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Abstract
Accurate differentiation of mental fatigue levels by analysis of electroencephalogram features is still a challenge. This deficiency
originates in the inability of conventional electroencephalogram features to reveal significant changes in fatigue levels. Alterna-
tively, evaluation of the extent of alertness by characterization of the P300 component is widely done by performing a recognition
task. The goal of this study is to classify pre- and post-task fatigue levels by tracking the spatial activation of their P300 sources
in comparison with differentiation of P300 waveform features. To track these sources, the P300 wave was extracted from the
background electroencephalogram from all channels using conventional time-locked synchronous grand averaging over all time
frames and subjects. Next, standardized low resolution electromagnetic tomography and shrinking standardized low resolution
electromagnetic tomography were both applied to the extracted P300 wave of all channels to estimate the activity of the P300
sources. Thirty healthy subjects were recruited and their electroencephalogram signals were recorded from thirty channels
during pre-task (30 minutes), task (60–90 minutes), and post-task (30 minutes) states. During each recording period, an equal
number of audio and visual stimuli were applied to the subjects who were performing both audio and visual recognition tasks.
Empirical results showed a significant decrease in P300 source activation over tempo-parieto-occipital areas (secondary asso-
ciation area) in the post-task mental fatigue level when compared with the pre-task. It is of interest that in most channels, no
significant change in the amplitude/latency of P300 was observed between the two fatigue levels.
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1. Introduction

Recently, detection of mental fatigue by analyzing electroencephalo-
gram (EEG) patterns has been of interest [1]. However, research
results continue to be unpromising. This is due to the fact that the tra-
ditional EEG features employed do not significantly change through
different levels of mental fatigue. To confront this challenge, studies
have changed strategy and tried to measure fatigue levels by charac-
terizing the P300 waveform to determine how mental fatigue affects
amplitude and latency [2].

P300 event-related potentials (ERPs) [2, 3] are probably the
most well-known component reflecting the activities of attention,
memory, and perception circuits of the brain. Several investigations
have been conducted on both characterization and localization of
P300 waveform sources. One of the first studies revealed that at least
some parts of the waveform are generated in the hippocampal area
of the medial-temporal lobe. However, subsequent investigations
using scalp recordings on individuals with temporal lobectomy or
severe medial-temporal lobe injury showed that the hippocampal for-
mation does not contribute directly to P300 generation [4]. Several
studies have suggested that the neuroelectric events underlying P300
generation originate from the interaction amongst frontal, hippocam-
pal/temporal, and parietal regions [5]. Alternatively, examination of

functional magnetic resonance (fMRI) images confirms involvement
of the frontal, parietal, temporal, and cingulate areas in P300 gene-
sis [6]. Nonetheless, the contribution of medial-temporal structures
and hippocampus are not clearly observed in fMRI images [7].

Involvement in rigorous cognitive tasks for long periods of time
leads to mental fatigue, a cognitive state accompanied by slowed
information processing and increased likelihood of error. During
mental fatigue, subjects cannot concentrate on particular issues and
their attention is repeatedly distracted. Additionally, mental fatigue
seriously affects working memory and learning/perceptual ability,
leading to selective attention [8].

Cheng et al. [9] analyzed changes in the EEG of twenty-three
subjects before and after mental fatigue by extracting the power
spectrum of the EEG signal while also eliciting P300 amplitudes and
latency. They recorded their EEG signals before and after the test
and 60 minutes after a recognition test. Their results indicated that
EEG spectral power showed significant differences before and after
a visual recognition task. P300 latency was found to be increased
simultaneously with a decrease in its amplitude, explained by de-
graded activity of the central nervous system. Faber et al. [10] stud-
ied the relationship between mental fatigue and attentional changes
by analyzing the P300 component. They recorded EEG, reaction
times, and response accuracies from 17 healthy subjects while for
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two hours they performed an adapted Eriksen–Flanker task. The
investigators found attention was affected by mental fatigue due to
a decreased ability to suppress irrelevant information (selective at-
tention). Trejo et al. [11] studied response time and ERP amplitudes
of the N100, P200, and P300 components along with the theta band
power in the frontal lobe and alpha rhythms in the parietal lobe in
sixteen subjects performing a continuous arithmetic task (for about
three hours). Their fatigue and non-fatigue results (before and after
the severe mental task) showed that mental fatigue does not have
any substantial effect on the N100, P200, and P300 amplitudes or
latencies. Additionally, it was observed that P300 amplitudes were
larger during the fatigue interval than the non-fatigue interval.

