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In this paper, the differences between two motor imagery tasks are
captured through microstate parameters (occurrence, duration and
coverage, and mean spatial correlation (Mspatcorr)) derived from a
novel method based on electroencephalogram microstate and Tea-
ger energy operator. The results show that the significance between
microstate parameters for two tasks is different (P < 0.05) with
paired t-test. Furthermore, these microstate parameters are utilized
as features. Support vector machine is utilized to classify the two
tasks with a mean accuracy of 93.93%, which yielded superior perfor-
mance compared to the other methods.
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1. Introduction

Neurophysiological research of activation areas in the
brain’s sensorimotor cortex plays a crucial role in understand-
ing of motor imagery [1, 2]. This research field can pro-
vide relevant information about brain network dynamics and
has driven tremendous neuroimaging techniques [3]. Infor-
mation regarding the brain at high space and time resolu-
tion obtained from non-invasive imaging techniques (such as
functional magnetic resonance imaging (fMRI) [4], magne-
toencephalogram (MEG) [5], positron emission tomography
(PET) [6], electroencephalogram (EEG) [7]) can further help
in understanding event-related processing in the brain [8].

Electroencephalogram is one of the most widely utilized
methods. Despite its limitations regarding spatial resolu-
tion, it is relatively easy to obtain and can convey informa-
tion about the underlying functional brain networks by ex-
tracting the relevant information [9]. Several attempts have
been made to explore the dynamics of EEG signals for differ-
ent motor imagery. As one of several procedures developed
to undertake motor imagery classification, many researchers
focus on feature extraction methods. In recent researchers,
time-frequency-based feature extraction methods have been
proposed, such as power spectrum density [10, 11], empir-
ical mode decomposition (EMD) [12], and spectral features
[13]. However, these methods have the disadvantage of lack-
ing spatial information. Considering that the common spatial
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pattern (CSP) from EEG signals and its improved algorithm
contains the spatial information, they have been widely used,
for example, traditional CSP [14], FBCSP [15], complete in-
formation common spatial pattern (CICSP) [16] etc. Apart
from CSP and its improved algorithm, other methods may
also contain spatial information, such as graph theory [17],
phase lock value (PLV) [18] and partial directed coherence
(PDC) [19]. This paper investigates and compares the pro-
posed method with other researchers who have used the same
database.

Selecting practical features plays a vital role in a sound
motor imagery classification system. Considering that EEG
signals in different brain regions are significantly correlated
with left and right movement imaging [18], microstates are
exploited to measure quasi-stable scalp voltage configura-
tions [20, 21]. Lehmann proved that the specific frequency
band (8-12 Hz) of the EEG signals could be converted into
discrete states, which are called “microstates”, are defined by
topographies of electric potentials recorded over the scalp,
and that they can remain stable for 80-120 ms before rapidly
transitioning to a different microstate [22, 23]. Some recent
articles also provided a critical view of the topography at any
given time point is in one state and emphasized the contin-
uous nature of the EEG dynamics that underlie microstate
sequences [24, 25]. So microstates obtained from EEG sig-
nals can be used in brain-computer interface systems (BCls)
to control external devices (e.g., robotic arms [26], intelligent
wheelchairs [27] and other external equipment [28]).

EEG microstates provide a relatively simple but effective
methodology for functional description of the global brain
network and neural dynamics [29, 30]. We hypothesized that
microstates represent the building blocks of imagery and that
the way for microstate to analyze the motor imagery tasks-
related behavior of EEG is through the changing of frequency
and amplitude represented global field power (GFP). How-
ever, few researchers have investigated an improved method
for the extraction of microstate parameters. Accordingly, we
proposed a new framework combining microstate and Tea-
ger energy operator (MIC-TEO) for motor imagery task de-
tection.
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Fig. 1. Electrode montage corresponding to the international 10-20 system (left) and procession for EEG data collection (right).

