Nurr1/NR4A2 and RXRα have been identified as neuroprotective agents in the preclinical setting [219]. Various

dysfunctions are present in PD including demyelination [247, 248] and altered dopamine, dopamine receptor levels and signaling [249, 250, 251].

Multiple sclerosis (MS), despite being recognized as an autoimmune disorder, involves both immune dysregulation and other aspects of (secondary) neurodegeneration that results in demyelination. Involvement of RXR-mediated signaling in both immunomodulatory and neuroprotective mechanisms is clearly evident and the efficacy of immunomodulatory treatments like bexaroten have been reported [252]. Treatments targeting RXR-mediated signaling have demonstrated efficacy in preclinical models with respect to enhancing re-myelination [253] and have recently entered clinical testing [254]. Moreover, minocycline, an antibiotic which can enhance local brain retinoid concentrations [233], has been demonstrated effective in the treatment of MS in independent clinical trials [255]. Also dopaminergic drugs are recently in discussion for treatment of selected MS symptoms [256], due to the fact that dopamine mediated signaling is altered in MS [257, 258].

In schizophrenia dysregulation of the dopaminergic neurotransmission has long been established as a hallmark of the disease, which is of particular relevance to retinoid signaling, as the key dopaminergic receptor (DRD2) is under the control of retinoic acid-response elements, thus directly regulated by RXR-signaling [229]. Besides dysfunctions in dopaminergic signaling myelination abnormalities were also reported in schizophrenia [259, 260], and may depend on abnormal RXR-signaling (as described above). Moreover, RXR-signaling has been found to regulate affective behaviour [203, 229, 261]. While early associative evidence [262] was recently confirmed at a genome-wide level [232, 263], one recent study confirmed a dysregulated retinoid homeostasis in schizophrenia patients and furthermore demonstrated pronounced involvement of retinoid signaling for one of the most important anti-psychotic drugs, supporting the strategy of a retinoid-based therapeutic approach [264]. Interestingly, RXR-directed therapeutic approaches using bexaroten have been pursued earlier with success [264, 265, 266, 267].

In major depression disorder, a pathophysiological relevance of retinoid signaling has long been established by epidemiological evidence from therapies interfering with cerebral retinoid homeostasis [268, 269]. More recent studies in post-stroke depression have demonstrated altered retinoid levels in patients and therapeutic efficacy of RXR-targeting strategies [270]. As already mentioned, RXR-mediated signaling has also been shown to modulate affective behaviour [203, 271]. Most importantly, retinoid signaling controls so-called meta-plasticity or homeostatic synaptic plasticity, which represents a well-defined type of synaptic plasticity that has also been termed "synaptic scal-

ing" [272, 273, 274]. This process, which was most recently demonstrated to crucially involve retinoid homeostasis [275, 276], will likely also be affected by RXR agonists, as suggested by earlier reports on RAR – RXR-mediated plasticity [277, 278]. In major depression disorder also a severe dysfunction in myelination and the myelin content were observed [279, 280].

In summary, when comparing the individual pathophysiological background of these listed vitamin A5/X -RXR-signaling dependent diseases, then three major RXR-signaling dependent pathways are consistently present and likely to be "one of" or even "the" key relevant mechanisms of these multifactorial diseases. Indeed, as shown in Figure 4, these major pathways are dependent on RXR-mediated signaling and thereby the presence of sufficient endogenous RXR-ligand. Problems in a) myelination/re-myelination as well as b) dopamine signaling and c) phagocytosis/brain cleanup, neuro-protection and neuro-inflammation are known to be present in all five mentioned diseases. Focusing on one or even multiple vitamin A5/X - RXR-mediated pathways will offer valuable options not only to better understand pathogenesis of these complex multi-mechanistic diseases, but also offer targeted prevention and treatment options using nutritionally or/ and pharmacological intervention strategies with selected vitamin A5/X-derivatives.

Indirect evidence and consequences of nervous system relevant RXR-mediated pathways

RXR exhibits a key role in nuclear receptor signaling by acting as universal heterodimeric partners for approximately one third of the nuclear receptor superfamily. While a few "non-permissive" RXR heterodimers (RXR – RAR, RXR – thyroid hormone receptor (TR) and RXR – VDR) require an agonist of the partner receptor for activation, several other "permissive" heterodimers can be activated by the sole binding of an RXR agonist. RXR ligands can therefore act through several heterodimers among which relevance for the nervous system [90] which has been demonstrated especially for the RXR – LXR, RXR – PPARy and RXR – NR4A2 dimers.

Tailless homologue (TLX, NR2E1): In addition, dimerization of RXR with TLX has been observed *in vitro* [281, 282] which plays a critical role in neuronal health as regulator of neuronal stem cell homeostasis [283, 284]. Further studies are needed to evaluate the relevance of RXR – TLX dimerization and whether activation by RXR agonists can act through such dimer.

LXRs: The LXRs [285] are intracellular cholesterol sensors and endogenously activated by oxidized cholesterol

metabolites (so-called oxysterols) such as 24(S),25-epoxycholesterol and 24(S)-hydroxycholesterol [286, 287]. They control cholesterol homeostasis by regulating the expression of key genes involved in cholesterol transport and metabolism. LXR activation, for example, induces expression of the ATP-binding cassette transporters A1 (ABCA1 and ABCG1) and the apolipoproteins ApoE and ApoC. Both LXR subtypes LXRα (NR1H2) and LXRβ (NR1H3) form permissive heterodimers with RXRs and are found in the brain where they regulate central nervous system cholesterol homeostasis and have an anti-inflammatory role [287, 288]. Cholesterol is a key component of neuronal cell membranes and myelin sheaths, and thus highly important for the brain [79, 289, 290]. Central nervous system cholesterol mainly stems from de novo synthesis in astrocytes and transport to neurons, both of which are regulated by LXRs [287, 291]. LXR activation, for example, induces cholesterol efflux transporters ABCA1 and ABCG1 as well as ApoE for cholesterol transport to neurons [291, 292]. Lack of LXR, especially LXRB, caused severe neuronal impairment with neuronal degeneration and thinner myelin sheaths as well as learning and motor deficits [215, 293, 294]. Moreover, LXR activation has anti-inflammatory effects in microglial cells, in particular by reducing cyclooxygenase 2 (COX-2) and inducible NO-synthase (iNOS) expression and NFkB activity [295, 296]. LXR-signaling is hence essential for neuronal health and RXR agonists might contribute to these aspacts through RXR - LXR dimer activation.

In addition to cholesterol homeostasis and anti-inflammatory activity, LXR-dependent mechanisms are speculated to have beneficial effects in neurodegenerative diseases. In AD, there is evidence for an involvement of LXR signaling in Aβ elimination/clearance [297, 298] and a strong connection appears from the ApoE epsilon-4 allele, which is a risk factor for the disease [299]. ApoE, whose expression is regulated by LXR, mediates brain cholesterol transport. The protein is therefore highly abundant in the CNS and was found to associate with Aβ plaques suggesting a potential protective role [299, 300, 301]. Interestingly, LXRα or LXRβ knockout in transgenic APP/PS1 mice (a mouse model for AD), led to an increased Aβ plaque burden [296]. In multiple sclerosis, LXR activity is thought to contribute to beneficial effects by promoting antiinflammatory effects in microglia [302] and by controlling homeostasis of cholesterol - a critical component of myelin sheaths - in myelinating oligodendrocytes [303]. In addition to providing cholesterol for re-myelination, LXR seems to be involved in regulating phagocytosis of myelin and cell debris after demyelination and the subsequent switch to an anti-inflammatory remyelinating phase [302]. Moreover, it was found that LXR activation enhanced, while LXR knockout reduced, expression of myelin basic protein and proteolipid protein, as two major compounds of myelin [215]. LXRs and the RXR-LXR dimers thus hold therapeutic potential in neurodegeneration.

PPARs: Similar to LXR, the PPARs are activated by fatty acid and lipid metabolites [304, 305, 306, 307, 308]. They are crucially involved in the regulation of adipose tissue differentiation [309], glucose and lipid metabolism and in inflammation. All three PPAR isotypes are expressed in the brain [310], but a role in neuronal health is especially speculated for PPARy. Evidence for a neuroprotective potential of PPARy arises from the observation that treatment with glitazones reduced the risk to develop dementia [311, 312, 313] and PD [314]. Moreover, elevated PPARy levels were detected in the cerebrospinal fluid of multiple sclerosis patients [315] while PPARy expression in macrophages was diminished [316]. In the experimental autoimmune encephalomyelitis (EAE) mouse model of MS, PPARy agonist treatment ameliorated the disease [317, 318] and synergized with RXR agonist treatment [320]. The beneficial effects of PPARy in neurodegenerative diseases are mechanistically referred to as mitochondrial protection, enhanced oligodendrocyte differentiation, antiinflammatory effects, enhanced phagocytic activity of macrophages and microglia, improved clearance of myelin debris and modulation of T-cell differentiation [91, 318, 319, 322, 323, 324, 325, 326, 327]. In dementia and related diseases, PPARy activation is additionally hypothesized to reduce Aβ and tau burden [91, 319] by induction of insulin-degrading enzyme, which can also degrade Aβ [328, 329] and downregulation of β-secretase expression which is involved in the formation of Aß from amyloid precursor protein (APP) [329, 330, 331]. Although the neuroprotective effects have mainly been demonstrated with PPARy agonists, the fact that PPARy forms an obligate RXR heterodimer supports the assumption that RXR agonists can act through the permissive RXR - PPARy heterodimer to exhibit beneficial effects on neuronal health.

NR4A2: A strong neuroprotective role is also ascribed to Nurr1/NR4A2 which can act as monomer and homodimer but also as heterodimer with RXRs [332, 333, 334]. It is a member of the nerve growth factor-induced clone B (NGFI-B) [335] subfamily (NR4A) of nuclear hormone receptors for which endogenous ligands remain elusive. NR4A2 lacks the canonical ligand-binding site of nuclear receptors [336] but can be modulated through other regions of the ligand-binding domain with small molecules [337, 338, 339, 340, 341]. It is mainly expressed in the central nervous system [342], where it regulates dopaminergic neuron development and survival [245] as well as inflammatory processes [343, 344]. Neuroprotective potential of NR4A2 is supported by several observations from animal models and human patients. Decreased neuronal levels of NR4A2 (knockdown or heterozygous knockout) in mice caused a phenotype with features of PD [345] and worsened the pathology of AD models [346] and experimental autoimmune encephalomyelitis [347]. Furthermore, diminished levels of NR4A2 were detected in rodent models of PD [348, 349] and AD [350], and in human patients [351, 352]. Preliminary data also suggest that pharmacological NR4A2 activation counteracts neurodegenerative pathologies [341, 346, 353] although high-quality chemical tools for modulating NR4A2 activity are not available yet. The lack of potent and selective NR4A2 modulators and the fact that NR4A2 forms a permissive heterodimer with RXR has inspired the development of RXR - NR4A2 dimer-selective RXR agonists such as BRF110 [219] and IRX4204 [220], which have been shown to exhibit neuroprotective activity in vitro and in vivo. These findings support potential neuroprotection by RXR-agonists in the central nervous system via activation of the RXR - NR4A2 heterodimer.

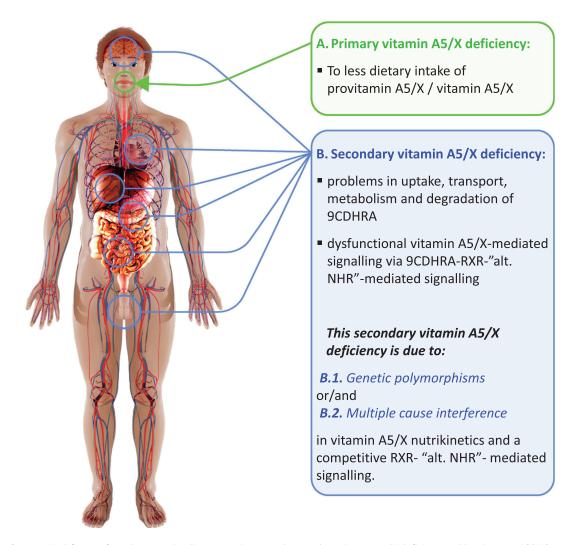
In summary, vitamin A5/X can influence via RXR-activation and in addition to ligands of partner nuclear hormone receptors many pathways with impact on mental health, healthy brain aging and the prevention of neurological diseases and thereby vitamin A5/X may serve as a master switch enabling these response pathways [98, 102, 198].

Nutrition and RXR-mediated signaling; the prediction of a primary vitamin A5/X deficiency

Key processes that are both RXR-mediated and found to be dysregulated in neurological disorders include cholesterol metabolism, systemic immune-mediated mechanisms, general neuro-protection, phagocytosis/brain cleanup, Aβ-clearance, myelination/re-myelination, homeostatic synaptic plasticity and dopamine signaling (Figure 4). Here, we propose that **a primary vitamin A5/X deficiency**, defined by a non-sufficient nutritional supply of vitamin A5/X / provitamin A5/X, which is present mainly in fruits and vegetables [198] and postulated via a logical step by step cascade might contribute to the large prevalence of neurological disorders in the Western society [354).

These neurological disorders represent a growing socioeconomic burden and are expected to become one of the leading causes of disability worldwide along with the projected demographical changes [354, 355]. Current commercial data from the pharma-industry confirms the importance of neurological diseases while a large share of all pharma sales in the Western world relying on neuro-pharmaceuticals [354, 356].

A deficiency of nutritional supply is named a primary deficiency, in this case a **primary vitamin A5/X deficiency** (Figure 5). These primary vitamin deficiencies can


easily be prevented by simply adding food components rich in these specific vitamins to our daily food.

Provitamin A5/X is present, like many other carotenoids, in various vegetables with a focus on leafy and root vegetables [198]. A larger range of fruits and vegetables was until now not analysed and is under investigation. Studies will focus especially on processed fruits and vegetables and products containing them, as thermal food processing was associated with induced isomerisation of all-trans-β,β-carotene/provitamin A(1) towards 9-cis-β,β-carotene/provitamin A5/X [357, 358, 359]. Regarding animal-derived food products screening will focus on meat and meat products from various nutritional relevant species, and animalderived food products like eggs, milk and dairy products [99]. In addition, a large array of seafood products from fishes, crustaceans and others, which life are based directly or indirectly on a plankton/algae-based diet [360], are under screening. The Dunaliella algae strains [361], are known to be very high in 9-cis-β,β-carotene/provitamin A5/X [198, 362]. Whether these algae have a broader nutritional relevance for aquatic and terrestrial animals is questionable because especially this carotenoid, 9-cis-β,βcarotene/provitamin A5/X, accumulations depends on stress exposure [361, 363], these algae are naturally limited to high saline environment and are present in very restricted territories world-wide [364].

Polymorphisms in genes of the RXRsignaling pathways as a secondary vitamin A5/X deficiency

Besides nutritional intake as the cause of a primary vitamin A5/X deficiency genetic polymorphism in the genes of the RXR-signalling cascade are causes of a secondary vitamin A5/X deficiency (Figures 5 and 6). To dissect RXR-mediated signaling a large overlap between RAR -RXR-mediated signaling mediated by the endogenous RAR-ligand ATRA as well as by the endogenous RXR-ligand 9CDHRA must be dissected and evaluated [102]. A large overlap in nutrikinetics for both ligands is likely given for synthesizing metabolic enzymes like beta-caroteneoxygenase 1 (BCO1) and retinaldehyde dehydrogenases (ALDH1A1/2), retinoid binding proteins like retinol binding protein 4 (RBP4) and the cellular retinoic acid binding proteins (CRABP1/2) in addition to the RARs, which are mainly associated to ATRA - RAR-mediated signaling [103, 365]. Due to the high similarity in their chemical structure of 9CDHRA and ATRA, it is highly likely that these enzymes and binding-proteins are also involved in the regulation and control of ligand-regulated 9CDHRA - RXR - "alternative NHR" -mediated signaling.

