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Abstract

Background: As the volume of imported food flowing into South Korea rapidly increases due to the expansion of free trade agreements,
improving inspection efficiency through artificial intelligence technology emerges as a critical task, particularly as time and cost expen-
ditures for safety inspections conducted by the Korean Ministry of Food and Drug Safety concurrently increase rapidly. The lack of a
generalizable machine learning model for predicting the safety of food for human consumption constitutes a significant challenge for pol-
icymakers and responsible authorities. Methods: This study developed an effective classification model for predicting non-conformance
in customs inspection of imported seafood products. To address the severe class imbalance inherent in the inspection data, we applied class
weight-based cost-sensitive learning and adopted an ensemble approach combining Decision Trees (DT), Random Forests (RF), Logistic
Regression (LR), and Naive Bayes (NB) models. Results: Performance evaluation demonstrated that the soft voting ensemble technique
achieved superior predictive performance in identifying non-conformance cases, with a recall of 75.57% and an Area Under the Curve
(AUC) of 87.49%, significantly outperforming the hard voting method’s recall of 44.32% and AUC of 72.07%. Through SHapley Addi-
tive exPlanations (SHAP) analysis, we confirmed that various characteristics, including exporting country ratio, major product category,
overseas manufacturer ratio, importer ratio, and seasonal variation, exerted substantial influence on the models’ decisions. Conclusion:
Notably, the Naive Bayes model component provided a more comprehensive analysis for identifying non-conformance by considering
multiple dimensions and potential seasonality. This research guide for predicting seafood product import inspection results contributes to
enhancing inspection efficiency for securing the safety of imported aquatic products.The proposed methodology demonstrates potential
applicability to other regulatory inspection domains confronting similar data imbalance challenges.
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1. Introduction
In recent decades, the global seafood trade has ex-

panded dramatically, with international seafood imports
reaching unprecedented volumes to meet growing con-
sumer demand worldwide [1]. This expansion has been ac-
companied by increasing concerns regarding food safety,
as seafood products are particularly susceptible to vari-
ous contaminants, including heavy metals, pathogens, and
unauthorized additives [2]. Regulatory authorities around
the world have implemented rigorous inspection systems
at entry points to ensure that imported seafood meets es-
tablished safety standards. However, the effectiveness of
these inspection systems faces significant challenges due to
the vast volume of imports and the relatively low incidence
of non-conformity, approximately 0.2%, as observed in our
dataset.

Food safety is deeply affected by the diversity of foods
and their raw materials. The increasing trade openness of
the global economy has resulted in increased food imports,
emphasizing the significance of food risk management in
protecting consumer health. Predictions and early warning
are crucial to ensure food safety; in particular, food inspec-

tion prior to entry into the consumer market is a significant
step in ensuring good food quality.

In this context, the term non-conformity is used to de-
note inspection failures resulting from violations of estab-
lished safety and quality criteria. These include microbi-
ological hazards, chemical residues, and labeling defects,
which are evaluated according to the regulatory standards
enforced by the Korean Ministry of Food and Drug Safety
[3].

The identification of key factors influencing non-
conformity in imported seafood represents a critical area
for research, as it could potentially enhance the efficiency
and effectiveness of inspection protocols. Previous studies
have examined various aspects of seafood safety, including
the prevalence of specific contaminants [4,5], geographi-
cal variations in compliance rates [6], and seasonal fluctu-
ations in detection rates [7]. However, there has been little
research on the use of proactive inspections for high-risk
food predictions as part of the border control for imported
foods, with the exceptions of the United States (US) and the
European Union (EU). Furthermore, there remains a signif-
icant gap in understanding how multiple factors—such as
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seafood type, distribution method, import timing, country
of origin, and characteristics of importers and exporters—
collectively influence the likelihood of non-conformity.
Furthermore, governmental implementations such as the
risk prediction-based imported food inspection system de-
veloped by the Korean Ministry of Food and Drug Safety
[8] have established procedural precedents through logistic
modeling approaches incorporating multidimensional risk
factors, though such systems exhibit methodological con-
straints when addressing extreme classification imbalance
and provide limited explainability mechanisms for special-
ized product categories.

The inherent challenge in developing predictive mod-
els for seafood inspection outcomes lies in the severe class
imbalance within the available data. With non-conformity
rates of approximately 0.2% (796 non-conforming cases
from 389,389 total observations in our study), traditional
classification algorithms often fail to accurately identify
the minority class (non-conforming samples), instead fa-
voring the overwhelming majority class (conforming sam-
ples) [9]. This imbalance problem is particularly prob-
lematic in regulatory contexts where the cost of missing
a non-conforminity product (false negative) significantly
outweighs the cost of additional inspection for a compliant
product (false positive).

Despite several studies focused on using machine
learning for predicting the results of inspections, there is
a lack of information regarding the model decision and ex-
plainability, such as that found in the areas of water qual-
ity [10,11] and healthcare [12,13]. To address this gap,
our study employs SHapley Additive exPlanations (SHAP)
[14] to provide principled and interpretable insights into the
model’s decision-making process.