Mockel et al. [12] studied the effect of mental fatigue on ERPs.
They asked subjects to perform a Simon task [13] for more than
three hours and investigated variations of mental fatigue and moti-
vation. The variations were evaluated at several time points during
an experiment divided into three blocks, each with a duration of
about one hour. Ratings revealed that subjects experienced increased
mental fatigue and decreased motivation during the time of the task.
Overall amplitudes of the N200 and P300 components did not show
any great variation. It was emphasized that the motivation (without
considering the fatigue factor) to continue the task may have better
explained how long subjects were able to maintain performance.

Okamura [14] examined the P300 features as reliable measures
for evaluating mental fatigue in 12 healthy college students during
a continuous two-hour Uchida–Kraepelin test (a questionnaire that
measures task performance speed and accuracy). ERPs were mea-
sured from the Fz, Cz, and Pz channels, additionally to lactic acid
and cortisol concentrations in plasma and reaction times in the odd-
ball paradigm. Results showed a significant difference in the P300
latency before and after the task in such a way that the prolonged
P300 latency was related to the amount of fatigue in brain functions.
The other factors that were investigated, such as the maximum am-
plitude of P300, the amount of lactic acid, cortisol and the reaction
time, were not significantly changed after the task.

Tanaka et al. [8] investigated magnetoencephalogram (MEG)
variations in thirteen healthy subjects who performed a challenging
mental task in successive trials, where each task trial lasted for about
30 minutes and subjects took a break and rested between trials. They
recorded the MEG of healthy subjects before (alert state) and after the
mental task and then they analyzed their MEG signals using adaptive
spatial filtering methods. Results suggested a link between over-
activation of the visual cortex and cognitive impairment. Trejo et
al. [15] analyzed EEG-based estimation and classification of mental
fatigue. They asked subjects to solve mathematical problems on
a computer for about three hours. Pre- and post-task mood scales
showed that fatigue and mean response time increased, but accuracy
did not significantly change. They showed that mental fatigue was
associated with increased EEG alpha rhythms. In another study,
Gharagozlou et al. [16] analyzed EEG alpha power changes in 12
healthy male car drivers while they performed a simulated driving
task. Results showed that increased alpha power in the final section
of driving indicates a decrease in the level of alertness and attention
and the onset of fatigue. They suggested that variations in alpha
power might be a good indicator for driver mental fatigue.

Since the relationship between mental fatigue and cognitive
performance is not analyzed objectively, this study was conducted
to determine the effect of mental fatigue on the activation of P300
sources. Different algorithms have been proposed in the literature

for localizing and estimating P300 sources when EEG signals are
recorded from different channels. Source localization based on scalp
potentials requires a solution to an ill-posed inverse problem. There
are several possible solutions as there are many more equations than
the number of scalp channels [1, 17]. It is noted that the selection of
a particular solution often requires prior knowledge acquired from
the overall physiology of the brain (possible location of the sources)
and even the mental status of the subjects.

In an effort to solve this problem, several different localiza-
tion algorithms have been proposed such as low resolution elec-
tromagnetic tomography (LORETA) [18], standardized LORETA
(sLORETA) [19], focal under determined system solver (FOCUSS)
[20], and shrinking LORETA-FOCUSS (SSLOFO) [21]. Mulert et
al. [22] used LORETA for localization of P300 sources and their
results mainly matched activation regions obtained by intracranial
recordings and fMRI. Sabeti et al. [23] used both high and low resolu-
tion localization algorithms including simultaneous use of shrinking
sLORETA and LORETA to better achieve the boundary and details
of P300 sources. Results demonstrated that sources are distributed
over a wide region of the cerebral cortex. Schimpf et al. [24] used
SSLOFO to localize P300 neural generators. Their results were
compatible with those obtained for functional neuroimaging studies
while retaining the advantage of EEG temporal resolution.