The rationale for adopting MIC-TEO in this paper is
based on the following reasons. First, EEG contains high-
frequency information with short interval segments and low-
frequency information with long period segments. Teager
energy operator (TEQ) is very sensitive to frequency and am-
plitude for signals. Second, the ability to accurately capture
position information for brain activity is the key to detecti-
ing of the state of motor imagery. The microstate is a feature
susceptible to variations of signals. Third, considering that
EEG belongs to nonlinear signals, the TEO, as a nonlinear
operator, can be used to estimate the TEO of a non-stationary
signal, and it is thus well suited for detection.

2. Materials and methods
2.1 EEG records and pre-processing

The EEG data used for this research is from datasets 2a
of BCI Competition IV 2008, available in the public domain
[31]. This database consists of 9 healthy subjects, and each
subject performs four different motor imagery tasks (imag-
ination of movement of the left hand, right hand, both feet
and tongue). The locations of the EEG recordings and the
timing scheme of the paradigm are illustrated in Fig. 1.

A fixation cross appeared on the black screen at the begin-
ning of a trial (t = 0 s) and was replaced by a cue form of an
arrow (pointing to left, right, up and down), which stayed on
the screen for 1.25 s at t = 2 s. Then, the subjects were asked
to carry out the motor imagery task corresponding to one of
the four directions until the fixation cross disappeared from
the screen at t = 6 s. Finally, a short break followed when
the screen was black. However, the analysis in this paper is
focused on the left and right-hand motor imagery. The EEG
signals collected were sampled with 250 Hz, and bandpass fil-
tered between 0.5 Hz and 100 Hz. In addition, the alpha band
was obtained from the processed EEG data using a bandpass
filter. Each of the sessions for motor imagery tasks includes
72 trials.
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2.2 Teager energy operator

Based on the hypothesis that an epoch of EEG signals for
different motor imagery tasks belongs to nonlinear physio-
logical processes, TEO is a nonlinear operator that can esti-
mate a non-stationary signal’s energy [32]. The reasons for
proposing this method are as follows: (1) Motor imagery is an
activity in different brain regions represented in the EEG sig-
nals for different chances. The ability to obtain the location
change is very important in analyzing the state of motor im-
agery. (2) The computation efficiency for feature-based TEO
is higher due to it only requiring four points at any given in-
stant. In summary, TEO is suited for analyzing the nonlinear
signals, and microstate can also obtain the location informa-
tion.

MIC-TEO, which is more efficient than the traditional
method, can be calculated as (1):

Ueeg{sn]} = sn—1]-sjn—m] —sn—p|-sn—gq] (1)

where s[n] the discrete EEG signal and V.., denotes general-
ized TEO. It is also noted that 1 + m =p + q.

In this paper, p, |, m, q is represented as 0, 1, 2, and 3 for
further analysis in EEG signals.

Considering that the input EEG signal contains white
noise, we assume s[n| as EEG signals without noise, so the
output of expectation for TEO is as follows:

E0(s(n))] = E [s*(n)] — E[s(n— 1)s(n+1)] (2)

and given the signal with white noise is, w(n) the output of
expectation for TEO is as (3):
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Fig. 2. From EEG signal to microstate. (A) Original potential topography maps were extracted. (B) Original four optimal classes of microstate maps were
obtained by a modified spatial cluster analysis method known as the TAAHC. (C) Microstates sequences were obtained by fitting four classes of microstates

back to original signals.
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Fig. 3. ROC (The plot of sensitivity vs. (I-specificity) for distinguishing motor imagery tasks) of the parameters (occurrence, duration, coverage
and Mspatcorr) from different microstate methods (MIC1 to MIC4 represent microstate one to microstate four based MIC and MIC1-TEO to

MIC4-TEO represent microstate one to microstate four based on MIC-TEO) for nine subjects.
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Fig. 5. Average classification performance for different methods in
eight different participants. Each box represents the 25-75th percentiles,
and the central line is the median value. The thin vertical lines extend
to the most extreme data not considered outliners, plotted individually.
The performance of different extraction method are compared (CSP repre-
sents algorithm of the common spatial pattern, WOLA-CSP represents al-
gorithm of the weighted overlap-add CSP, SS-MEMDBF means the subject
specific multivariate empirical mode decomposition based filtering method,
SR-MDRM means the minimum distance to Riemannian mean classifica-
tion based spatially regularized, CSD represents covariate shift-detection and
MIC means microstate method) and analyzed to test and verify the effective-

ness of the proposed features.