Retinol binding protein 1 (RBP1) seems to be more specific for 9CDHRA - RXR - "alternative NHR"-mediated

Figure 5. Summarized figure of mechanisms leading to a primary and secondary vitamin A5/X deficiency. *Abbreviations:* 9CDHRA: 9-cis-13,14-dihydroretinoic acid; RXR: retinoid X receptor; NHR: nuclear hormone receptor; alt: alternative.

signaling while an involvement of RBP1 in RAR - RXR-mediated signalling is also given [98, 100, 366]. In consequence, by controlling 9CDHRA production, RBP1 is thereby also involved in the individual alternative NHR - RXR-mediated signalling like for the RXRs, the LXRs, the PPARs, the VDR and the NR4A2 for 9CDHRA - RXR - "alternative NHR"-mediated signalling [98, 102, 198].

For all of these gene polymorphisms, it is known, which have a local [261, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388] or systemic [378, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 401, 402, 403, 404, 405, 406, 407, 408] relevance for prevention of nervous system diseases and drug addiction as well as for general healthy aging and optimal mental health (Figure 6).

When evaluating these polymorphisms present in humans then individual nutritional strategies are possibly relevant for an individual, to be tested for its genetic background and the possible cause of a **secondary vitamin** A5/X deficiency. Such secondary vitamin deficiency can be targeted with different pharmaceutical or nutritional strategies to ameliorate or even prevent these specific deficiency syndromes.

Is there a specific vitamin A5/X deficiency in humans?

Based on a general definition the term "vitamin deficiency" relates to two different kinds of scenarios; a) a deficiency based on too low intake of the vitamin defining thereby a **primary vitamin VA5/X deficiency** and b) a deficiency of uptake and further bioactivation as well as further processing of vitamin-mediated signaling, as a **secondary vitamin A5/X deficiency**, outlined in Figures 5 and 6. As the primary deficiency relates to a non-appropriate nutrition while the secondary deficiency related more to a

polymorphisms / targeted genetic modification (*)			
resulting in			
	• local-	• systemic-	
	dysfunctions / diseases		
RAR - RXR-mediated			ref.
BCO1	-	• obesity (*)	399
		atherosclerosis	397
RBP4	-	 coronary artery disease 	396
		• diabetes	400
CRABP2	-	 LDL homeostasis 	398
ALDH1A1/2	Parkinson's	• blood pressure regulation	374, 389
	schizophrenia		371
	alcoholism		367
	• autism		377
RARα/β/γ	-	• immune response	403
RAI1	• depression	-	373
RXR - "alt. NHR" -mediated			
RBP1	• glioma	-	379
RXRα/β/γ	• schizophrenia	lipodystrophy	261, 394
	• Alzheimer's	dyslipidaemia	393, 395, 368
		• diabetes	404
		hypertension	401
		hyperlipidaemia	401
RXR-CoA	• schizophrenia	-	370
LXRα/β	Alzheimer's	• lipid / glucose homeostasis	378, 391
		• obesity / diabetes	390
ΡΡΑRα/β/γ	Alzheimer's	• diabetes	388, 402
''''	• glioma	• dyslipidaemia	376, 392
	• schizophrenia	, ,	261, 375
VDR	Multiple sclerosis	• diabetes	380, 405
	• autism	• metabolic syndrome	381, 382, 406, 407
	• Parkinson's	 hyperlipidaemia 	383, 408
	• Alzheimer's	**	384, 385
	depression		386
	• cognitive-		
	impairment		384, 387
NR4A2	• schizophrenia	-	261
· · · · · · · · · · · · · · · · · · ·	,		

Figure 6. Gene mutations and polymorphisms occurring in indirect and direct brain and nervous system functions involved in RXR-mediated signaling pathways. *Abbreviations*: RXR: retinoid X receptor; NHR: nuclear hormone receptor; alt.: alternative; VDR: vitamin D receptor; RAR: retinoic acid receptor; LXR: liver X receptor; PPAR: peroxisome proliferator-activated receptor; NR4A2: nuclear receptor subfamily 4 group A member 2; BCO1: beta carotene oxygenase 1; RBP4: retinol binding protein 4; CRABP2: cellular retinoic acid binding protein 2; ALDH1A: aldehyde dehydrogenase 1A; RBP1: retinol binding protein 1; RAI1: retinoic acid induced gene 1; CoA: coenzyme A.

disease/dysfunctional status or genetic variety, where vitamin-mediated signaling is dysfunctional.

Based on the current knowledge in RXR-mediated signaling the following medium-term effects on general mental health and well-being like mental stress, anxiety, nervousness, depression, general loss enjoyment of life, irritability, insecurity, dissatisfaction, listlessness, sleeping disorders, restlessness, cognitive decline, addictive behaviors to drugs and drug-like stimuli and an increased incidence of neurological diseases are likely dependent on physiological

pathways directly or indirectly involving vitamin A5/X-signaling. Dysfunctional signaling within these pathways may be associated with a vitamin A5/X deficiency. In addition, abnormal expression of (and/or signaling by) RXRs or pathways directly regulated by RXRs can be observed in a number of neurological diseases like neurodevelopmental diseases [204] and psychiatric diseases [92] thereby including autism, attention deficient hyperactivity disorder (ADHD), mental/psychotic disorders like major depression disorder, drug addiction, alcoholism, schizophrenia and

bipolar disorder, or neurodegenerative diseases [93] like AD, PD, dementia, amyotrophic lateral sclerosis (ALS), Huntington's disease and demyelinating diseases like MS and Guillain-Barré syndrome. Such observation suggest, that abnormal RXR-mediated signaling including its modulation by vitamin A5/X might be involved in the physiopathology of these diseases and/or that modulation of vitamin A5/X and RXR-mediated signaling might be an efficient method to normalize or prevent at least some aspects of the physiopathology of these diseases and related symptoms. In summary, when evaluating and summarizing based on a step by step cascade then a primary mediumterm/or long-term vitamin A5/X deficiency might in logical consequence result in non-optimal mental health/ well-being, drug addiction, non-optimal brain-aging, as well as is a potential cause of listed neurological diseases (Figure 7).

As analytical monitoring of provitamin A5/X, vitamin A5/X and active derivatives of vitamin A5/X was just recently established for the human body and food examination it is difficult to associate specific neurological diseases with reduced vitamin A5/X levels in specific easy and more advanced accessible compartments of the organisms. In addition even more importantly reduced vitamin A5/X dietary intakes by specific food components enriched in vitamin A5/X of the daily ingested diet should be studied. However, as important specific functions were already outlined (Figure 4), it would not be surprising and thereby in consequence logical, that – due to low intake of vitamin A5/X and provitamin A5/X – potential deficiency syndromes occur.

Especially vegetables are high in vitamin A5/X [198] and therefor likely reduced intakes of vegetables are co-associated with compromised RXR – vitamin A5/X-signalling, thereby increasing the incidence not only of neurological and psychiatric conditions [409] and mental well-being [410], but also cardio-vascular diseases [411], cancer [412] and allergies [413]. A clear causal and proven step by step connection that reduced vegetable intake results in reduced endogenous vitamin A5/X-derivatives, reduced vitamin A5/X – RXR-mediated signaling and an increased incidence of specific diseases and other RXR-co-associated physiological dysfunctions resulting in non-optimal health and increased prevalence of specific diseases was until now not identified, but appears highly likely and is under current evaluation by us.

The logic approach of the vitamin A5/X concept; a step by step approach

The intake of sufficient vegetables and fruits is associated with low incidences of neurological diseases as major depression disorder, neurodegenerative diseases, demyelinating disorders [414, 415, 416, 417], reduced carving for drugs and drug-like stimuli [418], healthy brain aging [409, 419], a low incidence of cognitive disorder [420] as well as with a general good mental health [409, 419]. To selectively delete vitamin A5/X from the animal or human diet for further targeted evaluation of the effects of a selective vitamin A5/X deficiency is not possible, because fruits and vegetables are not just rich in carotenoids in addition to provitamin A5/X. Indeed, they also contain other carotenoids like lutein/zeaxanthin with beneficial brain-associated effects [421], but also many other food bioactives with beneficial health effects [422]. A clear connection of exclusively the provitamin A5/X content in vegetables with mental health based on RXR-mediated signaling is not possible to examine, while it seems partly logic and reasonable and worth to be studied in further details.

In addition, vitamin A5/X derivatives were synthetically synthesized [99, 100] and tested in relevant models for cognition, stress and anxiety [99, 100, 101]. In these experimental models, these substances selectively confirmed effects on stress and anxiety prevention and improving memory/cognitive functions [99, 100, 101], which can be observed from correlation-based studies with a diet high in vegetables and especially leafy and root vegetables [409, 414, 415, 417, 419]. Not surprisingly, vegetables and especially leafy vegetables are high in provitamin A5/X [198].

In summary, let us conclude that we identified an important food factor which originates from vegetables/leafy vegetables which is likely "one of" or "the" relevant food factor for a general mental health, a well-functioning central and peripheral nervous system, healthy brain aging, drug addiction potential and for the prevention of neurological diseases involving RXR-mediated signaling pathways depending on dietary intake of vitamin A5/X.

Proof of concept in translational clinical supplementation studies

Algae/microalgae extracts have been given not only to animal models [423, 424, 425, 426], but have also been tested and given to human volunteers [427, 428, 429]. These supplementations were targeting diseases where an RXR-mediated dysfunction was observed and this disease phenotype is based on dysfunctional immune responses as well as a dysfunctional lipids and glucose homeostasis [427]. Protection or even a partly reversal of an RXR-dependent phenotype was possible by Dunaliella algae supplementations [427] and associated with their vitamin A5/X - RXR-ligand - precursor function [99, 101]. The direct RXR - LXR target was HDL-cholesterol [430, 431], which was under control of RXR-ligand and serves as an

Potential effects associated with a vitamin A5/X deficiency

Medium-term effects on general mental health / well-being:

- mental stress
- anxiety / insecurity / aggression / irritability / nervousness
- reduced cognitive abilities
- depression
- loss of appetite / general loss enjoyment of life / dissatisfaction
- listlessness
- > sleep disorders
- restlessness
- addictive behaviour towards drugs and drug-like stimuli
- > non-optimal brain aging

Long-term negative effects on neurological disease prevalence and progression:

- neurodevelopmental diseases autism, attention deficient hyperactivity disorder (ADHD)
- mental / psychotic diseases major depression disorder / drug addictions / alcoholism / dementia / Schizophrenia / bipolar disorder
- neurodegenerative diseases Alzheimer's disease / Parkinson's disease / dementia / amyotrophic lateral sclerosis (ALS) / Multiple sclerosis (MS) / Huntington's disease
- demyelination diseases multiple sclerosis (MS), Guillain-Barré syndrome
- neuro-immunological diseases

Figure 7. Summary: What are the potential effects of the step by step highlighted vitamin A5/X deficiency?

easy accessible marker of RXR-mediated signaling [100]. These clinical interventions clearly link vitamin A5/X / provitamin A5/X supplementations with improved RXR-mediated signaling in humans. Recently, a correlation of serum 9CDHRA levels, in physiological and non-pathophysiological conditions, with the RXR-target, IL4, as a marker of general Th2-immune response, was found in humans [167]. Interestingly, IL4 is also associated with critical functions in the normal brain, such as memory and learning [432].

Based on these clinical studies and chosen application dosages of the algae extracts given, which can easily be calculated as equivalent to vitamin A5/X-units, similar beneficial effects on further targets of RXR-mediated

signaling for good mental health, drug addiction potential, healthy brain aging and for the prevention of neurological diseases can be logically foreseen and will deserve further investigation [98, 99].

What is urgently or prospectively missing in vitamin A5/X research?

Our recommendations for future research and actions taken by governmental authorities:

 What are the direct food sources of vitamin A5/X and provitamin A5/X? How much of these food sources do individual groups eat on a daily or monthly basis? Do we eat sufficient amounts of these food components to

- have enough vitamin A5/X in our daily diet? Are these vitamin A5/X sources sufficient to maintain optimal RXR-mediated signaling for a good mental health?
- Are there population groups which eat less vitamins A5/X and which have a higher incidence of RXR-signaling dependent diseases or dysfunctions? Are these diseased persons or person like pregnant woman, elderly or children just dependent on a primary vitamin A5/X deficiency based on food intake or is a secondary vitamin A5/X deficiency being fully, additive or partly present?
- How can we detect such a vitamin A5/X deficiency? Which direct and indirect measures must be performed? Which biological matrix is needed to determine a vitamin A5/X deficiency? Would there be an easy option "to do" in daily doctor's life or even options to be performed by health-conscious individuals on a daily base?
- Are there crucial metabolic steps or selective food compounds which are vitamin A(1) - RAR - RXR-independent and specific for the vitamin A5/X-RXR signalling cascade to selectively examine a vitamin A5/ X-selective vitamin A5/X deficiency in genetic manipulated animals of even in humans
- Are there preventive or even treatment-based supplementation options in development for people with a non-well mental health, drug addiction or even with mental diseases/neurological diseases as novel options in the food and pharma area?

Summary

A healthy balanced diet, rich in vegetables, especially root and leafy vegetables, is associated with a good mental health and well-functioning central and peripheral nervous system [10, 12, 13, 68]. Compounds present especially in these vegetables may contribute as key factors for medium-/long-term effects on mental well-being, healthy brain aging, drug addiction potential and for the prevention of neurological diseases.

While many nutrients were associated with a healthy well-performing brain, no clear "food – nutrient – signaling – clinically proven positive impact" was identified so far for any specific substance. Many dietary suggestions for mental health were summarised indicating to be rich in nutritional precursors for the nuclear hormone receptors mentioned in this article, while even leafy vegetables rich in RXR-ligand precursors are always included in these recommendations [433]. We now added vitamin A5/X and interaction of further signaling via the vitamin A5/X-receptors, the RXRs, as a new piece to this large puzzle as a food component and specific nutrient towards an optimal physiological/nutritional signaling concept.

Using a logical step by step cascade approach summarized in this review, we associate a low dietary intake of green vegetables, which are high in vitamin A5/X, like present in large parts of the Western society with non-optimal brain health and cognitive performance; this may represent a significant public health problem, which could – based on a logical step by step cascade – be easily corrected by advising higher dietary intakes of provitamin A5/X / vitamin A5/X via: a) natural food components, b) food fortification with natural based extracts rich in vitamin A5/X, or c) additional dietary supplementation of vitamin A5/X for medium/long-term effects in improving and maintaining brain health, enabling healthy brain aging, prevention of drug addiction potential and prevention of high prevalence of common neurological diseases in the Western society.

Just recently, this new vitamin pathway, with direct and indirect influence on brain-/nervous-system functions, was found. Based on nutritional calculations this vitamin seems to be too low in the general Western diet [198]. A high daily dietary vegetable (especially green vegetables) intake of provitamin A5/X, optimal serum levels of provitamin A5/X / vitamin A5/X, further optimal vitamin A5/X receptor (RXR)-mediated signaling and further transcriptional regulation directly or indirectly are all of relevance for the brain based on current scientific evidence [104, 198, 421].

These facts are all proven on a step by step cascade in a comparable manner like established for most other vitamins, while the whole cascade starting from A) vegetable intake via B) systemic vitamin A5/X levels via C) local vitamin A5/X-receptor (RXR)-mediated signaling via D) alteration of gene transcriptional regulation of response ways in the brain and E) towards direct effects on good mental health and performance, a well-functioning central and peripheral nervous system, healthy brain aging as well as the prevention of drug addiction potential and neurological diseases have not been proven in human-based clinical studies, which is again comparable to most other vitamins.

Novel nutritional strategies and pharma-options based on the vitamin A5/X cluster derivatives aiming a maintenance or even additive/"plus"-activity for a good mental health and pharma options for treatment of neurological diseases are discussed and partly in current development.

References

 Okbay A, Baselmans BM, De Neve JE, Turley P, Nivard MG, Fontana MA, et al. Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat Genet. 2016;48(6):624-33.