In this study, both sLORETA and shrinking sLORETA local-
ization schemes are used to estimate the cortical distribution of the
P300 sources during two states: pre-task and post-task. To improve
localization accuracy a realistic head model was employed to es-
timate the lead-field matrix, instead ofthe conventional spherical
model. Moreover, the proposed localization method is an inverse
constraint problem which uses prior physiological knowledge to
mark subspaces where sources can occur. For example, focal seizure
sources cannot occur at any part of the brain, similarly, P300 sources
can be localized to certain subspaces of the brain which are evidently
related to attention and memory circuits.

2. Data collection
Thirty normal subjects including 20 males and 10 females, whose age
ranged from 18 to 30 years (23.40 ± 3.67 years) participated in this
study. All subjects were students recruited from Shiraz University,
Shiraz, Iran. The study was approved by the local ethics committee
of the Medical University of Shiraz. Each subject was seated upright
with their eyes open and the experiment lasted for about 150 minutes.
Their neck was firmly supported by the back of the chair, and their
feet rested on a footstool to avoid muscle artefacts.

Each subject performed the auditory and visual recognition tasks
in three successive sessions. Consequently, the subjects’ mind gradu-
ally tired. This fatigue trend was divided into three periods, including
pre-task (first 30 minutes), task (60–90 minutes) and post-task (last
30 minutes). Each segment contained an equal number of visual
and auditory recognition tests where each test included a warning,
attention, response and feedback phase.

Fig. 1 illustrates the visual test. At the beginning of each test,
subjects saw two up and down warning flashes. In the attention phase,
a stimulus flash appeared. In the response phase, a question mark
appeared and the subject was required to answer which stimulus flash
had appeared by pressing the up or down button. In the feedback
phase, the feedback of the answer was shown (Either right or wrong).
The auditory test was the same as the visual test. However, the
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subject was required to distinguish between either a low or high
pitched tone and background white noise. The visual and auditory
tests were applied alternatively. Subjects pressed a button to start
the next test. Each visual or auditory test lasted approximately seven
seconds.

Each session contained one-hundred visual tests and one-
hundred auditory tests. In the task segment, the subjects were pun-
ished for wrong answers where each wrong answer added four more
tests to the session. Therefore, the task segment could take a long
time when compared with the other two sessions. During the task
seession, recognition accuracy was kept under a threshold for each
subject for both visual and auditory tasks by decreasing the duration
of the attention phase (the recognition task is more difficult compared
to the pre-task session).

Fig. 1. Illustration of cognitive visual experiment.

Electrophysiological data were recorded using a Synamps 32
channel neuroscan system, with a signal gain equal to 75K (150 at
the headbox). For EEG paradigms, 30 electrodes (Electrocap 10–20
standard system with reference to linked earlobes) were recorded
plus the vertical electrooculogram (VEOG). Eye-blink artefacts were
corrected using an Infomax independent component analysis algo-
rithm [25] and elimination of very noisy trials was performed off-line
by an experienced physician after visual inspection of recordings.
Additionally, EEG signals were filtered by a band pass filter (5th
order Butterworth) at 0.5–45 Hz to account for very low frequency
noise and up to the power line frequency. According to the interna-
tional 10–20 system, EEG data were continuously recorded from 30
electrodes (Fp1, Fp2, F3, F4, FC3, FC4, C3, C4, CP3, CP4, P3, P4,
O1, O2, F7, F8, FT7, FT8, T3, T4, TP7, TP8, T5, T6, Fz, FCz, Cz,
CPz, Pz, Oz) with a sampling frequency of 250 Hz.