This study addresses these challenges by developing
and evaluating multiple classification models designed to
predict non-conformity in imported seafood products while
effectively handling the class imbalance problem. Specif-
ically, we implement and compare four distinct classifica-
tion algorithms—Decision Tree (DT), RandomForest (RF),
Logistic Regression (LR), and Naive Bayes (NB)—and em-
ploy both hard and soft voting ensemble mechanisms to
determine the most effective approach. Our methodology
incorporates specialized data preprocessing techniques to
mitigate the effects of class imbalance, including strategic
sampling methods and feature engineering tailored to the
unique characteristics of seafood import data.

The primary objectives of this research are: (1) to
identify the key factors that significantly influence non-
conformity in imported seafood products; (2) to develop an
effective classification model that accurately identifies po-
tentially non-conformant products despite the severe class
imbalance; and (3) to provide actionable insights for regu-
latory authorities to optimize inspection protocols and re-
source allocation. By achieving these objectives, this study
aims to contribute to the enhancement of food safety sys-

temswhile simultaneously reducing unnecessary inspection
burdens on compliant imports.

The results demonstrated that a soft voting ensem-
ble approach achieved superior performance in identifying
non-conformity cases, with a recall of 75.57% andAreaUn-
der the Curve (AUC) of 87.49%, outperforming the hard
voting method. SHAP analysis confirmed that exporting
country ratio, major product category, manufacturer ratio,
importer ratio, and seasonal variations significantly influ-
enced model decisions providing comprehensive analysis
by considering multiple risk dimensions and seasonality.
This research not only enhances seafood inspection effi-
ciency but also offers a methodological framework that can
be readily applied to other product categories within the
food sector facing similar class imbalance challenges.

The remainder of this paper is organized as follows.
Section 2 provides a review of related literature on data
sampling methods, ensemble learning, and explainable ar-
tificial intelligence. Section 3 describes the materials and
methods, including data sources, preprocessing, model con-
struction, and evaluation. Section 4 presents the experimen-
tal results and interpretability analysis. Section 5 discusses
the implications of the findings. Finally, Section 6 con-
cludes the study and outlines directions for future research.

2. Literature Review
This section presents a comprehensive overview of the

theoretical foundations and prior research relevant to the
prediction of food inspection outcomes. It introduces essen-
tial concepts including data sampling strategies for address-
ing class imbalance, ensemble learning techniques with an
emphasis on voting mechanisms, and explainable artificial
intelligence (XAI).

The objective is to establish a solid conceptual and
methodological framework for the approaches employed in
this study. Furthermore, this section identifies existing re-
search gaps, particularly the limited application of inter-
pretable machine learning models in the domain of food
safety inspections, thereby highlighting the novelty and ne-
cessity of this study.

2.1 Data Sampling Method
Data sampling methods are necessary in machine

learning and data analysis as they allow imbalanced datasets
to be addressed, wherein one class has significantly fewer
instances than the others. In this study, the non-conformity
class contains significantly fewer samples than the confor-
mity class. Consequently, this imbalance of datasets can
lead to biased model performance and poor generalization,
particularly in the context of classification tasks. Data sam-
pling methods, therefore, aim to balance the class distribu-
tion by oversampling the minority class, undersampling the
majority class, or generating synthetic samples [15].

Synthetic minority oversampling (SMOTE) is a pop-
ular and effective data sampling method [16]. SMOTE
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works by selecting samples in a feature space that are close
together, drawing a line between the samples and drawing
a new sample at a point along that line. More specifically,
a random example from the minority class is selected first.
For this example, the k of its nearest neighbors is deter-
mined (typically, k = 5). A randomly chosen neighbor is
selected, and a synthetic example is created in the feature
space at a randomly chosen point between the two exam-
ples.

SMOTE techniques are also known to be selective.
For example, numerous SMOTE extensions exist for over-
sampling methods. One popular method is the borderline-
SMOTE, which involves selecting misclassified instances
of the minority class, such as the k-nearest neighbor (KNN)
classification model [17]. Instead of randomly generat-
ing new synthetic examples for the minority class, the
borderline-SMOTE method generates synthetic examples
only along the decision boundary between the two classes.
In addition to the KNN model, another approach known
as borderline-SMOTE Support Vector Machine (SVM) or
SMOTE-SVM was introduced using the SVM algorithm to
identify misclassifications on the decision boundary [18].

2.2 Voting Ensemble Model
A voting ensemble is a machine learning ensemble

model that combines predictions from multiple models.
This technique can be used to improve the model perfor-
mance, ideally outperforming any single model in the en-
semble. A voting ensemble combines the predictions from
multiple models. This method is suitable for classifica-
tion; during classification, the predictions for each label are
added, and the label with the most votes is predicted [19].

Two approaches are available to predict the majority
votes for classification, namely hard voting and soft voting.
As shown in Fig. 1, hard voting entails adding up all the
predictions for each class label and predicting the class label
with the most votes. Meanwhile, soft voting averages the
predicted probabilities for each class label and predicts the
class label with the greatest probability [20].