- 2. Murali V, Oyebode F. Poverty, social inequality and mental health. Advances in Psychic Treament. 2018;10(3):216-24.
- 3. Velten J, Bieda A, Scholten S, Wannemuller A, Margraf J. Lifestyle choices and mental health: a longitudinal survey with German and Chinese students. BMC Public Health. 2018;18(1):632.
- 4. Gschwandtner A, Jewell S, Kambhampati US. Lifestyle and Life Satisfaction: The Role of Delayed Gratification. Journal of Happiness Studies. 2022;23:1043–72.
- 5. Sharma A, Madaan V, Petty FD. Exercise for mental health. Prim Care Companion J Clin Psychiatry. 2006;8(2):106.
- Scott AJ, Webb TL, Martyn-St James M, Rowse G, Weich S. Improving sleep quality leads to better mental health: A metaanalysis of randomised controlled trials. Sleep Med Rev. 2021;60;101556.
- 7. Fernandes A, Van Lenthe FJ, Vallee J, Sueur C, Chaix B. Linking physical and social environments with mental health in old age: a multisensor approach for continuous real-life ecological and emotional assessment. J Epidemiol Community Health. 2020;75(5):477–83.
- 8. Miquel S, Champ C, Day J, Aarts E, Bahr BA, Bakker M, et al. Poor cognitive ageing: Vulnerabilities, mechanisms and the impact of nutritional interventions. Ageing Res Rev. 2018;42:40–55.
- Flanagan E, Lamport D, Brennan L, Burnet P, Calabrese V, Cunnane SC, et al. Nutrition and the ageing brain: Moving towards clinical applications. Ageing Res Rev. 2020;62:101079.
- Vauzour D, Camprubi-Robles M, Miquel-Kergoat S, Andres-Lacueva C, Banati D, Barberger-Gateau P, et al. Nutrition for the ageing brain: Towards evidence for an optimal diet. Ageing Res Rev. 2017;35:222-40.
- Young HA, Geurts L, Scarmeas N, Benton D, Brennan L, Farrimond J, et al. Multi-nutrient interventions and cognitive ageing: are we barking up the right tree? Nutr Res Rev 2022; 1–13
- 12. Ekstrand B, Scheers N, Rasmussen MK, Young JF, Ross AB, Landberg R. Brain foods the role of diet in brain performance and health. Nutr Rev. 2020;79(6):693–708.
- 13. Grajek M, Krupa-Kotara K, Bialek-Dratwa A, Sobczyk K, Grot M, Kowalski O, et al. Nutrition and mental health: A review of current knowledge about the impact of diet on mental health. Front Nutr. 2022;9:943998.
- 14. Hill JO, Wyatt HR, Peters JC. Energy balance and obesity. Circulation. 2012;126(1):126–32.
- 15. Bauer K, Schild S, Sauer H, Teufel M, Stengel A, Giel KE, et al. Attitude Matters! How Attitude towards Bariatric Surgery Influences the Effects of Behavioural Weight Loss Treatment. Obes Facts. 2021;14(5):531–42.
- Gibson D, Workman C, Mehler PS. Medical Complications of Anorexia Nervosa and Bulimia Nervosa. Psychiatr Clin North Am. 2019;42(2):263-74.
- 17. Steck SE, Murphy EA. Dietary patterns and cancer risk. Nat Rev Cancer. 2020;20(2):125–38.
- 18. Holtmann G, Shah A, Morrison M. Pathophysiology of Functional Gastrointestinal Disorders: A Holistic Overview. Dig Dis. 2017;35(Suppl 1):5-13.
- Riedlinger C, Schmidt G, Weiland A, Stengel A, Giel KE, Zipfel S, et al. Which Symptoms, Complaints and Complications of the Gastrointestinal Tract Occur in Patients With Eating Disorders? A Systematic Review and Quantitative Analysis. Front Psychiatry. 2020;11:195.
- 20. Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al. The Microbiota-Gut-Brain Axis. Physiol Rev. 2019;99(4):1877-2013.
- 21. Casagrande SS, Wang Y, Anderson C, Gary TL. Have Americans increased their fruit and vegetable intake? The

- trends between 1988 and 2002. Am J Prev Med. 2007;32(4): 257-63.
- 22. Tavoularis G, Hebel P. Fruits et légumes: les Français suivent de moins en moins la recommandation. Centre de recherche pour l'étude et l'observation des conditions de vie (CREDOC). 2017:292.
- 23. Mensink GB, Truthmann J, Rabenberg M, Heidemann C, Haftenberger M, Schienkiewitz A, et al. Fruit and vegetable intake in Germany: results of the German Health Interview and Examination Survey for Adults (DEGS1). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2013; 56(5–6):779–85.
- 24. Munt AE, Partridge SR, Allman-Farinelli M. The barriers and enablers of healthy eating among young adults: a missing piece of the obesity puzzle: A scoping review. Obes Rev. 2017;18(1):1–17.
- 25. Westenhoefer J. Age and gender dependent profile of food choice. Forum Nutr. 2005;57:44-51.
- Wardle J, Haase AM, Steptoe A, Nillapun M, Jonwutiwes K, Bellisle F. Gender differences in food choice: the contribution of health beliefs and dieting. Ann Behav Med. 2004;27(2):107–16.
- 27. Mensink G, Was essen wir heute? Berlin: Robert Koch Institut; 2002.
- Saha S, Al Mamun MA, Kabir MR. Factors Affecting Fast Food Consumption among College Students in South Asia: A Systematic Review. J Am Nutr Assoc. 2022;41(6):627–37.
- 29. Keenan DL, Dharmarajan AM, Zacur HA. Dietary carrot results in diminished ovarian progesterone secretion, whereas a metabolite, retinoic acid, stimulates progesterone secretion in the in vitro perfused rabbit ovary. Fertil Steril. 1997;68(2):358–63.
- 30. Gerber M, Hoffman R. The Mediterranean diet: health, science and society. Br J Nutr. 2015;113(Suppl 2):S4-10.
- 31. Lopez-Taboada I, Gonzalez-Pardo H, Conejo NM. Western Diet: Implications for Brain Function and Behavior. Front Psychol. 2020;11:564413.
- 32. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–14.
- 33. Mack I, Schwille-Kiuntke J, Mazurak N, Niesler B, Zimmermann K, Monnikes H, et al. A Nonviable Probiotic in Irritable Bowel Syndrome: A Randomized, Double-Blind, Placebo-Controlled. Multicenter Study. Clin Gastroenterol Hepatol. 2022;20(5):1039–47.e9.
- 34. Akter S, Park JH, Jung HK. Potential Health-Promoting Benefits of Paraprobiotics. Inactivated Probiotic Cells. J Microbiol Biotechnol. 2020;30(4):477–81.
- 35. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8): 491–502.
- 36. Morvan Le, de Sequeira C, Kaeber M, Cekin SE, Enck P, Mack I. The Effect of Probiotics on Quality of Life, Depression and Anxiety in Patients with Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. J Clin Med. 2021;10(16):3497.
- Morvan Le, de Sequeira C, Hengstberger C, Enck P, Mack I.
 Effect of Probiotics on Psychiatric Symptoms and Central Nervous System Functions in Human Health and Disease: A Systematic Review and Meta-Analysis. Nutrients. 2022;14(3): 621
- 38. Su GL, Ko CW, Bercik P, Falck-Ytter Y, Sultan S, Weizman AV, et al. AGA Clinical Practice Guidelines on the Role of

- Probiotics in the Management of Gastrointestinal Disorders. Gastroenterology. 2022;159(2):697–705.
- Wang H, Lee IS, Braun C, Enck P. Effect of Probiotics on Central Nervous System Functions in Animals and Humans: A Systematic Review. J Neurogastroenterol Motil. 2016;22(4): 589–605.
- Wang H, Braun C, Murphy EF, Enck P. Bifidobacterium longum 1714 Strain Modulates Brain Activity of Healthy Volunteers During Social Stress. Am J Gastroenterol. 2019;114(7):1152–62.
- 41. Valentine G, Sofuoglu M. Cognitive Effects of Nicotine: Recent Progress. Curr Neuropharmacol. 2018;16(4):403-14.
- 42. Fisher DJ, Daniels R, Jaworska N, Knobelsdorf A, Knott VJ. Effects of acute nicotine administration on behavioral and neural (EEG) correlates of working memory in non-smokers. Brain Res. 2012;1429:72–81.
- 43. Goriounova NA, Mansvelder HD. Short- and long-term consequences of nicotine exposure during adolescence for prefrontal cortex neuronal network function. Cold Spring Harb Perspect Med. 2012;2(12):a012120.
- 44. Caliri AW, Tommasi S, Besaratinia A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutration Research / Reviews in Mutation Research. 2021;787:108365.
- 45. Papastefanou C. Radioactivity of tobacco leaves and radiation dose induced from smoking. Int J Environ Res Public Health. 2009;6(2):558-67.
- 46. Wootton RE, Richmond RC, Stuijfzand BG, Lawn RB, Sallis HM, Taylor GMJ, et al. Evidence for causal effects of lifetime smoking on risk for depression and schizophrenia: a Mendelian randomisation study. Psychol Med. 2019;50(14):2435–43.
- 47. Doyle SR, Donovan DM, Simpson TL. Validation of a nine-dimensional measure of drinking motives for use in clinical applications: the desired effects of drinking scale. Addict Behav. 2011;36(11):1052–60.
- 48. King A, Vena A, Hasin DS, deWit H, O'Connor SJ, Cao D. Subjective Responses to Alcohol in the Development and Maintenance of Alcohol Use Disorder. Am J Psychiatry. 2021;178(6):560-71.
- 49. Room R, Babor T, Rehm J. Alcohol and public health. Lancet. 2005;365(9458):519-30.
- 50. Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51(1):83-133.
- 51. EFSA.. Scientific Opinion on the safety of caffeine. EFSA Journal. 2015;13(5):4102.
- 52. Alasmari F, Caffeine induces neurobehavioral effects through modulating neurotransmitters. Saudi Pharm J. 2020;28(4): 445–51.
- 53. Bertasi RAO, Humeda Y, Bertasi TGO, Zins Z, Kimsey J, Pujalte G. Caffeine Intake and Mental Health in College Students. Cureus. 2021;13(4):e14313.
- 54. Tajik N, Tajik M, Mack I, Enck P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. Eur J Nutr. 2017;56(7):2215–44.
- 55. Socala K, Szopa A, Serefko A, Poleszak E, Wlaz P. Neuro-protective Effects of Coffee Bioactive Compounds: A Review. Int J Mol Sci. 2021;22(1):107.
- 56. Ikram M, Park TJ, Ali T, Kim MO. Antioxidant and Neuro-protective Effects of Caffeine against Alzheimer's and Parkinson's Disease: Insight into the Role of Nrf-2 and A2AR Signaling. Antioxidants (Basel). 2020;9(9):902.
- 57. Ward AS, Kelly TH, Foltin RW, Fischman MW. Effects of d-amphetamine on task performance and social behavior of

- humans in a residential laboratory. Exp Clin Psychopharmacol. 1997;5(2):130-6.
- 58. Greene SL, Kerr F, Braitberg G. Review article: amphetamines and related drugs of abuse. Emerg Med Australas. 2008;20(5):391–402.
- Riezzo I, Fiore C, De Carlo D, Pascale N, Neri M, Turillazzi E, et al. Side effects of cocaine abuse: multiorgan toxicity and pathological consequences. Curr Med Chem. 2012;19(33): 5624–46.
- 60. Vickery AW, Finch PM. Cannabis: are there any benefits? Intern Med J. 2020;50(11):1326-32.
- 61. Karila L, Roux P, Rolland B, Benyamina A, Reynaud M, Aubin HJ, et al. Acute and long-term effects of cannabis use: a review. Curr Pharm Des. 2014;20(25):4112–8.
- 62. Godino A, Salery M, Durand-de Cuttoli R, Estill MS, Holt LM, Futamura R, et al. Transcriptional control of nucleus accumbens neuronal excitability by retinoid X receptor alpha tunes sensitivity to drug rewards. neuron. 2023;111:1–15.
- 63. Walker DM, Cates HM, Loh YE, Purushothaman I, Ramakrishnan A, Cahill KM, et al. Cocaine Self-administration Alters Transcriptome-wide Responses in the Brain's Reward Circuitry. Biol Psychiatry. 2018;84(12):867–80.
- 64. Reichelt AC, Rank MM. The impact of junk foods on the adolescent brain. Birth Defects Res. 2017;109(20): 1649-58.
- 65. Fritz BM, Munoz B, Yin F, Bauchle C, Atwood BK. A High-fat, High-sugar 'Western' Diet Alters Dorsal Striatal Glutamate, Opioid, and Dopamine Transmission in Mice. Neuroscience. 2018;372:1–15.
- 66. Edwin Thanarajah S, DiFeliceantonio AG, Albus K, Kuzmanovic B, Rigoux L, Iglesias S, et al. Habitual daily intake of a sweet and fatty snack modulates reward processing in humans. Cell Metab. 2023;35(4):571–84.e6.
- 67. Ogilvie KM, Saladin R, Nagy TR, Urcan MS, Heyman RA, Leibowitz MD. Activation of the retinoid X receptor suppresses appetite in the rat. Endocrinology. 2004;145(2):565–73.
- 68. Spencer SJ, Korosi A, Laye S, Shukitt-Hale B, Barrientos RM. Food for thought: how nutrition impacts cognition and emotion. NPJ Sci Food. 2017;1:7.
- 69. Mukerjee S, Saeedan AS, Ansari MN, Singh M. Polyunsaturated Fatty Acids Mediated Regulation of Membrane Biochemistry and Tumor Cell Membrane Integrity. Membranes (Basel). 2021;11(7):479.
- 70. Harrison FE, May JM. Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radic Biol Med. 2009;46(6):719-30.
- 71. La Fata G, Weber P, Mohajeri MH. Effects of vitamin E on cognitive performance during ageing and in Alzheimer's disease. Nutrients. 2014;6(12):5453-72.
- Zhao R, Han X, Zhang H, Liu J, Zhang M, Zhao W, et al. Association of vitamin E intake in diet and supplements with risk of dementia: A meta-analysis. Front Aging Neurosci. 2022;14:955878.
- 73. Yang W, Cui K, Li X, Zhao J, Zeng Z, Song R, et al. Effect of Polyphenols on Cognitive Function: Evidence from Population-Based Studies and Clinical Trials. J Nutr Health Aging. 2021;25(10):1190–204.
- 74. Vauzour D. Dietary polyphenols as modulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects. Oxid Med Cell Longev. 2012;2012.
- 75. Spencer JP. Flavonoids and brain health: multiple effects underpinned by common mechanisms. Genes Nutr. 2009; 4(4):243–50.