3. Method
The background EEG signal can be described by the spatio-temporal
integration of the brain’s neuronal activities. Additionally, when a
stimulus is applied to one of the senses (e.g. auditory or visual stim-
ulus), the corresponding sources from specific parts of the brain are
activated. According to the source model [17], the linear propagation
of electrical currents of the sources appear on the scalp in the form
of evoked potentials. In this model it is assumed that a small active
region of the brain can be represented as a current dipole source:

X = LS+N =
m

∑
i=1

Lisi +N (1)

where X (an ne×T matrix) describes the EEG signals from the ne
scalp channels and each recorded signal contains T samples, the
m×T matrix S gives the electrical current source densities, N is the
noise (assumed to be Gaussian) and L is the lead-field matrix which
is an ne×m matrix giving a forward mixing model of m sources to

the ne electrodes. The lead-field matrix L, can be decomposed into
m matrices of Li as follows:

L = [L1 · · ·Li · · ·Lm] (2)

where Li is a ne×1 vector that contains the potentials observed at
the electrodes when the source vector has unit amplitude at one lo-
cation and is zero at the others. This matrix contains the geometric
information about the source and electrode positions as well as the
volume-conductor properties. It has been shown in [26] that using a
head model which is realistic in terms of shape, skull thickness and
tissue types greatly increases the accuracy of the predicted source
locations. Therefore, a boundary element model (BEM) [26] was
used to compute the potential of a node on the surface of a realistic
head model to increase the accuracy of the lead-field matrix esti-
mation. This method gives a solution by calculating the effects of
sources at the boundaries of the volume where the boundaries define
the interfaces between regions with different conductivities within
the volume and the outer surface.

It was assumed the volume could be divided into nS +1 regions
with conductivities σ j, j = 1, . . . ,nS +1, which include the noncon-
ducting regions outside the head. These regions are separated by a
number of nS surfaces (S j) each with different conductivity σ j . Using
Green’s theorem for solving the Poisson equation (σ .∇2V = ∇Ji),
the EEG channel potentials consisted of the summation of an infi-
nite medium potential v∞(r), and the volume current effects were
determined as follows:
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where v∞(r) shows the potential generated by the impressed current
density, Ji in an infinite homogeneous medium with conductivity
σ0,r′− r is the vector distance from an arbitrary point r to a volume
element (voxel) r′, and σ

−
j (σ+

j ) indicates the conductivity inside
and outside the jth surface, respectively. Eqs. (3) and (4) establish a
general set of integral boundary equations for solving the forward
problem to determine the scalp potentials (calculating the lead-field
matrix). To calculate the electric fields, it was necessary to numer-
ically approximate the integral over the closed surfaces (S j) of the
conductor boundaries. The surfaces can be described by a large num-
ber of small triangles and the integrals are replaced by summations
over the triangle areas.

The small triangles are obtained from segmentation of MRI
anatomical data and triangulation of the corresponding surfaces. The
brain template employed was adopted from the Montreal Neurologi-
cal Institute (MNI) that is an averaged T1-weighted MR scan from
152 subjects [27, 28]. Fig. 2 depicts the brain template employed
which was divided into three surfaces (brain, skull, and scalp).

In the next step, possible source locations were determined to
calculate elements of the matrix L. As the brain model is not spheri-
cal, it is better to consider source locations based on the real shape
and place in the brain. According to prior physiological knowledge,
not all parts of the brain are involved in generating the P300 wave-
form. Thus, P300 source locations were limited to specific areas of
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the brain such as cortex and the limbic system. Fig. 3 shows the
assumed source locations in the brain.

Finally, the matrix L (size: ne×m) was calculated. To calculate
the first column of L, it was assumed that the first source in location
(x1,y1,z1) was active. Using BEM, voltages of the cortical nodes can
be calculated, followed by calculation of voltages on the skull and
scalp nodes. Each column of L contains the potentials received by
electrodes when only one source vector has unit amplitude at a single
location and the other sources are set to zero. After determining the
matrix L, the two mentioned localization algorithms are applied to
estimate the neural sources of P300 by calculating the elements of
the matrix S.