2.3 Explainable Artificial Intelligence
Artificial intelligence (AI) methods have achieved un-

precedented levels of performance in solving complex com-
putational tasks, making them vital for the future develop-
ment of human society. In recent years, the sophistication
of AI-powered systems has increased, rendering them al-
most devoid of human intervention in terms of their design
and deployment. However, as black-box machine learning
(ML) models become increasingly used in practice, the de-
mand for transparency has increased, and the explanations
supporting the output of the model become crucial. As hu-
mans are hesitant to adopt techniques that are not directly
interpretable, tractable, or trustworthy, there is a require-
ment for ethical AI. In addition, although it is customary to
consider that focusing solely on performance leads to un-

clear systems, improving the understanding of a system can
lead to the correction of its deficiencies. For example, en-
hanced interpretability can improve ML models by ensur-
ing impartiality during decision making, thereby providing
robustness by highlighting potential adversarial perturba-
tions, and ensuring that only meaningful variables infer the
output. To avoid limiting the effectiveness of current AI
systems, eXplainable AI (XAI) proposes creating a suite
of ML techniques that produce more explainable models
while maintaining a high learning performance. XAI draws
insights from the social sciences and from the psychology
of explanation to encourage humans to understand, trust,
and effectivelymanage emerging generations of AI partners
[21]. In this study, SHAP was applied to interpret the pre-
diction of seafood non-conformity enhancing model trans-
parency and regulatory usability.

Among the various XAI techniques reported to date,
SHAP is a powerful and widely used technique, which pro-
vides a principled and model-agnostic approach to explain
the predictions of machine-learning models. It is based on
the cooperative game theory and the concept of Shapley val-
ues, which originated in the field of economics. SHAP as-
signs a fair and consistent contribution score to each feature
in a prediction, quantifying its impact on the model’s out-
put. The core idea behind SHAP is the consideration of all
possible feature combinations and computation of the dif-
ferences in predictions when a specific feature is included
or excluded, thereby capturing its individual effects. By
averaging these differences over all possible combinations,
the SHAP values provide a global explanation for the entire
dataset. Additionally, SHAP values can be applied at the
individual level, offering local explanations for each pre-
diction, thereby rendering them highly valuable for under-
standing model behavior on a case-by-case basis.

3. Materials and Methods
This section presents the methodological framework

employed to develop and assess the machine learning mod-
els for predicting seafood product import inspection out-
comes as illustrated in Fig. 2. The study process is de-
scribed in detail, including data acquisition, preprocess-
ing procedures, feature engineering, and the construction of
classification models. Particular attention is given to han-
dling class imbalance using resampling techniques, select-
ing statistically significant features, and implementing en-
semble learning approaches through hard and soft voting
mechanisms. Furthermore, model evaluation metrics and
explainable AI techniques are introduced to ensure both the
reliability and interpretability of the predictive results.

3.1 Data Sources
This study primary used imported food declaration

data provided by Korean Ministry of Food and Drug Safety
[3]. The dataset consists of a comprehensive range of prod-
uct information, including dates, import/export companies,
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Fig. 1. Voting ensemble techniques explanation. Comparison of hard and soft voting ensemble techniques where hard voting uses
majority rule while soft voting averages prediction probabilities across multiple classifiers.

Fig. 2. Workflow of the four-phase methodology. The study process includes four phases. Machine learning models used in the study
are Decision Tree (DT), Random Forest (RF), Logistic Regression (LR), and Naive Bayes (NB). AUC, Area Under the Curve; XAI,
explainable artificial intelligence.

detailed product specifications, import weights, distribution
methods, processing results, and inspection types. The re-
ceived datasets ranged from 2018 to 2021. The total dataset
size is 389,389, with 388,593 and 796 samples in the con-
formity and non-conformity classes, respectively.

3.2 Data Preprocessing

To ensure sufficient data quality and structure for
training, the data preprocessing phase was divided into

three essential parts such as non-conformity rate calcula-
tions, feature engineering, and missing value imputation.
Table 1 presents the data attributes and derived metrics re-
sulting from the non-conformity rate calculations and the
feature engineering process. The report receipt dates were
converted into months, weeks, and seasons. Spring ranges
from March to May, Summer ranges from June to August,
and Winter ranges from December to February.
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Table 1. Description of variables.
Original variable Derived variable Description

Receipt date
Month Represents the year and month when the report was received.
Week Represents the year and week when the report was received.
Season Spring, Summer, Fall or Winter.

Import shipper
Import Shipper The importer.
Import Shipper Failed Ratio The previous failed ratio of the relevant importer.

Exporting country

Exporting Country The country from which the product is being exported.
Continent The continent of the exporting country.
Exporting Country Failed Ratio The previous failed ratio of the relevant exporting country.
Continent Failed Ratio The previous failed ratio of the relevant continent.

Overseas manufacturer
Overseas Manufacturer The foreign company responsible for producing the goods.
Overseas Manufacturer Failed Ratio The previous failed ratio of the relevant overseas manufacturer.

Exporter
Exporter The company or party that is responsible for exporting the goods

from the originating country.
Exporter Ratio The previous failed ratio of the relevant exporter.

Major product category
Major Product Category The major product category of the goods.
Major Product Category Failed Ratio The previous failed ratio of the relevant major product category.

Sub product category
Sub Product Category The sub-product category of the goods.
Sub Product Category Ratio The previous failed ratio of the relevant sub-product category.

Product name
Product Name The specific name or description of the products being im-

ported/exported.
Product Name Failed Ratio The previous failed ratio of the relevant product name.