- 76. Rendeiro C, Rhodes JS, Spencer JP. The mechanisms of action of flavonoids in the brain: Direct versus indirect effects. Neurochem Int. 2015;89:126–39.
- 77. Li J, Abdel-Aal EM. Dietary Lutein and Cognitive Function in Adults: A Meta-Analysis of Randomized Controlled Trials. Molecules. 2021;26(19):5794.
- 78. Yagi A, Nouchi R, Butler L, Kawashima R. Lutein Has a Positive Impact on Brain Health in Healthy Older Adults: A Systematic Review of Randomized Controlled Trials and Cohort Studies. Nutrients. 2021;13(6):1746.
- Bjorkhem I, Meaney S. Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol. 2004;24(5): 806-15.
- 80. Horrocks LA, Yeo YK. Health benefits of docosahexaenoic acid (DHA). Pharmacol Res. 1999;40(3):211-25.
- 81. Lauritzen L, Brambilla P, Mazzocchi A, Harslof LB, Ciappolino V, Agostoni C. DHA Effects in Brain Development and Function. Nutrients. 2016;8(1):6.
- Lengqvist J, Mata De Urquiza A, Bergman AC, Willson TM, Sjovall J, Perlmann T, et al. Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain. Mol Cell Proteomics. 2004;3(7):692-703.
- 83. de Urquiza AM, Liu S, Sjoberg M, Zetterstrom RH, Griffiths W, Sjovall J, et al. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science. 2000;290(5499): 2140-4.
- 84. Krezel W, Rühl R, de Lera AR. Alternative retinoid X receptor (RXR) ligands. Mol Cell Endocrinol. 2019;491.
- 85. Kennedy DO. B Vitamins and the Brain: Mechanisms, Dose and Efficacy-A Review. Nutrients. 2016;8(2):68.
- 86. van de Rest O, van Hooijdonk LWA, Doets E, Schiepers OJG, Eilander A, de Groot LCGM. B Vitamins and n-3 Fatty Acids for Brain Development and Function: Review of Human Studies. Ann Nutr Metab. 2012;60:272-92.
- 87. Porter K, Hoey L, Hughes CF, Ward M, McNulty H. Causes, Consequences and Public Health Implications of Low B-Vitamin Status in Ageing. Nutrients. 2016;8(11):725.
- 88. Crawford C, Boyd C, Avula B, Wang YH, Khan IA, Deuster PA. A Public Health Issue: Dietary Supplements Promoted for Brain Health and Cognitive Performance. J Altern Complement Med. 2020;26(4):265–72.
- 89. Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell. 1995;83(6):841-50.
- Willems S, Zaienne D, Merk D. Targeting Nuclear Receptors in Neurodegeneration and Neuroinflammation. J Med Chem. 2021;64(14):9592-638.
- 91. Moutinho M, Codocedo JF, Puntambekar SS, Landreth GE. Nuclear Receptors as Therapeutic Targets for Neurodegenerative Diseases: Lost in Translation. Annu Rev Pharmacol Toxicol. 2018;59:237–61.
- 92. van Neerven S, Kampmann E, Mey J. RAR/RXR and PPAR/ RXR signaling in neurological and psychiatric diseases. Prog Neurobiol. 2008;85(4):433-51.
- 93. Simandi Z, Horvath A, Cuaranta-Monroy I, Sauer S, Deleuze JF, Nagy L. RXR heterodimers orchestrate transcriptional control of neurogenesis and cell fate specification. Mol Cell Endocrinol. 2017;471:51–62.
- Kidd PM. Omega-3 DHA and EPA for cognition, behavior, and mood: clinical findings and structural-functional synergies with cell membrane phospholipids. Altern Med Rev. 2007;12(3): 207-27.
- 95. Jiao J, Li Q, Chu J, Zeng W, Yang M, Zhu S. Effect of n-3 PUFA supplementation on cognitive function throughout the life span from infancy to old age: a systematic review and meta-

- analysis of randomized controlled trials. Am J Clin Nutr. 2014;100(6):1422-36.
- 96. Yanai H. Effects of N-3 Polyunsaturated Fatty Acids on Dementia. J Clin Med Res. 2017;9(1):1-9.
- 97. Bentsen H. Dietary polyunsaturated fatty acids, brain function and mental health. Microb Ecol Health Dis. 2017;v28: 1281916.
- 98. Rühl R, Krezel W, de Lera AR. 9-Cis-13,14-dihydroretinoic acid, a new endogenous mammalian ligand of retinoid X receptor and the active ligand of a potential new vitamin A category: vitamin A5. Nutr Rev. 2018;76(12):929-41.
- 99. Krezel W, Rivas A, Szklenar M, Ciancia M, Alvarez R, de Lera AR, et al. Vitamin A5/X, a new food to lipid hormone concept for a nutritional ligand to control RXR-mediated signaling. Nutrients. 2021;13(3):925.
- 100. Rühl R, Krzyzosiak A, Niewiadomska-Cimicka A, Rochel N, Szeles L, Vaz B, et al. 9-cis-13,14-dihydroretinoic acid is an endogenous retinoid acting as RXR ligand in mice. PLoS Genet. 2015;11(6):e1005213.
- 101. Ciancia M, Rataj-Baniowska M, Zinter N, Baldassarro VA, Fraulob V, Charles AL, et al. Retinoic acid receptor beta protects striatopallidal medium spiny neurons from mitochondrial dysfunction and neurodegeneration. Prog Neurobiol. 2022;212:102246.
- 102. Bohn T, de Lera AR, Landrier JF, Rühl R. Carotenoid metabolites, their tissue and blood concentrations in humans and further bioactivity via retinoid receptormediated signalling. Nutr Res Rev. 2023;36:498-511.
- 103. Bohn T, Desmarchelier C, El SN, Keijer J, van Schothorst EM, Rühl R, et al. B-Carotene in the Human body – Metabolic acitivation pathways – from Digestion to Tissue Distribution. Proc Nutr Soc. 2019;78:68–87.
- 104. Bohn T, Bonet ML, Borel P, Keijer J, Landrier JF, Milisav I, et al. Mechanistic aspects of carotenoid health benefits – where are we now? Nutr Res Rev. 2021;34:276–302.
- 105. Balmer JE, Blomhoff R. Gene expression regulation by retinoic acid. J Lipid Res. 2002;43(11):1773-808.
- 106. Woloszynowska-Fraser MU, Kouchmeshky A, McCaffery P. Vitamin A and Retinoic Acid in Cognition and Cognitive Disease. Annu Rev Nutr. 2020;40:247–72.
- 107. Shearer KD, Stoney PN, Morgan PJ, McCaffery PJ. A vitamin for the brain. Trends Neurosci. 2012;35:733-41.
- 108. Wang S, Yu J, Jones JW, Pierzchalski K, Kane MA, Trainor PA, et al. Retinoic acid signaling promotes the cytoskeletal rearrangement of embryonic epicardial cells. Faseb J. 2018;32(7):3765–81.
- 109. Rondina MT, Freitag M, Pluthero FG, Kahr WH, Rowley JW, Kraiss LW, et al. Non-genomic activities of retinoic acid receptor alpha control actin cytoskeletal events in human platelets. J Thromb Haemost. 2016;14:1082-94.
- 110. Roumes H, Brossaud J, Lemelletier A, Moisan MP, Pallet V, Redonnet A, et al. Retinoids and glucocorticoids have opposite effects on actin cytoskeleton rearrangement in hippocampal HT22 cells. Int J Biochem Cell Biol. 2016;71:102–10.
- 111. Jarvis CI, Goncalves MB, Clarke E, Dogruel M, Kalindjian SB, Thomas SA, et al. Retinoic acid receptor-alpha signalling antagonizes both intracellular and extracellular amyloid-beta production and prevents neuronal cell death caused by amyloid-beta. Eur J Neurosci. 2010;32(8):1246–55.
- 112. Ding Y, Qiao A, Wang Z, Goodwin JS, Lee ES, Block ML, et al. Retinoic acid attenuates beta-amyloid deposition and rescues memory deficits in an Alzheimer's disease transgenic mouse model. J Neurosci. 2008;28(45):11622–34.
- Anguiano J, Garner TP, Mahalingam M, Das BC, Gavathiotis
 E, Cuervo AM. Chemical modulation of chaperone-mediated

- autophagy by retinoic acid derivatives. Nat Chem Biol. 2013;9(6):374–82.
- 114. Corcoran J, Maden M. Nerve growth factor acts via retinoic acid synthesis to stimulate neurite outgrowth. Nat Neurosci. 1999;2(4):307–8.
- 115. So PL, Yip PK, Bunting S, Wong LF, Mazarakis ND, Hall S, et al. Interactions between retinoic acid, nerve growth factor and sonic hedgehog signalling pathways in neurite outgrowth. Dev Biol. 2006;298(1):167-75.
- 116. Isabella AJ, Barsh GR, Stonick JA, Dubrulle J, Moens CB. Retinoic Acid Organizes the Zebrafish Vagus Motor Topographic Map via Spatiotemporal Coordination of Hgf/Met Signaling. Dev Cell. 2020;53(3):344–57.e5.
- 117. Kornyei Z, Gocza E, Ruhl R, Orsolits B, Voros E, Szabo B, et al. Astroglia-derived retinoic acid is a key factor in glia-induced neurogenesis. Faseb J. 2007;21(10):2496–509.
- 118. Mizee MR, Nijland PG, van der Pol SM, Drexhage JA, van Het Hof B, Mebius R, et al. Astrocyte-derived retinoic acid: a novel regulator of blood-brain barrier function in multiple sclerosis. Acta Neuropathol. 2014;128(5):691-703.
- 119. Morrison VE, Smith VN, Huang JK. Retinoic Acid Is Required for Oligodendrocyte Precursor Cell Production and Differentiation in the Postnatal Mouse Corpus Callosum. eNeuro. 2020;7(1):ENEURO.0270-19.2019.
- 120. Huang JK, Jarjour AA, Nait Oumesmar B, Kerninon C, Williams A, Krezel W, et al. Retinoid X receptor gamma signaling accelerates CNS remyelination. Nat Neurosci. 2011;14(1):45–53.
- 121. Goncalves MB, Wu Y, Clarke E, Grist J, Hobbs C, Trigo D, et al. Regulation of Myelination by Exosome Associated Retinoic Acid Release from NG2-Positive Cells. J Neurosci. 2019;39(16):3013–27.
- 122. Wu S, Romero-Ramirez L, Mey J. Retinoic acid increases phagocytosis of myelin by macrophages. J Cell Physiol. 2021;236(5):3929–45.
- 123. Tian Y, Liu B, Li Y, Zhang Y, Shao J, Wu P, et al. Activation of RARalpha Receptor Attenuates Neuroinflammation After SAH via Promoting M1-to-M2 Phenotypic Polarization of Microglia and Regulating Mafb/Msr1/PI3K-Akt/NF-kappaB Pathway. Front Immunol. 2022;13:839796.
- 124. Katsuki H. Nuclear receptors of NR1 and NR4 subfamilies in the regulation of microglial functions and pathology. Pharmacol Res Perspect. 2021;9(6):e00766.
- 125. Thapliyal S, Arendt KL, Lau AG, Chen L. Retinoic acid-gated BDNF synthesis in neuronal dendrites drives presynaptic homeostatic plasticity. Elife. 2022;11:e79863.
- 126. Chen L, Lau AG, Sarti F. Synaptic retinoic acid signaling and homeostatic synaptic plasticity. Neuropharmacology. 2014; 78:3–12.
- 127. EFSA. Scientific opinion on dietary reference values for vitamin A. EFSA journal. 2015;13:4028.
- 128. Carpenter K, Baigent MJ. Vitamin. In: Encyclopedia Britannica; 2022.
- 129. WHOTeam, Safety NaF. Global prevalence of vitamin A deficiency: WHOfFAO of the UN; 1995.
- 130. Tebi A, Belbraouet S, Chao N, Debry G. Plasma vitamin, ß-carotene, and a-tocopherol status according to age and disease in hospitalized elderly. Nutrition Research. 2000;10: 1395–408.
- Tomasiuk R, Zubrzycki IZ, Wiacek M. Age-dependent changes in fat- and water-soluble vitamins-National Health and Nutrition Examination Surveys study. Front Med (Lausanne). 2022;9:907067.
- 132. Feart C, Pallet V, Boucheron C, Higueret D, Alfos S, Letenneur L, et al. Aging affects the retinoic acid and the

- triiodothyronine nuclear receptor mRNA expression in human peripheral blood mononuclear cells. Eur J Endocrinol. 2005;152(3):449–58.
- 133. Gardner EM, Bernstein ED, Dorfman M, Abrutyn E, Murasko DM. The age-associated decline in immune function of healthy individuals is not related to changes in plasma concentrations of beta-carotene, retinol, alpha-tocopherol or zinc. Mech Ageing Dev. 1997;94(1-3):55-69.
- 134. Shahar S, Lee LK, Rajab N, Lim CL, Harun NA, Noh MF, et al. Association between vitamin A, vitamin E and apolipoprotein E status with mild cognitive impairment among elderly people in low-cost residential areas. Nutr Neurosci. 2013; 16(1):6–12.
- 135. Kim SH, Park YM, Choi BY, Kim MK, Roh S, Kim K, et al. Associations of serum levels of vitamins A, C, and E with the risk of cognitive impairment among elderly Koreans. Nutr Res Pract. 2018;12(2):160–5.
- 136. Pallet V, Touyarot K. Vitamin A and cognitive processes. Nutrition and Aging. 2015;3(1):21–31.
- 137. Dumetz F, Bure C, Alfos S, Bonneu M, Richard E, Touyarot K, et al. Normalization of hippocampal retinoic acid level corrects age-related memory deficits in rats. Neurobiol Aging. 2020;85:1–10.
- 138. Touyarot K, Bonhomme D, Roux P, Alfos S, Lafenetre P, Richard E, et al. A mid-life vitamin A supplementation prevents age-related spatial memory deficits and hippocampal neurogenesis alterations through CRABP-I. PLoS One. 2013;8(8):e72101.
- 139. Enderlin V, Pallet V, Alfos S, Dargelos E, Jaffard R, Garcin H, et al. Age-related decreases in mRNA for brain nuclear receptors and target genes are reversed by retinoic acid treatment. Neurosci Lett. 1997;229(2):125–9.
- 140. Enderlin V, Alfos S, Pallet V, Garcin H, Azais-Braesco V, Jaffard R, et al. Aging decreases the abundance of retinoic acid (RAR) and triiodothyronine (TR) nuclear receptor mRNA in rat brain: effect of the administration of retinoids. FEBS Lett. 1997;412(3):629–32.
- 141. Etchamendy N, Enderlin V, Marighetto A, Vouimba RM, Pallet V, Jaffard R, et al. Alleviation of a selective age-related relational memory deficit in mice by pharmacologically induced normalization of brain retinoid signaling. J Neurosci. 2001;21(16):6423–9.
- 142. Mingaud F, Mormede C, Etchamendy N, Mons N, Niedergang B, Wietrzych M, et al. Retinoid hyposignaling contributes to aging-related decline in hippocampal function in shortterm/working memory organization and long-term declarative memory encoding in mice. J Neurosci. 2008;28(1): 279-91
- 143. Corcoran JP, So PL, Maden M, Disruption of the retinoid signalling pathway causes a deposition of amyloid beta in the adult rat brain. Eur J Neurosci. 2004;20(4):896–902.
- 144. Goncalves MB, Clarke E, Hobbs C, Malmqvist T, Deacon R, Jack J, et al. Amyloid beta inhibits retinoic acid synthesis exacerbating Alzheimer disease pathology which can be attenuated by an retinoic acid receptor alpha agonist. Eur J Neurosci. 2013;37(7):1182–92.
- 145. Rinaldi P, Polidori MC, Metastasio A, Mariani E, Mattioli P, Cherubini A, et al. Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer's disease. Neurobiol Aging. 2003;24(7):915–9.
- 146. Bourdel-Marchasson I, Delmas-Beauvieux MC, Peuchant E, Richard-Harston S, Decamps A, Reignier B, et al. Antioxidant defences and oxidative stress markers in erythrocytes and plasma from normally nourished elderly Alzheimer patients. Age Ageing. 2001;30(3):235-41.

- 147. Galter D, Buervenich S, Carmine A, Anvret M, Olson L. ALDH1 mRNA: presence in human dopamine neurons and decreases in substantia nigra in Parkinson's disease and in the ventral tegmental area in schizophrenia. Neurobiol Dis. 2003;14(3):637–47.
- 148. Grunblatt E, Zehetmayer S, Jacob CP, Muller T, Jost WH, Riederer P. Pilot study: peripheral biomarkers for diagnosing sporadic Parkinson's disease. J Neural Transm (Vienna). 2010;117(12):1387–93.
- 149. Liu G, Yu J, Ding J, Xie C, Sun L, Rudenko I, et al. Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopaminergic neuron subpopulation. J Clin Invest. 2014; 124(7):3032-46.
- Smith D, Wagner E, Koul O, McCaffery P, Drager UC. Retinoic acid synthesis for the developing telencephalon. Cereb Cortex. 2001;11(10):894–905.
- 151. Wey MC, Fernandez E, Martinez PA, Sullivan P, Goldstein DS, Strong R. Neurodegeneration and motor dysfunction in mice lacking cytosolic and mitochondrial aldehyde dehydrogenases: implications for Parkinson's disease. PLoS One. 2012;7(2):e31522.
- 152. Anderson C, Checkoway H, Franklin GM, Beresford S, Smith-Weller T, Swanson PD. Dietary factors in Parkinson's disease: the role of food groups and specific foods. Mov Disord. 1999;14(1):21–7.
- 153. Johnson CC, Gorell JM, Rybicki BA, Sanders K, Peterson EL. Adult nutrient intake as a risk factor for Parkinson's disease. Int J Epidemiol. 1999;28(6):1102–9.
- 154. Zhang SM, Hernan MA, Chen H, Spiegelman D, Willett WC, Ascherio A. Intakes of vitamins E and C, carotenoids, vitamin supplements, and PD risk. Neurology. 2002;59(8):1161–9.
- 155. Takeda A, Nyssen OP, Syed A, Jansen E, Bueno-de-Mesquita B, Gallo V. Vitamin A and carotenoids and the risk of Parkinson's disease: a systematic review and meta-analysis. Neuroepidemiology. 2014;42(1):25–38.
- 156. Yang F, Wolk A, Hakansson N, Pedersen NL, Wirdefeldt K. Dietary antioxidants and risk of Parkinson's disease in two population-based cohorts. Mov Disord. 2017;32(11):1631–6.
- 157. Krezel W, Ghyselinck N, Samad TA, Dupe V, Kastner P, Borrelli E, et al. Impaired locomotion and dopamine signaling in retinoid receptor mutant mice. Science. 1998;279(5352):863-7.
- 158. Niewiadomska-Cimicka A, Krzyzosiak A, Ye T, Podlesny-Drabiniok A, Dembele D, Dolle P, et al. Genome-wide Analysis of RARbeta Transcriptional Targets in Mouse Striatum Links Retinoic Acid Signaling with Huntington's Disease and Other Neurodegenerative Disorders. Mol Neurobiol. 2017;54(5):3859-78.
- 159. Lee H, Fenster RJ, Pineda SS, Gibbs WS, Mohammadi S, Davila-Velderrain J, et al. Cell Type-Specific Transcriptomics Reveals that Mutant Huntingtin Leads to Mitochondrial RNA Release and Neuronal Innate Immune Activation. Neuron. 2020;107(5):891–908.e8.
- 160. Anjum I, Jaffery SS, Fayyaz M, Samoo Z, Anjum S. The Role of Vitamin D in Brain Health: A Mini Literature Review. Cureus. 2018;10(7):e2960.
- 161. Eyles DW. Vitamin D: Brain and Behavior. JBMR Plus. 2021; 5(1):e10419.
- Prosser DE, Jones G. Enzymes involved in the activation and inactivation of vitamin D. Trends Biochem Sci. 2004;29(12): 664-73
- 163. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, et al. The nuclear receptor superfamily: the second decade. Cell. 1995;83(6):835-9.
- 164. Mangelsdorf DJ, Borgmeyer U, Heyman RA, Zhou JY, Ong ES, Oro AE, et al. Characterization of three RXR genes that