Fig. 2. Brain template includes three surfaces (brain, skull, scalp), the most
internal surface shows the brain, the most external scalp.

Fig. 3. Assumed source locations in the brain.

3.1. Source localization algorithm

The goal of source localization is to estimate the location of dis-
tributed intracerebral sources to create a specific wave pattern which
is added to the background scalp EEG. Source localization using
the scalp EEGs requires solving an ill-posed inverse problem with
several possible solutions. Selection of a particular solution often
requires prior physiological knowledge of the correspondence of the
mental task to brain activity. The development of efficient localiza-
tion methods is required to enable physiologists to better interpret
the involvement of the requisite brain plocations (cortical and sub-
cortical) in different mental tasks. Using the following cost function,
the sLORETA localization algorithm [19] gives a unique solution to
the inverse problem:

‖X−LS‖2 +λ‖S‖2 (5)

where λ is a positive constant known as the regularization parameter
and is the Euclidean norm. On the one hand, sLORETA estimates S

to fit EEG channel data X using the least-squares manner, while on
the other, it penalizes those solutions which have a large norm. The
final solution of sLORETA is given by:

si = LT
i [LiLi +λiI]−1X (6)

where [·]−1 gives the inverse operator and adding λiI to LiLT pre-
vents the inverse matrix of LiLT becoming ill-posed. The second
localization algorithm, i.e. the shrinking sLORETA [21] assumes
that sources are more focal, and produces high spatial resolution in
an iterative manner. In this algorithm, the search space is modified
by eliminating nodes with no source activity. Following each itera-
tion, in a step which significantly reduces computational cost, this
algorithm shrinks the source space. Table 1 explains the pseudo-code
of the shrinking sLORETA source localization algorithm.

Fig. 4 shows the algorithm proposed for P300 source localiza-
tion.

Table 1. The shrinking sLORETA source localization algorithm

1. Estimate the current density Ŝ0 by sLORETA spatial filter.
2. Initialize the weight matrix C as: C0 = (W−1

0 )TW−1
0

W0 = diag(Ŝ0(1), Ŝ0(2), . . . , Ŝ0(3m))

3. Estimate the source power as:
ŜT

i (l)[Li(l, l)]−1Ŝi(l)
4. Keep the prominent nodes and their neighbors, then smooth the

values on these nodes.
5. Shrink the solution space containing only the retained nodes.
6. Update the weight matrix as:

Wi = PWi−1[diag(Ŝi−1(1), Ŝi−1(2), . . . , Ŝi−1(3m))]

P = diag[ 1
‖K1‖
· · · 1
‖K3m‖

]

7. Repeat steps 3 to 6 until there is no negligible change in the weight
matrix.

Fig. 4. Algorithm proposed for P300 source localization.

4. Results
Since a weak ERP waveform is embedded in the strong background
EEG, ERP extraction methods assume the background EEG to be
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white noise and that ERPs do not temporally change. Extraction
proceeds by synchronously averaging over ERP trials multiple times
(here 40 times). The background EEG is reduced while ERPs are
highlighted. EEG epochs following a given stimulus are extracted
from the ongoing EEG. Each ERP produces an EEG of size ne×T ,
where ne is the number of electrode signals and T is the number of
samples of the ERP. Fig. 5 shows the grand averaging process over
all subjects on the Cz and Pz channels for the auditory and visual
stimuli. It is shown that the P300 peak is more detectable in the
visual stimulus case compared with that of the auditory case.