Total net weight Total Net Weight The total net weight of the products being imported/exported.

Distribution method Distribution Method The distribution method.

Type of inspection Type of Inspection The type of inspection conducted on the products.

Processing result Processing Result The outcome or result of the inspection of the shipment.

The hit rate of each attribute, including non-
conformity, was determined based on a range of variables,
including the import shipper, exporting country, continent,
overseas manufacturer, exporter, major product category,
sub-product category, and product name. These attributes
were individually utilized to calculate their respective hit
rates, providing valuable insights into the occurrence of
non-conformities and irregularities associated with each
specific attribute. The non-conformity rate (Π) can be cal-
culated using the following formula:

Π(Non-conformity rate of variable) =
N(Non-conforming instances of variable)

N(Total instances of variable)
(1)

where N(variable) is the total number of instances in
which the variable is the same as the specific value of inter-
est (the value for which the non-conformity ratemust be cal-
culated), while N(Non-conformities of variable) is the num-
ber of instances in which the variable is the same as the spe-
cific value of interest, and represents the non-conformities.
After completing the calculation and feature engineering,
the missing values were input as zero.

3.3 Model Construction
3.3.1 Feature Selection

The preprocessed data were subjected to a two-stage
variable selection process, in which attributes were desig-
nated for inclusion in the model construction. In the first
stage, a single-factor analysis was performed to identify
factors that had statistically significant relationships with
conformity or non-conformity during inspections. Differ-
ent statistical tests were adopted depending on the variable
type. The continuous variables, such as the total net weight,
were analyzed using the ANOVA test. In contrast, the re-
mainder of the variables, namely the categorical variables,
were analyzed using the chi-squared test [22].

3.3.2 Spliting of the Data into Training and Testing
Datasets

To acquire the optimal models, perform model valida-
tion, and evaluate the model performance, the dataset was
split into two groups—80% for training and 20% for test-
ing. After feature selection was constructed, dataset used
for modeling were divided into the test and training datasets
and were subsequently oversampled to balance the training
data as shown in Fig. 3.
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Fig. 3. Flowchart for the prediction model. Data preparation flow for balancing the highly imbalanced seafood inspection dataset
through resampling before model training and evaluation.

The main purpose of resampling was to enhance the
discriminatory ability of the model rather than to learn er-
roneous samples. Moreover, the test dataset deviated from
the original data if sampling was performed before splitting
the data. Consequently, the model learned noise from the
data, resulting in inaccurate predictions. The dataset was
oversampled using SVM-SMOTE-SVM, and the resam-
pled training dataset was employed duringmodel training to
establish the most suitable model for the testing dataset and
XAI. The resampled data for training consisted of 497,425
data points for the conform class and 248,603 for the non-
conform class.

3.3.3 Modelling
Four types of models, namely, Decision Tree (DT)

[23], Random Forest (RF) [24], Logistic Regression [25],
and Naive Bayes (NB) [26], were used to create ensem-
ble models for model training. Because non-conformity is
considered a minority class, this study used cost-sensitive
learning that considers the costs of different misclassifica-
tions [27]. Using the balanced method, the class weights
were inversely proportional to the class frequencies in the
training dataset. Using class weights, the model learned to
minimize the total cost, not just the number of misclassi-
fications. This can be beneficial in situations where mis-
classification costs are unevenly distributed. As mentioned
above, two types of ensemble models were used in this
study, namely soft and hard voting models. The perfor-
mances of the soft and hard voting models were compared
using both the resampled validation and the test datasets.
XAI was then used to check the feature importance of each
model (i.e., DT, RF, LR, and NB).

The seafood inspection classification model presented
in Fig. 4 constitutes a taxonomic framework designed to
predict binary inspection outcomes through the integration
of 27 predictor variables strategically organized into seven
distinct categories with the detailed predictors and response
variable. These categories—comprising Entity Identifica-
tion Variables (n = 4), Product Characterization Variables (n
= 3), Quantitative Assessment Variables (n = 2), Logistical-
Procedural Variables (n = 2), Temporal-Chronological Vari-
ables (n = 6), Geographical Variables (n = 1), and Ratio
Metrics (n = 9)—establish a comprehensive analytical foun-
dation for the voting classifier mechanism. The model em-
ploys SHAP analysis to derive feature importance rank-
ings through both global assessments and local explana-
tions, thereby facilitating interpretability of the classifica-
tion outputs. A representative sample from our dataset is
presented in Supplementary Table 1, illustrating the 27
predictor variables used in the classification model.

3.3.4 Model Evaluation
The model performance were measured and validated

using a confusion matrix and model predictive performance
indicators to select the optimal model and evaluate its per-
formance. A confusion matrix was structured using the en-
tries listed in Table 2, and the necessary predictive perfor-
mance indicators were calculated using the numbers of true
positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN).

Predictive performance indicators included the area
under the curve (AUC), the positive predictive value (PPV)
(also known as precision), the F1 score, the recall, and the
accuracy (ACR), which are defined in detail below.
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Fig. 4. Seafood inspection classification model. Illustrating the taxonomic organization of predictor variables and their relationship to
the binary classification outcome. SHAP, SHapley Additive exPlanations.