where, O(s(n),w(n)) = s(n)w(n) — w(n + 1)s(n — 1) —
w(n—1)s(n+1). Note that s(n) and w(n) are zero-mean and
mutually independent. Considering that the expectation of
O(s(n),w(n)) is zero, the expectation of O(x(n)) is equal to
E[O(s(n))] According to the above analysis, TEO can remove
the influence of noise with zero-mean.
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2.3 EEG Spatio-temporal microstate analysis

We transformed processed EEG signals into a series of
momentary potential topographies at GFP peaks. Then
the four classes of microstate topographies were obtained
by a modified spatial cluster analysis method known as
topographical atomize-agglomerate hierarchical clustering
(TAAHC), as shown in Fig. 2. For TAAHC, a pre-set num-
ber of clusters was avoided. In the beginning, all EEG samples
are regarded as an independent cluster center. Next, for each
iteration for this algorithm, the worst cluster (defined as the
cluster with the lowest sum of correlations between its mem-
bers and prototype [33]) is chosen and removed. The samples
belonging to this worst cluster need to be reassigned to the
new cluster they are most similar to. This process contin-
ues until only two clusters remain. Note that the number of
clustered microstate maps is optimal. Note that the TAAHC
ignore the polarity of the topographies. According to the cor-
relation between the templates of four clustered microstate
maps, the EEG signal of every single trial was transformed to
microstate sequences.

To analyze the differences between left and right motor
imagery tasks, four microstate parameters were calculated,
as follows: (1) Occurrence- the average number of times per
second for one microstate; (2) Duration- the average length
of time for one microstate kept stable; (3) Coverage- the per-
centage of time of activity of a given microstate; (4) Mspat-
corr: the mean spatial correlation between a microstate and
their assigned EEG trials.

24 Cross-validation and statistical analysis

The open-source library (Microstate EEGlab toolbox)
provides EEG pre-processing and analysis routines imple-
mented in MATLAB (Version R2014a, Mathworks), and
some results were obtained using the Statistical Program for
the Social Sciences (SPSS) (IBM SPSS Statistics 22). To eval-
uate the statistical significance of the MIC-TEO, the paired
t-test was used as the evaluation criteria to establish a signif-
icant difference between two motor imagery tasks. The level
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Table 1. Analysis of significance test of 9 subjects for different microstate parameters.

. Left hand imagery ~ Right hand immagery  Statistical values
Features Microstate
Mean std mean std t P
1 2.68 0.81 2.3 0.81 2.827 0.005
2 2.98 0.75 2.52 0.74 3.61 0
Occurence
3 3.11 0.89 3.11 0.68 0 1
4 3.56 0.76 3.76 0.75 -1.606  0.111
1 73.23 19.45 68.06 17.67 1.669 0.097
2 79.16 18.43 71.51 20.15 2.377 0.019
Duration
3 78.37 16.35 83.74 17.45 -0.902  0.059
4 91.94 24.62 106.79 28.19 -3.366  0.001
1 0.2 0.07 0.15 0.06 3.375 0.001
2 0.24 0.07 0.18 0.08 3.679 0
Coverage
3 0.24 0.08 0.26 0.07 -1.192  0.235
4 0.32 0.09 0.4 0.11 —-4.405 0
1 0.57 0.06 0.54 0.05 2.371 0.019
2 0.54 0.04 0.51 0.05 2.891 0.004
MspatCorr
3 0.51 0.03 0.5 0.03 0.799 0.426
4 0.49 0.03 0.51 0.02 -3.336  0.001

The mean and std of the microstate parameters for two motor imagery tasks and tests for statis-

tic test. Bold values indicated P < 0.05.

of significance was set at P < 0.05. To estimate the perfor-
mance of the proposed method, 10-fold cross-validation was
performed over the training data.

3. Results and discussion

For illustration, two motor imagery task (each subject has
72 for the left hand and 72 for the right hand), as well as mean
and standard deviation (std) of microstate parameters (occur-
rence, duration, coverage, MspatCorr), were conducted to
assess the statistical differences between either the two inde-
pendent variables or their interaction. The results are shown
in Table 1.
crostate 2 showed significant differences of four microstate
parameters (P < 0.05), except for the duration of microstate
1.