Latency of elicited P300 components were compared for both
pre- and post-task segments. The mean ± SD of P300 component
latency for pre- and post-task phases, averaged over all channels
and subjects were 361.40 ± 21.26 and 432.90 ± 33.55 for visual
and auditory stimuli in pre-task segment respectively, and 366.09 ±
23.95 and 432.51± 54.00 for visual and auditory stimuli in post-task
segment respectively. Differentiation between the P300 latency in the
two sessions for different channels is evaluated using the Students’
t-test. A confidence level of p < 0.05 was considered statistically
significant. The Students’ t-test showed that there was no significant
difference between P300 latency in the two sessions for two stimuli
and for channels located on temporal, left frontal, parietal, and left
occipital areas. However, for the right frontal and right occipital
areas, there is a significant difference between P300 latency in the
two sessions. Additionally, differentiation between the P300 latency
for two different stimuli in the same sessions is evaluated using
Students’ t-test. This showed no significant difference between P300
latency for two different stimuli in the same sessions.

The probability of correct answers for the two stimulus types
were compared. The mean ± SD of probability of correct answers
for visual and auditory test was 90.10 ± 7.83 and 90.93 ± 9.75 in
pre-task segment, and 86.24 ± 8.90 and 90.89 ± 7.02 in post-task
segment. Differentiation between the probabilities of correct answers
in the two states is evaluated using Students’ t-test. Evaluation
showed no significant difference in the probability of correct answers
between the two segments.

In this study, an EEG signal that reflects brain activity is used
to determine the onset of mental fatigue. It was determined that
alpha power (8–13 Hz) changed for all subjects in two sessions (pre-
and post-task). The power spectrum density was used to determine
the relative alpha power, ratio between absolute alpha power, and
total spectral power of the signal. EEG power spectrum density was
estimated with Welch’s periodogram method at 100 frequencies from
0–100 Hz. The mean ± SD of relative alpha power in the pre- and
post-task phases was 0.038 ± 0.026 and 0.075 ± 0.060 respectively.
Findings showed a significant increase (p = 0.015) in the relative
alpha power in the post-task segment compared to the pre-task one.

Finally, two localization algorithms were employed to estimate
the subspace volume of the P300 sources both in the pre- and post-
task segments. These algorithms were applied to only part of the ERP
interval that contains P300 activity (250–500 msec post-stimulus).
These algorithms estimate the active regions corresponding to a
specific EEG pattern based on the solution of the following simple
equation X = LS where X is the grand averaged P300 all over the
channels and subjects, S contains the P300 sources and L is the
estimated lead-field matrix. The grand averaged neural sources of the
P300 component were analyzed in both pre- and post-task segments.

The output of sLORETA is a blurred image of neural activity in
brain which makes it difficult to accurately locate the source posi-

Fig. 5. Grand averaging process for Cz and Pz channels in the pre- and
post-task phases for (a) visual stimulus and (b) auditory stimulus.

tion. Therefore, an algorithm with a higher spatial resolution is also
needed. A high-resolution method such as shrinking sLORETA is
able to localize more focal sources. However, this method is not gen-
erally robust for distributed activity and may generate over-focused
results. Therefore, high-resolution algorithms are not necessarily bet-
ter than low-resolution algorithms. It should be emphasised that both
low and high resolutions each have their own appropriate applica-
tions. Fig. 6 and Fig. 7 demonstrate the results of applying sLORETA
(low-resolution algorithm) to the elicited ERP for the visual stimulus
recognition task at all channels in both post- and pre-task segments.
Results indicate that the distributed neural sources of P300 in the
pre-task segment are located at the right tempo-parieto-occipital
(association area), inferior frontal, and left and right cingulate gyrus.
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Fig. 6. P300 sources found by LORETA during a visual task in the pre-task sessions, (a) right hemispheric view, (b) left hemispheric view, (c) superior view,
and (d) inferior view.

Moreover, the location of these sources moved to the right tem-
poral and right inferior frontal regions in the post-task segment, as
shown in Fig. 7. Therefore, findings show that the activation of
P300 sources in the brain is significantly changed when the mind
experiences fatigue. In other words, the mental fatigue affects P300
sources in the brain during the visual recognition task.