Table 2. Definitions of entry types in the confusion matrix.
Entry type Definition

True Positive (TP) Predicted inspection result for the product by model classification: non-conformity; actual inspection
result: non-conformity.

False Positive (FP) Predicted inspection result for the product batch by model classification: non-conformity; actual in-
spection result: conformity.

True Negative (TN) Predicted inspection result for the product batch bymodel classification: conformity; actual inspection
result: conformity.

False Negative (FN) Predicted inspection result for the product by model classification: conformity; actual inspection
result: non-conformity.

Table 3. Performances of the ensemble models.
Voting method ACR Recall PPV F1 AUC TN FP TP FN

Soft voting 99.35% 75.57% 22.32% 34.46% 87.49% 77,239 463 133 43
Hard voting 99.69% 44.32% 35.62% 39.49% 72.07% 77,561 141 78 98
Note: Bold indicates the higher value for metrics where higher is preferable. ACR, accuracy rate; PPV,
positive predictive value.

• The accuracy rate (ACR) evaluates the model’s overall
capacity to differentiate between conformity and non-
conformity samples or the ability to accurately classify
samples as conformity. However, owing to the lower

proportion of non-conformities in our data, there was an
imbalance in the samples considered herein. Because
of its higher capacity for discriminating conformities,
ACRmay show bias in predicting conformities. To over-

7

https://www.imrpress.com


come this problem, the recall and PPV indicators have
received greater attention during the evaluation of model
performance. The ACR can be calculated using (2):

ACR =
TP + TN

TP + TN + FP + FN
(2)

• The recall or sensitivity is the proportion of samples
correctly labeled as non-conformity out of all non-
conformity samples, as shown in (3):

Recall =
TP

FN + TP
(3)

• The positive predictive value (PPV), also known as pre-
cision, is the proportion of samples that the model clas-
sifies as non-conformity out of all samples, and is oth-
erwise referred to as the non-conformity rate. The PPV
can be calculated using (4):

PPV =
TP

TP + FP
(4)

• The F1 score, defined as the harmonic mean of the recall
and PPV indicators, becomes crucial when dealing with
imbalanced data. Higher TP values correlate with higher
F1 scores, and the F1 score can be calculated using (5):

F1 =
2 · PPV ·Recall

PPV +Recall
(5)

• The model’s classification accuracy can be measured
from the area under the receiver operating characteristic
(ROC) curve (AUC), wherein a larger AUC denotes a
higher accuracy. More specifically, AUC = 1 represents
a great classifier, 0.5 < AUC < 1 represents a model that
outperforms random guessing, AUC = 0.5 represents a
model that is similar to random guessing but lacks clas-
sification capacity, and AUC <0.5 represents a classifier
that performs worse than random guessing.

According to the explanation above, recall and AUC
scores play an important role in the model evaluation. The
higher scores show that the higher chance model can cor-
rectly identify the non-conformity class.

3.4 Explainable AI
To understand the decisions made by the models, the

Shapley approach was employed to determine features hav-
ing a larger effect on the model’s prediction of conformity
or non-conformity. Shapley is a widely used interpretabil-
ity technique that assigns importance values to each feature
based on its impact on the model’s predictions. By analyz-
ing these important values, this study aims to gain insights

into the underlying factors driving the model’s conformity
or non-conformity predictions. In addition, this approach
allows researchers to identify potential biases or inconsis-
tencies in the decision-making process of a model.

This study explored all models incorporated into the
ensemble models to determine the common importance fea-
tures. By comparing the important features across all en-
semble models, this study aimed to identify features that
consistently had a significant impact on the model’s predic-
tions. This analysis provided a more robust understanding
of the key factors driving the decision-making process of
the model, whilst also helping validate the reliability of the
ensemble models.

4. Results
4.1 Comparisons of the Ensemble Model Performance

Four different models, namely NB, DT, RF, and LR
models, combined with class-weight cost-sensitive learn-
ing, were used to create both hard-voting and soft-voting
ensemble models. These models were applied to forecast
the inspection outcome after training and were used to pre-
dict the test data. The testing dataset contained 778,878
points of data consisting of 176 non-conformity classes and
77,702 non-conformity classes. Table 3 lists the perfor-
mances of the various ensemble models.

With 75.57% of the votes, the soft voting method out-
performed the hard voting method (44.32% of the votes) in
terms of the recall score. In addition, soft voting received
a higher AUC score of 87.49%, whereas hard voting only
received a score of 72.07%. While soft voting received
99.35% in terms of its ACR score, hard voting received a
slightly higher 99.69%. A similar result was observed for
the PPV score, with hard voting receiving 35.62% of the
vote and soft voting receiving 22.32%. Furthermore, hard
voting received a higher F1 score of 39.49% than 34.46%
for soft voting. These results indicate that overall, the soft
voting method exhibited a superior performance in terms
of the recall and AUC scores, while the hard voting method
outperformed the soft voting method in terms of the ACR,
PPV, and F1 scores.

The goal of this study was to determine the best com-
bination of recall and AUC scores to accurately detect non-
conformity data, and based on this goal, soft voting pro-
duced superior results in predicting the inspection results.
It therefore appears that soft voting is a suitable approach
for accurately detecting non-conformity data and predicting
inspection results with high recall and AUC scores.