As shown in Table 1, compared to the left, microstate 1
and 2 were significantly higher for the left (mean 2.68 times
for left and 2.3 times for right for microstate 1). For mi-
crostate 2, the situation showed a similar trend with a higher
mean for the left (2.98 times per second) than the right (2.52
times per second).

One can observe that microstate one and mi-

Individually, microstate two was observed with a mean
value of 79.16 ms for the left-hand imagery, which decreased
to 71.51 ms for the right-hand imagery. However, microstate
four was the opposite, with a higher mean for the left-hand
imagery (91.94 ms) than for the right hand imagery (106.79
ms). There were significant differences for all microstates be-
tween left (mean 0.2, 0.24, and 0.32 respectively) and right
(mean 0.15, 0.18, and 0.4 respectively) hand imagery, except
for microstate three.

For MspatCorr, the values for the left-hand imagery
(mean 0.57 and 0.54 respectively) for microstate one and mi-
crostate two were higher than those for the right hand im-
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agery (mean 0.54 and 0.51 respectively). However, for the
right-hand imagery, the values from microstate four were
higher.

Fig. 3 displays the receiver operating characteristic (ROC)
with different parameters based on different methods used in
our analysis. Fig. 3 shows that the line in the upper left pro-
vides better performance to discriminate between different
motor imagery tasks. The area under the curve (AUC) of 1
indicates a perfect classification performance, and the AUC
output from SPSS is shown in Fig. 4. Compared with tra-
ditional microstate methods, we conclude that the AUC of
MIC-TEO is significantly better than MIC method for mi-
crostate one and microstate two. However, the AUC of MIC
is better or equal to the MIC-TEO method for microstate
three and microstate four.

According to the analyses for the differences in microstate
parameters, specific features were used to classify the two
motor imagery tasks. These selected microstate parame-
ters were: occurrence, duration, coverage, MspatCorr of mi-
crostate class 1 and class 2 except for the Duration of mi-
crostate class 1, and Duration, MspatCorr of microstate class
4, were used as features for further analysis.

The performances of the proposed methods were also
compared with those of previous researchers who had used
several state-of-the-art methods using the same database,
which is shown in Fig. 5. Note that 90% of samples were
selected as a training dataset, and the rest of the samples
are used for testing. For all subjects, the mean classification
accuracies obtained were: [WOLA-CSP] 78.86% =+ 15.07%
[SS-MEMDBF] 79.93% + 14.99% [SR-MDRM] 81.22% +
13.19% [CSD] 80.32% + 10.25% [CSP] 80.44% + 9.53%,
[MIC] 89.17% =+ 8.1% and [Proposed] 93.93% + 7.36%.
As shown in Fig. 5, the proposed method improved the
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mean classification accuracy by 15.07%, 14%, 12.71%, 13.61%,
13.49% and 4.75% in comparison with WOLA-CSP, SS-
MEMDBF, SR-MDRM, CSD, CSP and MIC, respectively,
which is consistent with the literature [34-39]. Hence, it is
clear that the proposed method was more efficient, particu-
larly regarding accuracy and stability.

4. Conclusions

In this paper, we presented a modified algorithm for ana-
lyzing EEGs for different motor imagery tasks. The proposed
MIC-TEO methods combined the TEO and the MIC meth-
ods. The results demonstrated that the proposed algorithm is
satisfactory with demonstrated good performance according
to ANOVA tests carried out. Thus, it is effective for distin-
guishing between different motor imagery tasks.

The microstate parameters-occurrence, duration and cov-
erage, as well as Mspatcorr of the microstate sequences ob-
tained were shown significant differences. It demonstrates
that the microstate parameters obtained from MIC-TEO of
different motor imagery were effective.

The support vector machine classifier was utilized to clas-
sify these tasks based on differences in microstate parameters
between the motor imagery tasks. The results indicated that
the proposed method could be used to extract features. More-
over, it was verified that these features could significantly im-
prove the performance.
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