- mediate the action of 9-cis retinoic acid. Genes Dev. 1992; 6(3):329-44.
- 165. Szeles L, Keresztes G, Torocsik D, Balajthy Z, Krenacs L, Poliska S, et al. 1,25-dihydroxyvitamin D3 is an autonomous regulator of the transcriptional changes leading to a tolerogenic dendritic cell phenotype. J Immunol. 2009;182(4): 2074–83.
- 166. Li XY, Xiao JH, Feng X, Qin L, Voorhees JJ. Retinoid X receptor-specific ligands synergistically upregulate 1, 25-dihydroxyvitamin D3-dependent transcription in epidermal keratinocytes in vitro and in vivo. J Invest Dermatol. 1997;108(4):506–12.
- 167. Lucas R, Szklenar M, Mihaly J, Szegedi A, Torocsik D, Rühl R. Plasma Levels of Bioactive Vitamin D and A5 Ligands Positively Correlate with Clinical Atopic Dermatitis Markers. Dermatology. 2022;238(6):1076–83.
- 168. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3): 266–81
- 169. DeLuca GC, Kimball SM, Kolasinski J, Ramagopalan SV, Ebers GC. Review: the role of vitamin D in nervous system health and disease. Neuropathol Appl Neurobiol. 2013;39(5): 458–84.
- 170. Harms LR, Burne TH, Eyles DW, McGrath JJ. Vitamin D and the brain. Best Pract Res Clin Endocrinol Metab. 2011;25(4): 657–69.
- 171. Cui X, McGrath JJ, Burne THJ, Eyles DW. Vitamin D and schizophrenia: 20 years on. Mol Psychiatry. 2021;26(7): 2708-20
- 172. Cheng YC, Huang YC, Huang WL. The effect of vitamin D supplement on negative emotions: A systematic review and meta-analysis. Depress Anxiety. 2020;37(6):549–64.
- 173. Bivona G, Gambino CM, Lo Sasso B, Scazzone C, Giglio RV, Agnello L, et al. Serum Vitamin D as a Biomarker in Autoimmune, Psychiatric and Neurodegenerative Diseases. Diagnostics (Basel). 2022;12(1):130.
- 174. Pierrot-Deseilligny C, Souberbielle JC. Vitamin D and multiple sclerosis: An update. Mult Scler Relat Disord. 2017; 14:35–45.
- 175. Zhu C, Zhang Y, Wang T, Lin Y, Yu J, Xia Q, et al. Vitamin D supplementation improves anxiety but not depression symptoms in patients with vitamin D deficiency. Brain Behav. 2020;10(11):e01760.
- 176. Patrick RP, Ames BN. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. Faseb J. 2015;29(6):2207–22.
- 177. Borges-Vieira JG, Cardoso CKS. Efficacy of B-vitamins and vitamin D therapy in improving depressive and anxiety disorders: a systematic review of randomized controlled trials. Nutr Neurosci. 2023;26(3):187–207.
- 178. Guzek D, Kolota A, Lachowicz K, Skolmowska D, Stachon M, Glabska D. Association between Vitamin D Supplementation and Mental Health in Healthy Adults: A Systematic Review. J Clin Med. 2021;10(21):5156.
- 179. Carreiro AL, Dhillon J, Gordon S, Higgins KA, Jacobs AG, McArthur BM, et al. The Macronutrients, Appetite, and Energy Intake. Annu Rev Nutr. 2016;36:73–103.
- 180. Nguo K, Bonham MP, Truby H, Barber E, Brown J, Huggins CE. Effect of Macronutrient Composition on Appetite Hormone Responses in Adolescents with Obesity. Nutrients. 2019;11(2):340.
- 181. Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH, et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res. 2010;51(11): 3299-305.

- 182. Quehenberger O, Dennis EA. The human plasma lipidome. N Engl J Med. 2011;365(19):1812-23.
- 183. Yoon NA, Diano S. Hypothalamic glucose-sensing mechanisms. Diabetologia. 2022;64(5):985–93.
- 184. Gao Q, Horvath TL. Neuronal control of energy homeostasis. FEBS Lett. 2008;582(1):132-41.
- 185. Ra JS. Consumption of sugar-sweetened beverages and fast foods deteriorates adolescents' mental health. Front Nutr. 2022;9:1058190.
- 186. Luo S, Monterosso JR, Sarpelleh K, Page KA. Differential effects of fructose versus glucose on brain and appetitive responses to food cues and decisions for food rewards. Proc Natl Acad Sci U S A. 2015;112(20):6509–14.
- 187. Harrell CS, Burgado J, Kelly SD, Johnson ZP, Neigh GN. High-fructose diet during periadolescent development increases depressive-like behavior and remodels the hypothalamic transcriptome in male rats. Psychoneuroendocrinology. 2015;62:252–64.
- 188. Neigh GN, Gillespie CF, Nemeroff CB. The neurobiological toll of child abuse and neglect. Trauma Violence Abuse. 2009; 10(4):389–410.
- 189. Bourke CH, Neigh GN. Behavioral effects of chronic adolescent stress are sustained and sexually dimorphic. Horm Behav. 2011;60(1):112-20.
- 190. Freije SL, Senter CC, Avery AD, Hawes SE, Jones-Smith JC. Association Between Consumption of Sugar-Sweetened Beverages and 100% Fruit Juice With Poor Mental Health Among US Adults in 11 US States and the District of Columbia. Prev Chronic Dis. 2021;18:E51.
- 191. Aeberli I, Gerber PA, Hochuli M, Kohler S, Haile SR, Gouni-Berthold I, et al. Low to moderate sugar-sweetened beverage consumption impairs glucose and lipid metabolism and promotes inflammation in healthy young men: a randomized controlled trial. Am J Clin Nutr. 2011;94(2): 479–85
- 192. Miyazaki S, Taniguchi H, Moritoh Y, Tashiro F, Yamamoto T, Yamato E, et al. Nuclear hormone retinoid X receptor (RXR) negatively regulates the glucose-stimulated insulin secretion of pancreatic ss-cells. Diabetes. 2010;59(11):2854-61.
- 193. Kane MA, Folias AE, Pingitore A, Perri M, Obrochta KM, Krois CR, et al. Identification of 9-cis-retinoic acid as a pancreas-specific autacoid that attenuates glucose-stimulated insulin secretion. Proc Natl Acad Sci U S A. 2010;107(50):21884–9.
- 194. Agrawal R, Reno CM, Sharma S, Christensen C, Huang Y, Fisher SJ. Insulin action in the brain regulates both central and peripheral functions. Am J Physiol Endocrinol Metab. 2021;321(1):E156-E163.
- 195. Greenberg AS, Obin MS. Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr. 2006;83(2):461S-465S.
- 196. Morris MJ, Beilharz JE, Maniam J, Reichelt AC, Westbrook RF. Why is obesity such a problem in the 21st century? The intersection of palatable food, cues and reward pathways, stress, and cognition. Neurosci Biobehav Rev. 2015;58:36–45.
- 197. Muller O, Krawinkel M. Malnutrition and health in developing countries. Cmaj. 2005;173(3):279–86.
- 198. Bohn T, Hellman-Regen J, de Lera AR, Böhm V, Rühl R. Human nutritional relevance and suggested nutritional guidelines for Vitamin A5/X and Provitamin A5/X. Nutr Metab (Lond). 2023;20:34.
- 199. de Lera AR, Krezel W, Rühl R. An Endogenous Mammalian Retinoid X Receptor Ligand, At Last! ChemMedChem. 2016; 11(10):1027-37.
- 200. Desvergne B. RXR: from partnership to leadership in metabolic regulations. Vitam Horm. 2007;75:1–32.

- 201. Szanto A, Narkar V, Shen Q, Uray IP, Davies PJ, Nagy L. Retinoid X receptors: X-ploring their (patho)physiological functions. Cell Death Differ. 2004;11(Suppl 2):S126-43.
- 202. Evans RM, Mangelsdorf DJ. Nuclear Receptors, RXR, and the Big Bang. Cell. 2014;157(1):255–66.
- 203. Krzyzosiak A, Szyszka-Niagolov M, Wietrzych M, Gobaille S, Muramatsu S, Krezel W. Retinoid x receptor gamma control of affective behaviors involves dopaminergic signaling in mice. Neuron. 2010;66(6):908–20.
- 204. Sharma S, Shen T, Chitranshi N, Gupta V, Basavarajappa D, Sarkar S, et al. Retinoid X Receptor: Cellular and Biochemical Roles of Nuclear Receptor with a Focus on Neuropathological Involvement. Mol Neurobiol. 2022;59(4): 2027-50.
- 205. Ting SM, Zhao X, Sun G, Obertas L, Ricote M, Aronowski J. Brain Cleanup as a Potential Target for Poststroke Recovery: The Role of RXR (Retinoic X Receptor) in Phagocytes. stroke. 2020;51(3):958–66.
- 206. Zuo Y, Huang L, Enkhjargal B, Xu W, Umut O, Travis ZD, et al. Activation of retinoid X receptor by bexarotene attenuates neuroinflammation via PPARgamma/SIRT6/FoxO3a pathway after subarachnoid hemorrhage in rats. J Neuroinflammation. 2019;16(1):47.
- 207. Bachmeier C, Beaulieu-Abdelahad D, Crawford F, Mullan M, Paris D. Stimulation of the retinoid X receptor facilitates beta-amyloid clearance across the blood-brain barrier. J Mol Neurosci. 2013;49(2):270-6.
- 208. WHO. Vitamin and mineral requirements in human nutrition; report of a joint FAO/WHO expert consultation. Bankok, Thailand: WHO / FAO of the UN; 1998.
- 209. NHS. The eat well guide [Internet]. 2022 Nov 29. Available from: https://www.nhs.uk/live-well/eat-well/the-eatwell-guide
- 210. DGE. Vitamin A; Empfohlene Zufuhr.. Deutsche Gesellschaft für Ernährung e.V. 2020. https://www.dge.de/wissenschaft/referenzwerte/vitamin-a/
- 211. Li M, Chiba H, Warot X, Messaddeq N, Gerard C, Chambon P, et al. RXR-alpha ablation in skin keratinocytes results in alopecia and epidermal alterations. Development. 2001; 128(5):675–88.
- 212. Murthy S, Born E, Mathur SN, Field FJ. LXR/RXR activation enhances basolateral efflux of cholesterol in CaCo-2 cells. J Lipid Res. 2002;43(7):1054-64.
- 213. Wood H. Retinoid X receptor mediates brain clean-up after stroke. Nat Rev Neurol. 2022;16(3):128-9.
- 214. Krishna S, Cheng B, Sharma DR, Yadav S, Stempinski ES, Mamtani S, et al. PPAR-gamma activation enhances myelination and neurological recovery in premature rabbits with intraventricular hemorrhage. Proc Natl Acad Sci U S A. 2021;118(36):e2103084118.
- 215. Meffre D, Shackleford G, Hichor M, Gorgievski V, Tzavara ET, Trousson A, et al. Liver X receptors alpha and beta promote myelination and remyelination in the cerebellum. Proc Natl Acad Sci U S A. 2014;112(24):7587–92.
- 216. Kiss M, Nagy L. Nuclear Receptors in Immune Function. Encyclopedia of Immunobiology. 2016;3:146–56.
- 217. Stephensen CB, Borowsky AD, Lloyd KC. Disruption of Rxra gene in thymocytes and T lymphocytes modestly alters lymphocyte frequencies, proliferation, survival and T helper type 1/type 2 balance. Immunology. 2007;121(4): 484–98.
- 218. Szeles L, Poliska S, Nagy G, Szatmari I, Szanto A, Pap A, et al. Research resource: transcriptome profiling of genes regulated by RXR and its permissive and nonpermissive partners in differentiating monocyte-derived dendritic cells. Mol Endocrinol. 2010;24(11):2218–31.

- 219. Spathis AD, Asvos X, Ziavra D, Karampelas T, Topouzis S, Cournia Z, et al. Nurr1:RXRalpha heterodimer activation as monotherapy for Parkinson's disease. Proc Natl Acad Sci USA. 2017;114(15):3999-4004.
- 220. Wang J, Bi W, Zhao W, Varghese M, Koch RJ, Walker RH, et al. Selective brain penetrable Nurr1 transactivator for treating Parkinson's disease. Oncotarget. 2016;7(7): 7469-79.
- 221. Dheer Y, Chitranshi N, Gupta V, Sharma S, Pushpitha K, Abbasi M, et al. Retinoid x receptor modulation protects against ER stress response and rescues glaucoma phenotypes in adult mice. Exp Neurol. 2019;314:111-25.
- 222. Natrajan MS, de la Fuente AG, Crawford AH, Linehan E, Nunez V, Johnson KR, et al. Retinoid X receptor activation reverses age-related deficiencies in myelin debris phagocytosis and remyelination. Brain. 2015;138(Pt 12):3581–97.
- 223. Loppi S, Kolosowska N, Karkkainen O, Korhonen P, Huuskonen M, Grubman A, et al. HX600, a synthetic agonist for RXR-Nurr1 heterodimer complex, prevents ischemia-induced neuronal damage. Brain Behav Immun. 2018;73:670–81.
- 224. Zhang-Gandhi CX, Drew PD. Liver X receptor and retinoid X receptor agonists inhibit inflammatory responses of microglia and astrocytes. J Neuroimmunol. 2007;183(1-2):50-9.
- 225. Stephensen CB, Rasooly R, Jiang X, Ceddia MA, Weaver CT, Chandraratna RA, et al. Vitamin A enhances in vitro Th2 development via retinoid X receptor pathway. J Immunol. 2002;168(9):4495–503.
- 226. Spilianakis CG, Lee GR, Flavell RA. Twisting the Th1/Th2 immune response via the retinoid X receptor: lessons from a genetic approach. Eur J Immunol. 2005;35(12):3400-4.
- 227. Du X, Tabeta K, Mann N, Crozat K, Mudd S, Beutler B. An essential role for Rxr alpha in the development of Th2 responses. Eur J Immunol. 2005;35(12):3414-23.
- 228. Fukumoto H, Deng A, Irizarry MC, Fitzgerald ML, Rebeck GW. Induction of the cholesterol transporter ABCA1 in central nervous system cells by liver X receptor agonists increases secreted Abeta levels. J Biol Chem. 2002;277(50):48508-13.
- 229. Samad TA, Krezel W, Chambon P, Borrelli E. Regulation of dopaminergic pathways by retinoids: activation of the D2 receptor promoter by members of the retinoic acid receptor-retinoid X receptor family. Proc Natl Acad Sci U S A. 1997;94(26):14349-54.
- 230. Goodman AB, Pardee AB. Evidence for defective retinoid transport and function in late onset Alzheimer's disease. Proc Natl Acad Sci U S A. 2003;100(5):2901-5.
- 231. Banerjee C, Chimowitz MI. Stroke Caused by Atherosclerosis of the Major Intracranial Arteries. Circ Res. 2017;120(3):502–13.
- 232. Reay WR, Cairns MJ. The role of the retinoids in schizophrenia: genomic and clinical perspectives. Mol Psychiatry. 2020;25(4):706–18.
- 233. Regen F, Hellmann-Regen J, Costantini E, Reale M. Neuroinflammation and Alzheimer's Disease: Implications for Microglial Activation. Curr Alzheimer Res. 2017;14(11):1140-8.
- 234. Kawahara K, Suenobu M, Ohtsuka H, Kuniyasu A, Sugimoto Y, Nakagomi M, et al. Cooperative therapeutic action of retinoic acid receptor and retinoid x receptor agonists in a mouse model of Alzheimer's disease. J Alzheimers Dis. 2014;42(2):587–605.
- 235. Tippmann F, Hundt J, Schneider A, Endres K, Fahrenholz F. Up-regulation of the alpha-secretase ADAM10 by retinoic acid receptors and acitretin. Faseb J. 2009;23(6):1643-54.
- 236. Manzine PR, Ettcheto M, Cano A, Busquets O, Marcello E, Pelucchi S, et al. ADAM10 in Alzheimer's disease: Pharmacological modulation by natural compounds and its role as a peripheral marker. Biomed Pharmacother. 2019;113.