4.2 Identification of the Importance of Features Using XAI
4.2.1 Global Importance Feature

The SHAP values of each model used in the ensem-
ble model were calculated to assess the significance of the
features in model decision-making. Subsequently, the fre-
quently prioritized attributes that influenced the model clas-
sification were identified. However, SHAP values are de-
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signed to work with additive models, such as linear models
and tree-based models (e.g., decision trees, random forests,
and gradient boosting machines). As the importance of
the various features in these models is clearly defined,
SHAP can provide thorough explanations for each predic-
tion. Meanwhile, the NB model is a probabilistic classifi-
cation algorithm built on the Bayes theorem and based on
the assumption of feature independence. The term “naive”
describes the belief that each feature is conditionally inde-
pendent of the feature assigned a class label [28]. Conse-
quently, different scores were obtained.

Thus, the SHAP values presented in Fig. 5Awere used
to calculate the feature importance, which corresponds to
the DT model. The rank of each feature’s influence on the
model is represented by the feature importance plots shown
in Fig. 5B,D, which correspond to the RF and LR models,
respectively. In addition, the influence-scaled score from
each feature and class is represented by the heatmap pro-
duced for the NB model (see Fig. 5C). The result in Fig. 5
clearly demonstrate that the features with a greater influ-
ence on a model’s choice include the exporting country ra-
tio, the major category, the overseas manufacturer ratio, and
the importer ratio. This suggests that the decision made by
the model is more influenced by features with higher val-
ues.

Furthermore, the NB model (Fig. 5C) shows that the
non-conformity decision of the model is highly dependent
on the week and month of the year, the middle category of
the product name and its ratio, the overseas manufacturer
and importer, the exporting company, the product name and
its ratio, and the export country. These factors play crucial
roles in determining the non-conformity decisions made by
the NB model. By considering various aspects, such as the
week and month of the year, any potential seasonal vari-
ations that may impact product conformity were also con-
sidered. Moreover, factors such as the middle category of
the product name and its ratio, overseas manufacturer, im-
porter, exporting company, product name, and its ratio, and
the exporting country allow the analysis of the various di-
mensions that could contribute to non-conformity.

4.2.2 SHAP Local Explanation

While global feature importance provides insights into
model behavior across the entire dataset, SHAP local ex-
planations reveal how specific features influence individ-
ual predictions. The study analyzed four non-conforming
seafood import samples correctly identified by our ensem-
ble model to demonstrate the model’s decision-making pro-
cess at the instance level.

Fig. 6A shows feature contributions for Sample 1,
white leg shrimp imported from Vietnam with a predic-
tion probability of 0.7865 for non-conformity. The ex-
porting company ratio (0.5) strongly pushed toward non-
conformity, followed by total net weight (1321.6 kg) and
importer ratio (0.0083). Conversely, product name (“White

Leg Shrimp”) and temporal features (Year and Month =
2022-05) contributed significantly toward conformity clas-
sification.

Fig. 6B presents Sample 2, short-neck clams from
China with the highest non-conformity prediction proba-
bility (0.9520) among the analyzed samples. For this case,
document inspection was the dominant factor pushing to-
ward non-conformity, along with quantity (233) and net
weight (4660.0 kg). Unlike Sample 1, almost all features
consistently contributed toward non-conformity, with only
the exporting company ratio showing a negative influence.

Fig. 6C shows Sample 3, an imported octopus from
China with a prediction probability of 0.8687. This sam-
ple demonstrates a distinctive pattern where the exporting
company ratio (1.0) exerted the strongest influence toward
non-conformity. Interestingly, both the name of the prod-
uct (“Octopus”) and the total quantity (2420) showed strong
negative contributions, indicating that these features typi-
cally suggest conformity. However, these were outweighed
by positive contributions from overseas manufacturer ratio
(0.0195) and year-related indicators.

Fig. 6D presents Sample 4, red sea bream with a pre-
diction probability of 0.8948. Similarly to other samples,
the total net weight (4000.0 kg) strongly influenced the non-
conformity prediction, along with temporal characteristics
(year and week = 2019-28). In particular, the total quan-
tity (1) differed significantly from other samples, pushing
toward conformity, while the exporting company ratio sim-
ilarly contributed to conformity.

This comparative analysis reveals several important
patterns across diverse seafood products. Weight-related
metrics consistently influence non-conformity predictions,
with higher weights generally increasing risk. Ratiometrics
derived from historical records (exporting company, man-
ufacturer, importer) play significant but context-dependent
roles. The same features can have opposite effects in dif-
ferent contexts, highlighting the model’s ability to capture
complex patterns. Temporal features contribute meaningful
information across all samples, supporting the importance
of seasonal variations identified in the global feature impor-
tance analysis. These SHAP explanations demonstrate the
ensemble model’s nuanced decision-making process and
provide valuable insights for regulatory authorities to de-
velop more targeted inspection strategies based on product-
specific risk factors.

5. Discussion
This study addressed the significant challenge of pre-

dicting non-conformity in imported seafood products—a
critical task in food safety management characterized by
severe class imbalance. The methodological framework
integrated ensemble learning techniques with explainable
AI approaches to develop robust prediction models while
maintaining interpretability. The empirical findings war-
rant comprehensive discussion across several dimensions.
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Fig. 5. SHAP values of the various models’ importance feature scores. (A) DT model’s important features. (B) RF model’s important
features. (C) Heatmap of normalized log-likelihood contributions in the NB model, with darker colors showing stronger influence on
non-conformity classification. (D) LR model’s important features.

Four different models were used, namely the NB,
DT, RF and LR models, which were stacked together us-
ing class-weight cost-sensitive learning to create both hard-

voting and soft-voting ensemble models. These models
were applied to forecast nonconformance after training, and
their performances were evaluated by using the test dataset.
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Fig. 6. SHAP local explanations using waterfall plot for individual seafood samples. (A) Sample 1: White leg shrimp (prediction:
0.7865). (B) Sample 4: Red sea bream (prediction: 0.8948). (C) Sample 3: Octopus (prediction: 0.8887). (D) Sample 2: Short-neck
clams (prediction: 0.9520).

Table 3 summarizes the performance metrics of the mod-
els. Among the two ensemble methods, soft voting out-
performed hard voting in terms of the recall score, receiv-
ing 75.57% of votes compared to the hard voting method’s
44.32%. Additionally, the soft voting method achieved
a higher AUC score of 87.49%, whereas the hard voting
method obtained a score of 72.07%. However, hard vot-
ing achieved better results in terms of the ACR (99.69%,
c.f., 99.35% for soft voting). Similarly, hard voting outper-
formed soft voting in the PPV and F1 scores, with scores of
35.62 and 39.49%, respectively; soft voting obtained scores
of 22.32 and 34.46%, respectively. These findings sug-
gest that the soft voting method performed better than the
hard voting method in terms of the recall and AUC scores,
thereby indicating that the soft voting ensemble is more
effective in correctly identifying non-conformity data and
predicting inspection outcomes. Thus, the soft voting ap-
proach may be more suitable in cases where the recall and
AUC scores are more critical than the PPV andACR scores.
This finding aligns with established theoretical frameworks
regarding ensemble techniques for imbalanced classifica-
tion problems while extending empirical validation specif-

ically to the domain of food safety inspection by Douzas et
al., and Wu & Weng [9,29,30].

To gain insight into the decision-making process of
each model in the ensemble, SHAP values were calculated
for all models. Additionally, local-level feature contribu-
tions to the predictions of four representative samples were
analyzed to obtain deeper insights. Global feature impor-
tance analysis revealed the predominant influence of his-
torical performance indicators, particularly the exporting
country ratio, major product category, overseas manufac-
turer ratio, and importer ratio. These findings validate exist-
ing risk-based approaches to food safety management that
prioritize historical compliance patterns as predictors of fu-
ture regulatory adherence, as demonstrated by Djekic &
Jankovic [31] in their analysis of food safety notifications in
the European Union. More importantly, these findings res-
onate with existing risk-based inspection frameworks, such
as the system developed by the Korean Ministry of Food
and Drug Safety, outlined in patent KR20140077006A [8].

The exporting country ratio emerged as one of the
most influential features across all models. This metric cap-
tures historical non-conformity rates by country, reflect-
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ing differences in regulatory standards and supply chain
controls. This finding aligns with Fanani and Yuadi [32],
who identified Russia, Mauritania, Papua New Guinea,
and Solomon Islands as high-risk exporters to the U.S.
Our SHAP analysis confirms that country-specific factors
strongly influence non-conformity predictions, indicating
that regional disparities in fishing practices and compliance
create identifiable risk patterns that can inform targeted in-
spection protocols.

The overseas manufacturer ratio significantly influ-
ences food safety outcomes, highlighting the importance
of producer-specific factors in risk assessment. This re-
flects variations in quality control systems, manufactur-
ing practices, and compliance histories at the facility level.
Our local SHAP analysis Fig. 6B of Sample 2 revealed
that even products from low-risk countries may present el-
evated risk when produced by manufacturers with higher
non-conformity ratios. This finding supports inspection ap-
proaches focused on manufacturer-specific histories rather
than relying solely on country-level assessments, consistent
with Riviere & Buckley’s [33] research on quality control
systems and Suanin [34] findings on the importance of com-
pliance histories in seafood product safety.

The importer ratio demonstrated substantial predictive
power, reflecting the critical role of importer compliance
history in forecasting inspection outcomes. As shown in
Fig. 6A,C, varying importer ratios significantly impacted
non-conformity predictions, with higher historical non-
conformity rates strongly correlating with increased risk as-
sessment. This pattern indicates that importer-specific fac-
tors, such as supplier selection practices, quality manage-
ment systems, and regulatory compliance commitment, cre-
ate persistent risk patterns that can be effectively captured
through historical performance metrics. The model’s abil-
ity to identify these patterns enables regulatory authorities
to implement targeted verification protocols for importers
with problematic compliance histories while potentially re-
ducing inspection burdens on consistently high-performing
entities. This risk-based approach to importer assessment
aligns with Bouzembrak & Marvin’s [35] framework for
prioritizing inspection resources based on historical com-
pliance data and supply chain characteristics.