- 237. Cramer PE, Cirrito JR, Wesson DW, Lee CY, Karlo JC, Zinn AE, et al. ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models. Science. 2012;335 (6075):1503-6.
- 238. Clemens V, Regen F, Le Bret N, Heuser I, Hellmann-Regen J. Retinoic Acid Enhances Apolipoprotein E Synthesis in Human Macrophages. J Alzheimers Dis. 2018;61(4):1295–300.
- 239. Papuc E, Rejdak K. The role of myelin damage in Alzheimer's disease pathology. Arch Med Sci. 2018;16(2):345–51.
- 240. Bartzokis G. Inter-Species Glia Differences: Implications for Successful Translation of Transgenic Rodent Alzheimer's Disease Model Treatment Using Bexarotene. J Prev Alzheimers Dis. 2014;1(1):46–50.
- 241. Park M, Lee HP, Kim J, Kim DH, Moon Y, Moon WJ. Brain myelin water fraction is associated with APOE4 allele status in patients with cognitive impairment. J Neuroimaging. 2022;32(3):521–9.
- 242. Hirschfeld LR, Risacher SL, Nho K, Saykin AJ. Myelin repair in Alzheimer's disease: a review of biological pathways and potential therapeutics. Transl Neurodegener. 2022;11(1):47.
- 243. Pan X, Kaminga AC, Wen SW, Wu X, Acheampong K, Liu A. Dopamine and Dopamine Receptors in Alzheimer's Disease: A Systematic Review and Network Meta-Analysis. Front Aging Neurosci. 2019;11:175.
- 244. Carreiras MC, Mendes E, Perry MJ, Francisco AP, Marco-Contelles J. The multifactorial nature of Alzheimer's disease for developing potential therapeutics. Curr Top Med Chem. 2013;13(15):1745–70.
- 245. Zetterstrom RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T. Dopamine neuron agenesis in Nurr1-deficient mice. Science. 1997;276(5310):248–50.
- 246. Saucedo-Cardenas O, Quintana-Hau JD, Le WD, Smidt MP, Cox JJ, De Mayo F, et al. Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc Natl Acad Sci U S A. 1998;95(7):4013–8.
- 247. Dean DC 3rd, Sojkova J, Hurley S, Kecskemeti S, Okonkwo O, Bendlin BB, et al. Alterations of Myelin Content in Parkinson's Disease: A Cross-Sectional Neuroimaging Study. PLoS One. 2016;11(10):e0163774.
- 248. Siokas V, Aloizou AM, Liampas I, Bakirtzis C, Tsouris Z, Sgantzos M, et al. Myelin-associated oligodendrocyte basic protein rs616147 polymorphism as a risk factor for Parkinson's disease. Acta Neurol Scand. 2022;145(2):223-8.
- 249. Latif S, Jahangeer M, Maknoon Razia D, Ashiq M, Ghaffar A, Akram M, et al. Dopamine in Parkinson's disease. Clin Chim Acta. 2021;522:114–26.
- 250. Dauer W, Przedborski S. Parkinson's disease: mechanisms and models. Neuron. 2003;39(6):889-909.
- 251. Thomas B. Parkinson's disease: from molecular pathways in disease to therapeutic approaches. Antioxid Redox Signal. 2009;11(9):2077-82.
- 252. Certo M, Endo Y, Ohta K, Sakurada S, Bagetta G, Amantea D. Activation of RXR/PPARgamma underlies neuroprotection by bexarotene in ischemic stroke. Pharmacol Res. 2015;102: 298–307.
- Franklin RJ, Ffrench-Constant C. Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci. 2008;9(11):839–55.
- 254. Brown JWL, Cunniffe NG, Prados F, Kanber B, Jones JL, Needham E, et al. Safety and efficacy of bexarotene in patients with relapsing-remitting multiple sclerosis (CCMR One): a randomised, double-blind, placebo-controlled, parallel-group, phase 2a study. Lancet Neurol. 2021;20(9):709-20.
- 255. Metz LM, Li D, Traboulsee A, Myles ML, Duquette P, Godin J, et al. Glatiramer acetate in combination with minocycline in

- patients with relapsing-remitting multiple sclerosis: results of a Canadian, multicenter, double-blind, placebo-controlled trial. Mult Scler. 2009;15(10):1183–94.
- 256. Melnikov M, Pashenkov M, Boyko A. Dopaminergic Receptor Targeting in Multiple Sclerosis: Is There Therapeutic Potential? Int J Mol Sci 2021;22(10):5313.
- 257. Dobryakova E, Genova HM, DeLuca J, Wylie GR. The dopamine imbalance hypothesis of fatigue in multiple sclerosis and other neurological disorders. Front Neurol. 2015;6:52.
- 258. Melnikov MV, Hasaeva MA, Belousova OO, Murugin VV, Pashenkov MV, Boyko AN. The role of dopamine in regulating interactions of the immune and nervous system in multiple sclerosis. MS & Demyelinating Diseases. 2015;357:E300.
- 259. Takahashi N, Sakurai T, Davis KL, Buxbaum JD. Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia. Prog Neurobiol. 2011;93(1): 13–24.
- 260. Flynn SW, Lang DJ, Mackay AL, Goghari V, Vavasour IM, Whittall KP, et al. Abnormalities of myelination in schizophrenia detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins. Mol Psychiatry. 2003;8(9):811–20.
- 261. Ishiguro H, Okubo Y, Ohtsuki T, Yamakawa-Kobayashi K, Arinami T. Mutation analysis of the retinoid X receptor beta, nuclear-related receptor 1, and peroxisome proliferator-activated receptor alpha genes in schizophrenia and alcohol dependence: possible haplotype association of nuclear-related receptor 1 gene to alcohol dependence. Am J Med Genet. 2002;114(1):15–23.
- 262. Goodman NW. Towards ageism. Nature. 1994;367(6461): 312
- 263. Reay W, Atkins A, Fitzsimmons C, Green M, Carr V, Cairns M. F193. Dysregulation of retinoid signalling in schizophrenia observed in whole genome sequence analysis. 2018;44(Suppl): S296
- 264. Regen F, Cosma NC, Otto LR, Clemens V, Saksone L, Gellrich J, et al. Clozapine modulates retinoid homeostasis in human brain and normalizes serum retinoic acid deficit in patients with schizophrenia. Mol Psychiatry. 2021;26(9): 5417–28.
- 265. Lerner V, Miodownik C, Gibel A, Kovalyonok E, Shleifer T, Goodman AB, et al. Bexarotene as add-on to antipsychotic treatment in schizophrenia patients: a pilot open-label trial. Clin Neuropharmacol. 2008;31(1):25–33.
- 266. Lerner V, Miodownik C, Gibel A, Sirota P, Bush I, Elliot H, et al. The retinoid X receptor agonist bexarotene relieves positive symptoms of schizophrenia: a 6-week, randomized, double-blind, placebo-controlled multicenter trial. J Clin Psychiatry. 2013;74(12):1224–32.
- 267. Lerner V, McCaffery PJ, Ritsner MS. Targeting Retinoid Receptors to Treat Schizophrenia: Rationale and Progress to Date. CNS Drugs. 2016;30(4):269–80.
- Bremner JD, McCaffery P. The neurobiology of retinoic acid in affective disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(2):315–31.
- 269. Bremner JD, Shearer KD, McCaffery PJ. Retinoic acid and affective disorders: the evidence for an association. J Clin Psychiatry. 2012;73(1):37–50.
- 270. Yu SJ, Airavaara M, Wu KJ, Harvey BK, Liu HS, Yang Y, et al. 9-cis retinoic acid induces neurorepair in stroke brain. Sci Rep. 2017;7(1):4512.
- 271. Wietrzych-Schindler M, Szyszka-Niagolov M, Ohta K, Endo Y, Perez E, de Lera AR, et al. Retinoid x receptor gamma is implicated in docosahexaenoic acid modulation of despair behaviors and working memory in mice. Biol Psychiatry. 2011;69(8):788–94.

- 272. Maghsoodi B, Poon MM, Nam CI, Aoto J, Ting P, Chen L. Retinoic acid regulates RARalpha-mediated control of translation in dendritic RNA granules during homeostatic synaptic plasticity. Proc Natl Acad Sci U S A. 2008;105(41): 16015–20.
- 273. Aoto J, Nam CI, Poon MM, Ting P, Chen L. Synaptic signaling by all-trans retinoic acid in homeostatic synaptic plasticity. Neuron. 2008;60(2):308–20.
- 274. Sarti F, Schroeder J, Aoto J, Chen L. Conditional RARalpha knockout mice reveal acute requirement for retinoic acid and RARalpha in homeostatic plasticity. Front Mol Neurosci. 2012;5:16
- 275. Arendt KL, Zhang Y, Jurado S, Malenka RC, Sudhof TC, Chen L. Retinoic Acid and LTP Recruit Postsynaptic AMPA Receptors Using Distinct SNARE-Dependent Mechanisms. Neuron. 2015;86(2):442–56.
- 276. Zhong LR, Chen X, Park E, Sudhof TC, Chen L. Retinoic Acid Receptor RARalpha-Dependent Synaptic Signaling Mediates Homeostatic Synaptic Plasticity at the Inhibitory Synapses of Mouse Visual Cortex. J Neurosci. 2018;38(49):10454-66.
- 277. Chiang MY, Misner D, Kempermann G, Schikorski T, Giguere V, Sucov HM, et al. An essential role for retinoid receptors RARbeta and RXRgamma in long-term potentiation and depression. Neuron. 1998;21(6):1353-61.
- 278. Nomoto M, Takeda Y, Uchida S, Mitsuda K, Enomoto H, Saito K, et al. Dysfunction of the RAR/RXR signaling pathway in the forebrain impairs hippocampal memory and synaptic plasticity. Mol Brain. 2011;5:8.
- 279. Hou G, Lai W, Jiang W, Liu X, Qian L, Zhang Y, et al. Myelin deficits in patients with recurrent major depressive disorder: An inhomogeneous magnetization transfer study. Neurosci Lett. 2021:750.
- Sacchet MD, Gotlib IH. Myelination of the brain in Major Depressive Disorder: An in vivo quantitative magnetic resonance imaging study. Sci Rep. 2017;7(1):2200.
- 281. Faudone G, Kilu W, Ni X, Chaikuad A, Sreeramulu S, Heitel P, et al. The Transcriptional Repressor Orphan Nuclear Receptor TLX Is Responsive to Xanthines. ACS Pharmacol Transl Sci. 2021;4(6):1794–807.
- 282. Faudone G, Zhubi R, Celik F, Knapp S, Chaikuad A, Heering J, et al. Design of a Potent TLX Agonist by Rational Fragment Fusion. J Med Chem. 2021;65(3):2288–96.
- Liu HK, Belz T, Bock D, Takacs A, Wu H, Lichter P, et al. The nuclear receptor tailless is required for neurogenesis in the adult subventricular zone. Genes Dev. 2008;22(18):2473-8.
- 284. Niu W, Zou Y, Shen C, Zhang CL. Activation of postnatal neural stem cells requires nuclear receptor TLX. J Neurosci. 2011;31(39):13816–28.
- 285. Moore DD, Kato S, Xie W, Mangelsdorf DJ, Schmidt DR, Xiao R, et al. International Union of Pharmacology. LXII. The NR1H and NR1I receptors: constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor. Pharmacol Rev. 2006;58(4):742–59.
- 286. Viennois E, Mouzat K, Dufour J, Morel L, Lobaccaro JM, Baron S. Selective liver X receptor modulators (SLiMs): what use in human health? Mol Cell Endocrinol. 2012;351(2):129–41.
- 287. Mouzat K, Chudinova A, Polge A, Kantar J, Camu W, Raoul C, et al. Regulation of Brain Cholesterol: What Role Do Liver X Receptors Play in Neurodegenerative Diseases? Int J Mol Sci. 2019;20(16):3858.
- 288. Hong C, Tontonoz P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat Rev Drug Discov. 2014;13(6):433-44.
- 289. Hussain G, Wang J, Rasul A, Anwar H, Imran A, Qasim M, et al. Role of cholesterol and sphingolipids in brain devel-

- opment and neurological diseases. Lipids Health Dis. 2019; 18(1):26.
- 290. Mauch DH, Nagler K, Schumacher S, Goritz C, Muller EC, Otto A, et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science. 2001;294(5545):1354-7.
- 291. Zhang J, Liu Q. Cholesterol metabolism and homeostasis in the brain. Protein Cell. 2015;6(4):254-64.
- 292. Abildayeva K, Jansen PJ, Hirsch-Reinshagen V, Bloks VW, Bakker AH, Ramaekers FC, et al. 24(S)-hydroxycholesterol participates in a liver X receptor-controlled pathway in astrocytes that regulates apolipoprotein E-mediated cholesterol efflux. J Biol Chem. 2006;281(18):12799-808.
- 293. Andersson S, Gustafsson N, Warner M, Gustafsson JA. Inactivation of liver X receptor beta leads to adult-onset motor neuron degeneration in male mice. Proc Natl Acad Sci U S A. 2005;102(10):3857–62.
- 294. Bigini P, Steffensen KR, Ferrario A, Diomede L, Ferrara G, Barbera S, et al. Neuropathologic and biochemical changes during disease progression in liver X receptor beta-/- mice, a model of adult neuron disease. J Neuropathol Exp Neurol. 2010;69(6):593–605.
- 295. Cui W, Sun Y, Wang Z, Xu C, Peng Y, Li R. Liver X receptor activation attenuates inflammatory response and protects cholinergic neurons in APP/PS1 transgenic mice. Neuroscience. 2012;210:200–10.
- 296. Zelcer N, Khanlou N, Clare R, Jiang Q, Reed-Geaghan EG, Landreth GE, et al. Attenuation of neuroinflammation and Alzheimer's disease pathology by liver x receptors. Proc Natl Acad Sci U S A. 2007;104(25):10601-6.
- 297. Sodhi RK, Singh N. Liver X receptors: emerging therapeutic targets for Alzheimer's disease. Pharmacol Res. 2013;72:45-51.
- 298. Moutinho M, Landreth GE. Therapeutic potential of nuclear receptor agonists in Alzheimer's disease. J Lipid Res. 2017; 58(10):1937–49.
- 299. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A. 1993;90(5):1977–81.
- 300. Pitas RE, Boyles JK, Lee SH, Foss D, Mahley RW. Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins. Biochim Biophys Acta. 1987;917(1): 148-61
- 301. Ignatius MJ, Gebicke-Harter PJ, Skene JH, Schilling JW, Weisgraber KH, Mahley RW, et al. Expression of apolipoprotein E during nerve degeneration and regeneration. Proc Natl Acad Sci U S A. 1986;83(4):1125–9.
- 302. Berghoff SA, Spieth L, Sun T, Hosang L, Schlaphoff L, Depp C, et al. Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis. Nat Neurosci. 2021;24(1):47–60.
- 303. Nelissen K, Mulder M, Smets I, Timmermans S, Smeets K, Ameloot M, et al. Liver X receptors regulate cholesterol homeostasis in oligodendrocytes. J Neurosci Res. 2012;90(1): 60–71.
- 304. Gellrich L, Heitel P, Heering J, Kilu W, Pollinger J, Goebel T, et al. l-Thyroxin and the Nonclassical Thyroid Hormone TETRAC Are Potent Activators of PPARgamma. J Med Chem. 2020;63(13):6727–40.
- Proschak E, Heitel P, Kalinowsky L, Merk D. Opportunities and Challenges for Fatty Acid Mimetics in Drug Discovery. J Med Chem. 2017;60(13):5235–66.
- 306. Wahli W, Michalik L. PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol Metab. 2012;23(7):351–63.

- Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, et al. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev. 2006;58(4):726–41.
- 308. Willems S, Gellrich L, Chaikuad A, Kluge S, Werz O, Heering J, et al. Endogenous vitamin E metabolites mediate allosteric PPARgamma activation with unprecedented co-regulatory interactions. Cell Chem Biol. 2021;28(10): 1489–500.e8.
- 309. Wu H, Li X, Shen C. Peroxisome proliferator-activated receptor gamma in white and brown adipocyte regulation and differentiation. Physiol Res. 2020;69(5):759-73.
- 310. Warden A, Truitt J, Merriman M, Ponomareva O, Jameson K, Ferguson LB, et al. Localization of PPAR isotypes in the adult mouse and human brain. Sci Rep. 2016;6:27618.
- 311. Lu CH, Yang CY, Li CY, Hsieh CY, Ou HT. Lower risk of dementia with pioglitazone, compared with other second-line treatments, in metformin-based dual therapy: a population-based longitudinal study. Diabetologia. 2018;61(3):562–73.
- 312. Heneka MT, Fink A, Doblhammer G. Effect of pioglitazone medication on the incidence of dementia. Ann Neurol. 2015;78(2):284-94.
- 313. Chou PS, Ho BL, Yang YH. Effects of pioglitazone on the incidence of dementia in patients with diabetes. J Diabetes Complications. 2017;31(6):1053-7.
- 314. Brauer R, Bhaskaran K, Chaturvedi N, Dexter DT, Smeeth L, Douglas I. Glitazone Treatment and Incidence of Parkinson's Disease among People with Diabetes: A Retrospective Cohort Study. PLoS Med. 2015;12(7):e1001854.
- 315. Szalardy L, Zadori D, Tanczos E, Simu M, Bencsik K, Vecsei L, et al. Elevated levels of PPAR-gamma in the cerebrospinal fluid of patients with multiple sclerosis. Neurosci Lett. 2013;554:131-4.
- 316. Wouters E, Grajchen E, Jorissen W, Dierckx T, Wetzels S, Loix M, et al. Altered PPARgamma Expression Promotes Myelin-Induced Foam Cell Formation in Macrophages in Multiple Sclerosis. Int J Mol Sci. 2020;21(23):9329.
- 317. Feinstein DL, Galea E, Gavrilyuk V, Brosnan CF, Whitacre CC, Dumitrescu-Ozimek L, et al. Peroxisome proliferator-activated receptor-gamma agonists prevent experimental autoimmune encephalomyelitis. Ann Neurol. 2002;51(6):694-702.
- 318. Klotz L, Burgdorf S, Dani I, Saijo K, Flossdorf J, Hucke S, et al. The nuclear receptor PPAR gamma selectively inhibits Th17 differentiation in a T cell-intrinsic fashion and suppresses CNS autoimmunity. J Exp Med. 2009;206(10): 2079–89.
- 319. Chedrawe MAJ, Holman SP, Lamport AC, Akay T, Robertson GS. Pioglitazone is superior to quetiapine, clozapine and tamoxifen at alleviating experimental autoimmune encephalomyelitis in mice. J Neuroimmunol. 2018;321:72–82.
- 320. Diab A, Hussain RZ, Lovett-Racke AE, Chavis JA, Drew PD, Racke MK. Ligands for the peroxisome proliferator-activated receptor-gamma and the retinoid X receptor exert additive anti-inflammatory effects on experimental autoimmune encephalomyelitis. J Neuroimmunol. 2004;148(1-2):116-26.
- 321. Heneka MT, Reyes-Irisarri E, Hull M, Kummer MP. Impact and Therapeutic Potential of PPARs in Alzheimer's Disease. Curr Neuropharmacol. 2011;9(4):643–50.
- 322. Lecca D, Janda E, Mulas G, Diana A, Martino C, Angius F, et al. Boosting phagocytosis and anti-inflammatory phenotype in microglia mediates neuroprotection by PPARgamma agonist MDG548 in Parkinson's disease models. Br J Pharmacol. 2018;175(16):3298–314.
- 323. Breidert T, Callebert J, Heneka MT, Landreth G, Launay JM, Hirsch EC. Protective action of the peroxisome proliferator-

- activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson's disease. J Neurochem. 2002;82(3): 615-24.
- 324. Pisanu A, Lecca D, Mulas G, Wardas J, Simbula G, Spiga S, et al. Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-gamma agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson's disease. Neurobiol Dis. 2014;71:280–91.
- 325. Pinto M, Nissanka N, Peralta S, Brambilla R, Diaz F, Moraes CT. Pioglitazone ameliorates the phenotype of a novel Parkinson's disease mouse model by reducing neuroinflammation. Mol Neurodegener. 2016;11:25.
- 326. Lee EY, Lee JE, Park JH, Shin IC, Koh HC. Rosiglitazone, a PPAR-gamma agonist, protects against striatal dopaminergic neurodegeneration induced by 6-OHDA lesions in the substantia nigra of rats. Toxicol Lett. 2012;213(3):332-44.
- 327. Grajchen E, Wouters E, van de Haterd B, Haidar M, Hardonniere K, Dierckx T, et al. CD36-mediated uptake of myelin debris by macrophages and microglia reduces neuroinflammation. J Neuroinflammation. 2020;17(1):224.
- 328. Du J, Zhang L, Liu S, Zhang C, Huang X, Li J, PPARgamma transcriptionally regulates the expression of insulin-degrading enzyme in primary neurons. Biochem Biophys Res Commun. 2009;383(4):485–90.
- 329. Quan Q, Qian Y, Li X, Li M. Pioglitazone Reduces beta Amyloid Levels via Inhibition of PPARgamma Phosphorylation in a Neuronal Model of Alzheimer's Disease. Front Aging Neurosci. 2019:11:178
- 330. Sastre M, Dewachter I, Rossner S, Bogdanovic N, Rosen E, Borghgraef P, et al. Nonsteroidal anti-inflammatory drugs repress beta-secretase gene promoter activity by the activation of PPARgamma. Proc Natl Acad Sci U S A. 2006;103(2): 443-8.
- 331. Sastre M, Dewachter I, Landreth GE, Willson TM, Klockgether T, van Leuven F, et al. Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein through regulation of beta-secretase. J Neurosci. 2003;23(30):9796–804.
- 332. Perlmann T, Jansson L. A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and NURR1. Genes Dev. 1995;9(7):769–82.
- 333. Maira M, Martens C, Philips A, Drouin J. Heterodimerization between members of the Nur subfamily of orphan nuclear receptors as a novel mechanism for gene activation. Mol Cell Biol. 1999;19(11):7549–57.
- 334. Paulsen RF, Granas K, Johnsen H, Rolseth V, Sterri S. Three related brain nuclear receptors, NGFI-B, Nurr1, and NOR-1, as transcriptional activators. J Mol Neurosci. 1995;6(4):249–55.
- 335. Milbrandt J. Nerve growth factor induces a gene homologous to the glucocorticoid receptor gene. Neuron. 1988;1(3):183-8.
- 336. Wang Z, Benoit G, Liu J, Prasad S, Aarnisalo P, Liu X, et al. Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature. 2003;423(6939): 555–60.
- 337. Munoz-Tello P, Lin H, Khan P, de Vera IMS, Kamenecka TM, Kojetin DJ. Assessment of NR4A Ligands That Directly Bind and Modulate the Orphan Nuclear Receptor Nurr1. J Med Chem. 2020;63(24):15639–54.
- 338. de Vera IMS, Munoz-Tello P, Zheng J, Dharmarajan V, Marciano DP, Matta-Camacho E, et al. Defining a Canonical Ligand-Binding Pocket in the Orphan Nuclear Receptor Nurr1. Structure. 2019;27(1):66–77.e5.
- 339. Willems S, Kilu W, Ni X, Chaikuad A, Knapp S, Heering J, et al. The orphan nuclear receptor Nurr1 is responsive to non-steroidal anti-inflammatory drugs. Communications Chemistry. 2020;3:85.

- 340. Willems S, Ohrndorf J, Kilu W, Heering J, Merk D. Fragmentlike Chloroquinolineamines Activate the Orphan Nuclear Receptor Nurr1 and Elucidate Activation Mechanisms. J Med Chem. 2021;64(5):2659–68.
- 341. Kim CH, Han BS, Moon J, Kim DJ, Shin J, Rajan S, et al. Nuclear receptor Nurr1 agonists enhance its dual functions and improve behavioral deficits in an animal model of Parkinson's disease. Proc Natl Acad Sci U S A. 2015;112(28): 8756-61.
- 342. Xiao Q, Castillo SO, Nikodem VM. Distribution of messenger RNAs for the orphan nuclear receptors Nurr1 and Nur77 (NGFI-B) in adult rat brain using in situ hybridization. Neuroscience. 1996;75(1):221–30.
- 343. Wang X, Zhuang W, Fu W, Lv E, Li F, Zhou S, et al. The lentiviral-mediated Nurr1 genetic engineering mesenchymal stem cells protect dopaminergic neurons in a rat model of Parkinson's disease. Am J Transl Res. 2018; 10(6): 1583–99.
- 344. Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, et al. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell. 2009;137(1):47–59.
- 345. Decressac M, Volakakis N, Bjorklund A, Perlmann T. NURR1 in Parkinson disease-from pathogenesis to therapeutic potential. Nat Rev Neurol. 2013;9(11):629-36.
- 346. Moon M, Jung ES, Jeon SG, Cha MY, Jang Y, Kim W, et al. Nurr1 (NR4A2) regulates Alzheimer's disease-related pathogenesis and cognitive function in the 5XFAD mouse model. Aging Cell. 2019;18(1):e12866.
- 347. Montarolo F, Perga S, Martire S, Bertolotto A. Nurr1 reduction influences the onset of chronic EAE in mice. Inflamm Res. 2015;64(11):841-4.
- 348. Decressac M, Kadkhodaei B, Mattsson B, Laguna A, Perlmann T, Bjorklund A. alpha-Synuclein-induced down-regulation of Nurr1 disrupts GDNF signaling in nigral dopamine neurons. Sci Transl Med. 2012;4(163):163ra156.
- 349. Liu W, Gao Y, Chang N. Nurr1 overexpression exerts neuroprotective and anti-inflammatory roles via down-regulating CCL2 expression in both in vivo and in vitro Parkinson's disease models. Biochem Biophys Res Commun. 2016;482(4):1312-9.
- 350. Parra-Damas A, Valero J, Chen M, Espana J, Martin E, Ferrer I, et al. Crtc1 activates a transcriptional program deregulated at early Alzheimer's disease-related stages. J Neurosci. 2014; 34(17):5776–87.
- 351. Chu Y, Le W, Kompoliti K, Jankovic J, Mufson EJ, Kordower JH. Nurr1 in Parkinson's disease and related disorders. J Comp Neurol. 2006;494(3):495-514.
- 352. Satoh J, Nakanishi M, Koike F, Miyake S, Yamamoto T, Kawai M, et al. Microarray analysis identifies an aberrant expression of apoptosis and DNA damage-regulatory genes in multiple sclerosis. Neurobiol Dis. 2005;18(3):537–50.
- 353. Park TY, Jang Y, Kim W, Shin J, Toh HT, Kim CH, et al. Chloroquine modulates inflammatory autoimmune responses through Nurr1 in autoimmune diseases. Sci Rep. 2019;9(1): 15559.
- 354. Trautmann S, Rehm J, Wittchen HU. The economic costs of mental disorders: Do our societies react appropriately to the burden of mental disorders? EMBO Rep. 2016;17(9):1245–9.
- 355. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11): e442.
- 356. Dealmakers Biopharma. A view into the central nervous system disorders market. Nature/biopharmadeal. 2020; B37-B39.

- 357. Marx M, Stuparic M, Schieber A, Carle R. Effects of thermal processing on trans-cis-isomerization of β-carotene in carrot juices and carotene-containing preparations. Food Chemistry. 2003;83(4):609–17.
- 358. Aman R, Schieber A, Carle R. Effects of heating and illumination on trans-cis isomerization and degradation of beta-carotene and lutein in isolated spinach chloroplasts. J Agric Food Chem. 2005;53(24):9512-8.
- 359. Lessin JW, Catigani GL, Schwartz SJ. Quantification of cistrans Isomers of Provitamin A Carotenoids in Fresh and Processed Fruits and Vegetables. J Agric Food Chem. 1997;45:3728–3732.
- 360. Napiórkowska-Krzebietke A. Phytoplankton as a basic nutritional source in diets of fish. J Elem. 2017;22(3):831-41.
- 361. Xu Y, Ibrahim IM, Wosu CI, Ben-Amotz A, Harvey PJ. Potential of New Isolates of Dunaliella Salina for Natural beta-Carotene Production. Biology (Basel). 2018;7(1):14.
- 362. Stahl W, Schwarz W, Sies H. Human serum concentrations of all-trans beta- and alpha-carotene but not 9-cis beta-carotene increase upon ingestion of a natural isomer mixture obtained from Dunaliella salina (Betatene). J Nutr. 1993;123 (5):847-51.
- 363. Xu Y, Harvey PJ. Red Light Control of beta-Carotene Isomerisation to 9-cis beta-Carotene and Carotenoid Accumulation in Dunaliella salina. Antioxidants (Basel). 2019;8(5):148.
- 364. Harvey PJ, Ben-Amotz A. Towards a sustainable Dunaliella salina microalgal biorefinery for 9-cis β-carotene production. Algal Research. 2020;50:102002.
- 365. Napoli JL. Functions of Intracellular Retinoid Binding-Proteins. Subcell Biochem. 2016;81:21–76.
- 366. Kane MA, Folias AE, Pingitore A, Perri M, Krois CR, Ryu JY, et al. Crbpl modulates glucose homeostasis and pancreas 9-cis-retinoic acid concentrations. Mol Cell Biol. 2011;31(16): 3277-85.
- 367. Shen YC, Fan JH, Edenberg HJ, Li TK, Cui YH, Wang YF, et al. Polymorphism of ADH and ALDH genes among four ethnic groups in China and effects upon the risk for alcoholism. Alcohol Clin Exp Res. 1997;21(7):1272-7.
- 368. Kolsch H, Lutjohann D, Jessen F, Popp J, Hentschel F, Kelemen P, et al. RXRA gene variations influence Alzheimer's disease risk and cholesterol metabolism. J Cell Mol Med. 2009;13(3):589–98.
- 369. Agnello L, Scazzone C, Lo Sasso B, Ragonese P, Milano S, Salemi G, et al. CYP27A1, CYP24A1, and RXR-alpha Polymorphisms, Vitamin D, and Multiple Sclerosis: a Pilot Study. J Mol Neurosci. 2018;66(1):77-84.
- 370. Philibert RA, Sandhu HK, Hutton AM, Wang Z, Arndt S, Andreasen NC, et al. Population-based association analyses of the HOPA12bp polymorphism for schizophrenia and hypothyroidism. Am J Med Genet. 2001;105(1):130-4.
- 371. Wan C, Shi Y, Zhao X, Tang W, Zhang M, Ji B, et al. Positive association between ALDH1A2 and schizophrenia in the Chinese population. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(8):1491–5.
- 372. Palha JA, Goodman AB. Thyroid hormones and retinoids: a possible link between genes and environment in schizophrenia. Brain Res Rev. 2006;51(1):61-71.
- 373. Tan EC, Tan HS, Chua TE, Lee T, Ng J, Ch'ng YC, et al. Association of premenstrual/menstrual symptoms with perinatal depression and a polymorphic repeat in the polyglutamine tract of the retinoic acid induced 1 gene. J Affect Disord. 2014;161:43–6.
- 374. Fan HH, Guo Q, Zheng J, Lian YZ, Huang SS, Sun Y, et al. ALDH1A1 Genetic Variations May Modulate Risk of Parkinson's Disease in Han Chinese Population. Front Neurosci. 2021;15:620929.