The importance of temporal features—such as year,
month, and week—in predicting seafood inspection out-
comes highlights the presence of seasonal patterns in food
safety risks. Seasonal variations, particularly fluctuations
in water temperature, can significantly influence micro-
bial activity in seafood. Warmer temperatures during sum-
mer months are associated with increased prevalence of
pathogens like Vibrio species, a trend supported by Zhang
et al. [36]. This seasonal impact is further illustrated in
Fig. 6D, where a notable increase in non-conformity pre-
dictions is observed around the 28th week, corresponding to
the summer season. Besides, seasonal harvesting patterns
create periodic surges in processing volumes that can strain

quality control systems. Additionally, rainfall variations af-
fect coastal water quality through agricultural runoff, poten-
tially introducing contaminants into harvesting areas during
specific seasons [37]. In the local explanation Fig. 6C also
identifies June, which is a rainy month, as the influence fac-
tor on the non-conformity result.

The major product category emerged as a signifi-
cant predictor across all models, highlighting the variabil-
ity in risk profiles among different seafood types. This
finding aligns with the established understanding that cer-
tain seafood categories inherently pose higher contamina-
tion risks due to their biological characteristics and supply
chain complexities. For example, filter-feeding bivalves
like short-neck clams (Sample 2 in Fig. 6B) are particularly
susceptible to environmental contaminants, while products
requiring extensive processing may experience quality con-
trol challenges. The pronounced influence of product cat-
egories on model predictions was consistently observed
in the SHAP analysis, with varied effects across differ-
ent seafood types. This suggests that inspection resources
should be strategically allocated based on product-specific
risk profiles rather than applying uniform protocols across
all seafood imports, an approach supported by FAO [38]
research on compliance patterns in processed food exports.

6. Conclusion
This study addressed the significant challenge of de-

veloping a generalizable machine learning model for pre-
dicting non-conformity in seafood product importation in-
spections. By implementing an ensemble approach that
combines Decision Trees, Random Forests, Logistic Re-
gression, and Naive Bayes models, the study handled the
severe class imbalance (0.2% non-conformity rate) inher-
ent in food safety inspection data.

The soft voting ensemble technique demonstrated bet-
ter performance in identifying non-conforming seafood
products, achieving a recall of 75.57% and an AUC
of 87.49%, significantly outperforming the hard voting
method (44.32% recall, 72.07% AUC). Through SHAP
analysis, the study identified key factors influencing in-
spection outcomes, including exporting country ratio, ma-
jor product category, overseas manufacturer ratio, importer
ratio, and seasonal variations.

The study findings suggest that historical compliance
patterns serve as strong predictors of future regulatory ad-
herence, with particular importance placed on country-
specific factors and producer-specific compliance histories.
The identification of temporal patterns indicates seasonal
variations in food safety risks, likely influenced by envi-
ronmental factors such as water temperature and rainfall
patterns.

Importantly, while this research focused specifically
on seafood products, the methodological framework de-
veloped here can be readily applied to other product cat-
egories within the food sector and potentially beyond. The
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ensemble learning approach combined with explainable AI
techniques provides a good template that can be adapted
to predict inspection outcomes for diverse imported goods
such as meat products, processed foods, and even non-food
consumer goods subject to regulatory oversight. The core
principles of leveraging historical compliance data, entity-
specific risk factors, and temporal patterns remain applica-
ble across various inspection domains facing similar class
imbalance challenges.

The methodology developed in this study offers a
practical framework for regulatory authorities to implement
risk-based inspection protocols, enhancing both efficiency
and effectiveness of limited inspection resources. By tar-
geting high-risk imports based on multiple risk dimensions,
authorities can simultaneously improve food safety and re-
duce unnecessary inspection burdens on consistently com-
pliant entities.

Nevertheless, this study has the following limitations.
Firstly, there are limitations in refining potential errors or
unstructured items in the data, and some important vari-
ables (e.g., details of actual inspection criteria) were not in-
cluded. Secondly, the ensemble model configuration used
only four traditional classifiers, and no comparison was
made with recently developed deep learning-based models.
Thirdly, while SHAP analysis provided valuable insights
into feature importance and local explanations, our imple-
mentation did not fully explore advanced SHAP capabilities
such as interaction effects and dependence plots that could
have offered deeper interpretability of themodel’s decision-
making process. Lastly, there is a challenge in handling
new entities, such as first-time importers, manufacturers,
or products without historical data in the predictive frame-
work.

Future research may consider the following direc-
tions: (1) linkage of in-depth feature engineering and exter-
nal data (e.g., climate, supply chain risks, etc.), (2) multi-
layer ensemble or hybrid model configuration and perfor-
mance optimization based on AutoML, (3) empirical eval-
uation such as policy field application experiments and
cost-effectiveness analysis. In particular, follow-up re-
search is needed to maximize policy application perfor-
mance through integrated scenario design with field inspec-
tion systems and linkage with real-time warning systems.
(4) Development of transfer learning methods that apply
knowledge from similar established entities to new ones.
(5) Further exploration of advanced XAI techniques, in-
cluding more sophisticated applications of SHAP analysis
such as interaction values, dependence plots, and distribu-
tion analysis across product categories, which could pro-
vide deeper insights into model decision-making processes
and enhance the interpretability of predictions for regula-
tory stakeholders.
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