- 375. Li X, Zhu Y, Keaton M, Baranova A, Liu S, Hu X, et al. Variants and expression changes in PPAR-encoding genes display no significant association with schizophrenia. Biosci Rep. 2020;40(7):BSR20201083.
- 376. Ding X, Han X, Yuan H, Zhang Y, Gao Y. The Impact of PPARD and PPARG Polymorphisms on Glioma Risk and Prognosis. Sci Rep. 2020;10(1):5140.
- 377. Paval D, Rad F, Rusu R, Niculae AS, Colosi HA, Dobrescu I, et al. Low Retinal Dehydrogenase 1 (RALDH1) Level in Prepubertal Boys with Autism Spectrum Disorder: A Possible Link to Dopamine Dysfunction? Clin Psychopharmacol Neurosci 2017;15(3):229–36.
- 378. Adighibe O, Arepalli S, Duckworth J, Hardy J, Wavrant-De VriezeF. Genetic variability at the LXR gene (NR1H2) may contribute to the risk of Alzheimer's disease. Neurobiol Aging. 2006;27(10):1431-4.
- 379. Chou AP, Chowdhury R, Li S, Chen W, Kim AJ, Piccioni DE, et al. Identification of retinol binding protein 1 promoter hypermethylation in isocitrate dehydrogenase 1 and 2 mutant gliomas. J Natl Cancer Inst. 2012;104(19):1458–69.
- 380. Cancela Diez B, Perez-Ramirez C, Maldonado-Montoro MDM, Carrasco-Campos MI, Sanchez Martin A, Pineda Lancheros LE, et al. Association between polymorphisms in the vitamin D receptor and susceptibility to multiple sclerosis. Pharmacogenet Genomics. 2021;31(2):40–7.
- 381. Guerini FR, Bolognesi E, Chiappedi M, Mensi MM, Fumagalli O, Rogantini C, et al. Vitamin D Receptor Polymorphisms Associated with Autism Spectrum Disorder. Autism Res. 2020;13(5):680–90.
- 382. Cieslinska A, Kostyra E, Chwala B, Moszynska-Dumara M, Fiedorowicz E, Teodorowicz M, et al. Vitamin D Receptor Gene Polymorphisms Associated with Childhood Autism. Brain Sci. 2017;7(9):115.
- 383. Lv L, Tan X, Peng X, Bai R, Xiao Q, Zou T, et al. The relationships of vitamin D, vitamin D receptor gene polymorphisms, and vitamin D supplementation with Parkinson's disease. Transl Neurodegener. 2020;9(1):34.
- 384. Liu N, Zhang T, Ma L, Wei W, Li Z, Jiang X, et al. Vitamin D Receptor Gene Polymorphisms and Risk of Alzheimer Disease and Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. Adv Nutr. 2021;12(6):2255-64.
- 385. Gezen-Ak D, Dursun E, Ertan T, Hanagasi H, Gurvit H, Emre M, et al. Association between vitamin D receptor gene polymorphism and Alzheimer's disease. Tohoku J Exp Med. 2007;212(3):275–82.
- 386. Mehrdad M, Eftekhari MH, Jafari F, Nikbakht HA, Gholamalizadeh M. Does vitamin D affect the association between FTO rs9939609 polymorphism and depression? Expert Rev Endocrinol Metab. 2021;16(2):87–93.
- 387. Keyimu K, Zhou XH, Miao HJ, Zou T. Relationship between vitamin D receptor gene polymorphism and mild cognitive impairment in elderly Uygur people. Int J Clin Exp Med. 2014;7(12):5282-8.
- 388. Brune S, Kolsch H, Ptok U, Majores M, Schulz A, Schlosser R, et al. Polymorphism in the peroxisome proliferator-activated receptor alpha gene influences the risk for Alzheimer's disease. J Neural Transm (Vienna). 2003;110(9):1041–50.
- 389. Magvanjav O, Gong Y, McDonough CW, Chapman AB, Turner ST, Gums JG, et al. Genetic Variants Associated With Uncontrolled Blood Pressure on Thiazide Diuretic/beta-Blocker Combination Therapy in the PEAR (Pharmacogenomic Evaluation of Antihypertensive Responses) and INVEST (International Verapamil-SR Trandolapril Study) Trials. J Am Heart Assoc. 2017;6(11):e006522.
- 390. Solaas K, Legry V, Retterstol K, Berg PR, Holven KB, Ferrieres J, et al. Suggestive evidence of associations

- between liver X receptor beta polymorphisms with type 2 diabetes mellitus and obesity in three cohort studies: HUNT2 (Norway), MONICA (France) and HELENA (Europe). BMC Med Genet. 2010;11:144.
- 391. Zhou YF, Zhang J, Li ZX, Miao JL, Yin QX, Li JJ, et al. Association of liver X receptor alpha (LXRalpha) gene polymorphism and coronary heart disease, serum lipids and glucose levels. Lipids Health Dis. 2014;13:34.
- 392. Gu SJ, Guo ZR, Zhou ZY, Hu XS, Wu M. PPAR alpha and PPAR gamma polymorphisms as risk factors for dyslipidemia in a Chinese Han population. Lipids Health Dis. 2014;13:23.
- 393. Sentinelli F, Minicocci I, Montali A, Nanni L, Romeo S, Incani M, et al. Association of RXR-Gamma Gene Variants with Familial Combined Hyperlipidemia: Genotype and Haplotype Analysis. J Lipids. 2013;2013:517943.
- 394. Hegele RA, Cao H. Single nucleotide polymorphisms of RXRA encoding retinoid X receptor alpha. J Hum Genet. 2001;46(7): 423–5
- 395. Grzegorzewska AE, Niepolski L, Swiderska MK, Mostowska A, Stolarek I, Warchol W, et al. ENHO, RXRA, and LXRA polymorphisms and dyslipidaemia, related comorbidities and survival in haemodialysis patients. BMC Med Genet. 2018;19(1):194.
- 396. Wan K, Zhao J, Deng Y, Chen X, Zhang Q, Zeng Z, et al. A genetic polymorphism in RBP4 is associated with coronary artery disease. Int J Mol Sci. 2014;15(12):22309-19.
- 397. Cai X, Lian F, Kong Y, Huang L, Xu L, Wu Y, et al. Carotenoid metabolic (BCO1) polymorphisms and personal behaviors modify the risk of coronary atherosclerosis: a nested case-control study in Han Chinese with dyslipidaemia (2013–2016). Asia Pac J Clin Nutr. 2019;28(1):192–202.
- 398. Salazar J, Guardiola M, Ferre R, Coll B, Alonso-Villaverde C, Winklhofer-Roob BM, et al. Association of a polymorphism in the promoter of the cellular retinoic acid-binding protein II gene (CRABP2) with increased circulating low-density lipoprotein cholesterol. Clin Chem Lab Med. 2007;45(5):615–20.
- 399. Amengual J, Gouranton E, van Helden YG, Hessel S, Ribot J, Kramer E, et al. Beta-carotene reduces body adiposity of mice via BCM01. PLoS One. 2011;6(6):e20644.
- 400. van Hoek M, Dehghan A, Zillikens MC, Hofman A, Witteman JC, Sijbrands EJ. An RBP4 promoter polymorphism increases risk of type 2 diabetes. Diabetologia. 2008;51(8):1423-8.
- 401. Vafaeie F, Kazemi T, Khosravi S, Miri MoghaddamE. Association Between Retinoid X Receptor Gene Variants and Dyslipidemia Risk in an Iranian Population. Cureus. 2021;13(9): e17730.
- 402. Motavallian A, Andalib S, Vaseghi G, Mirmohammad-Sadeghi H, Amini M. Association between PR012ALA polymorphism of the PPAR-gamma2 gene and type 2 diabetes mellitus in Iranian patients. Indian J Hum Genet. 2013;19(2):239–44.
- 403. Homma H, Watanabe M, Inoue N, Isono M, Hidaka Y, Iwatani Y. Polymorphisms in Vitamin A-Related Genes and Their Functions in Autoimmune Thyroid Disease. Thyroid. 2021;31(11): 1749–56.
- 404. Wang S, XU L, HU W. Association between single nucleotide polymorphism of RXRArs11185660 and genetic susceptibility of type 2 diabetes mellitus in Guangdong Han population. Chinese Journal of Public Health. 2020;36(12):1785–88.
- 405. Aravindhan S, Almasoody MFM, Selman NA, Andreevna AN, Ravali S, Mohammadi P, et al. Vitamin D Receptor gene polymorphisms and susceptibility to type 2 diabetes: evidence from a meta-regression and meta-analysis based on 47 studies. J Diabetes Metab Disord. 2021;20(1):845–67.
- 406. Jin T, Lu W, Gong X, Zhou J, Wu F. Association of vitamin D receptor polymorphisms with metabolic syndrome-related

- components: A cross-sectional study. J Clin Lab Anal. 2021;35(7):e23829.
- 407. Sangkaew B, Nuinoon M, Jeenduang N. Association of vitamin D receptor gene polymorphisms with serum 25(OH) D levels and metabolic syndrome in Thai population. gene. 2018;659:59-66.
- 408. Gatto NM, Paul KC, Sinsheimer JS, Bronstein JM, Bordelon Y, Rausch R, et al. Vitamin D receptor gene polymorphisms and cognitive decline in Parkinson's disease. J Neurol Sci. 2016;370:100-6.
- 409. Morris MC, Wang Y, Barnes LL, Bennett DA, Dawson-Hughes B, Booth SL. Nutrients and bioactives in green leafy vegetables and cognitive decline: Prospective study. Neurology. 2017;90(3):e214-e222.
- 410. Rooney C, McKinley MC, Woodside JV. The potential role of fruit and vegetables in aspects of psychological well-being: a review of the literature and future directions. Proc Nutr Soc. 2013;72(4):420–32.
- 411. Tang GY, Meng X, Li Y, Zhao CN, Liu Q, Li HB. Effects of Vegetables on Cardiovascular Diseases and Related Mechanisms. Nutrients. 2017;9(8):857.
- 412. Key TJ. Fruit and vegetables and cancer risk. Br J Cancer. 2011;104(1):6-11.
- 413. Chatzi L, Apostolaki G, Bibakis I, Skypala I, Bibaki-Liakou V, Tzanakis N, et al. Protective effect of fruits, vegetables and the Mediterranean diet on asthma and allergies among children in Crete. Thorax. 2007;62(8):677–83.
- 414. Molendijk M, Molero P, Ortuno Sanchez-Pedreno F, Van der Does W, Angel Martinez-GonzalezM. Diet quality and depression risk: A systematic review and dose-response meta-analysis of prospective studies. J Affect Disord. 2018; 226:346-54.
- 415. Nguyen B, Ding D, Mihrshahi S. Fruit and vegetable consumption and psychological distress: cross-sectional and longitudinal analyses based on a large Australian sample. BMJ Open. 2017;7(3):e014201.
- 416. Fitzgerald KC, Tyry T, Salter A, Cofield SS, Cutter G, Fox R, et al. Diet quality is associated with disability and symptom severity in multiple sclerosis. Neurology. 2017;90(1):e1-e11.
- 417. Bishwajit G, O'Leary DP, Ghosh S, Sanni Y, Shangfeng T, Zhanchun F. Association between depression and fruit and vegetable consumption among adults in South Asia. BMC Psychiatry. 2017;17(1):15.
- 418. Himmelgreen DA, Perez-Escamilla R, Segura-Millan S, Romero-Daza N, Tanasescu M, Singer M. A comparison of the nutritional status and food security of drug-using and non-drug-using Hispanic women in Hartford. Connecticut. Am J Phys Anthropol. 1998;107(3):351-61.
- 419. Kesse-Guyot E, Andreeva VA, Ducros V, Jeandel C, Julia C, Hercberg S, et al. Carotenoid-rich dietary patterns during midlife and subsequent cognitive function. Br J Nutr. 2013;111(5):915–23.
- 420. Zhou Y, Wang J, Cao L, Shi M, Liu H, Zhao Y, et al. Fruit and Vegetable Consumption and Cognitive Disorders in Older Adults: A Meta-Analysis of Observational Studies. Front Nutr. 2022;9:871061.
- 421. Böhm V, Lietz G, Olmedilla-Alonso B, Phelan D, Reboul E, Banati D, et al. From carotenoid intake to carotenoid blood and tissue concentrations implications for dietary intake recommendations. Nutr Rev. 2021;79(5):544–73.
- 422. Liu RH. Dietary bioactive compounds and their health implications. J Food Sci. 2013;78(Suppl 1):A18-25.
- 423. Relevy NZ, Harats D, Harari A, Ben-Amotz A, Bitzur R, Rühl R, et al. Vitamin A-deficient diet accelerated atherogenesis in apolipoprotein E(-/-) mice and dietary beta-carotene

- prevents this consequence. Biomed Res Int. 2015;2015: 758723.
- 424. Melnikov N, Kamari Y, Kandel-Kfir M, Barshack I, Ben-Amotz A, Harats D, et al. beta-Carotene from the Alga Dunaliella bardawil Decreases Gene Expression of Adipose Tissue Macrophage Recruitment Markers and Plasma Lipid Concentrations in Mice Fed a High-Fat Diet. Mar Drugs. 2022;20(7): 433.
- 425. Harari A, Abecassis R, Relevi N, Levi Z, Ben-Amotz A, Kamari Y, et al. Prevention of atherosclerosis progression by 9-cisbeta-carotene rich alga Dunaliella in apoE-deficient mice. Biomed Res Int. 2013;2013:169517.
- 426. Harari A, Harats D, Marko D, Cohen H, Barshack I, Kamari Y, et al. A 9-cis beta-carotene-enriched diet inhibits atherogenesis and fatty liver formation in LDL receptor knockout mice. J Nutr. 2008:138(10):1923-30.
- 427. Shaish A, Harari A, Hananshvili L, Cohen H, Bitzur R, Luvish T, et al. 9-cis beta-carotene-rich powder of the alga Dunaliella bardawil increases plasma HDL-cholesterol in fibrate-treated patients. Atherosclerosis. 2006;189(1):215–21.
- 428. Rotenstreich Y, Belkin M, Sadetzki S, Chetrit A, Ferman-Attar G, Sher I, et al. Treatment with 9-cis beta-carotene-rich powder in patients with retinitis pigmentosa: a randomized crossover trial. JAMA Ophthalmol. 2013;131(8):985–92.
- 429. Meshi A, Belkin A, Koval T, Kornhouser T, Assia EI, Rotenstreich Y. An experimental treatment of ocular quinine toxicity with high-dose 9-cis Beta-carotene. Retin Cases Brief Rep. 2015; 9(2):157-61.
- 430. Zhu R, Ou Z, Ruan X, Gong J. Role of liver X receptors in cholesterol efflux and inflammatory signaling (review). Mol Med Rep. 2012;5(4):895–900.
- 431. Schulman IG. Liver X receptors link lipid metabolism and inflammation. FEBS Lett. 2017;591(19):2978-91.
- 432. Gadani SP, Cronk JC, Norris GT, Kipnis J. IL-4 in the brain: a cytokine to remember. J Immunol. 2012;189(9):4213-9.
- 433. Havard-Health. Foods linked to better brainpower. 2021. https://www.health.harvard.edu/healthbeat/foods-linked-to-better-brainpower.

History

Received August 18, 2023 Accepted April 21, 2024 Published online June 21, 2024

Acknowledgements

We thank Pascal Dollé and Daniel Merk for help in article editing.

Conflict of interest

RR is CEO and WK is shareholder in CISCAREX UG, all other authors have no conflict of interest to declare.

Authors contribution

WK and RR are co-corresponding authors.

Funding

WK was funded by Agence Nationale de la Recherche (ANR) (ROLinMAP), and the institutional LabEx ANR-10-LABX-0030-INRT grant, managed by the ANR as part of the program Investissements d'Avenir ANR-10-IDEX-0002-02.

ORCID

Manfred Eggersdorfer

https://orcid.org/0000-0002-5314-5110

Sascha Rohn

https://orcid.org/0000-0002-5009-8830

Wojciech Krężel

https://orcid.org/0000-0003-1605-3185

Ralph Rühl

https://orcid.org/0000-0002-8410-6659

Dr Ralph Rühl

CISCAREX UG Transvaalstr. 27c 13351 Berlin Germany ralphruehl@web.de