Tables 2 and 3 present the neural generators of P300 found by the
shrinking sLORETA (high resolution algorithm) in both the pre- and
post-task states for the visual task. As Table 2 shows, a distributed
network in the brain generates P300. Some parts of frontal, temporal,
and parietal particularly Wernicke’s area, and cingulate are detected
as P300 neural sources. Results of the shrinking sLORETA in the
post-task state demonstrate that Brodmann area 45 (inferior frontal
gyrus) shows a weak activity in the post-task state where it has a key
role in controlling cognitive memory [29].

Fig. 8 and Fig. 9 present the results of applying sLORETA to
the grand averaged ERP data for the auditory recognition task in
both pre- and post-task segments. Fig. 8 shows that the right tempo-
parieto-occipital (secondary association area) and the left inferior
frontal area generate P300 for the auditory recognition task in the
pre-task segment. Fig. 9 shows that the P300 sources in the post-task
session are in the right temporal, prefrontal, association area, in the
left and right cingulate gyrus regions. This achievement indicates
the significant variation of the strength P300 sources when the mind
gets tired.

Tables 4 and 5 present the neural sources of P300 found for the
auditory task by shrinking sLORETA in both the pre- and post-task
states. Comparison of Tables 2 and 4 reveal that most of the sources

Table 2. P300 sources during a visual task in the pre-task session
found by shrinking sLORETA

MNI Coordinates
Brodmann area

X Y Z

−8.36 −41.60 69.88 Brodmann 5
postcentral gyrus

parietal lobe

−36.60 41.77 24.94 Brodmann 10
middle frontal

gyrus frontal lobe

−60.93 −43.67 −18.11 Brodmann 20
inferior temporal
gyrus temporal

lobe

66.12 −22.67 −11.05 Brodmann 21
middle temporal
gyrus temporal

lobe

−65.74 −38.79 0.39 Brodmann 22
middle temporal
gyrus temporal

lobe

−8.59 −11.0025 66.25 Brodmann 24
cingulate gyrus

limbic lobe

46.07 20.23 −10.25 Brodmann 38
superior temporal

gyrus temporal
lobe

57.39 18.86 9.86 Brodmann 45
inferior frontal

gyrus frontal lobe

54.50 23.18 4.24 Brodmann 47
inferior frontal

gyrus frontal lobe
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Fig. 7. P300 sources estimated by LORETA during a visual task in the post-task segment, (a) right hemispheric view, (b) left hemispheric view, (c) superior
view, and (d) inferior view.

Table 3. P300 sources during a visual task in the post-task session
obtained with shrinking sLORETA

MNI Coordinates
Brodmann area

X Y Z

−8.36 −41.60 69.88 Brodmann 5
postcentral gyrus

parietal lobe

48.49 −76.45 −2.07 Brodmann 19
middle occipital
gyrus occipital

lobe

59.50 −36.70 −9.44 Brodmann 21
middle temporal
gyrus temporal

lobe

−65.74 −38.79 0.39 Brodmann 22
middle temporal
gyrus temporal

lobe

−8.59 −11.0025 66.25 Brodmann 24
cingulate gyrus

limbic lobe

of P300 in both visual and auditory tasks are fairly similar. Some
parts of the frontal, temporal, and parietal – especially Wernicke’s
area – and the cingulate are detected as P300 sources. Additionally,
results of shrinking the sLORETA in the post-task state illustrated
that the inferior frontal gyrus shows weak activity due to post-task
mental fatigue during the auditory recognition task.

Since the output of the sLORETA and shrinking sLORETA
localization algorithms is a list of voxels on the cortex with assigned
current strength value, the Students’ t-test was applied to evaluate

Table 4. P300 sources during an auditory task in the pre-task session
found by shrinking sLORETA

MNI Coordinates
Brodmann area

X Y Z

−15.58 −43.98 69.13 Brodmann 5
postcentral gyrus

parietal lobe

−63.48 −45.62 −8.25 Brodmann 21
middle temporal
gyrus temporal

lobe

−61.94 −10.09 1.56 Brodmann 22
superior temporal

gyrus temporal
lobe

−8.59 −11.0025 66.25 Brodmann 24
cingulate gyrus

limbic lobe

64.16 −44.75 −13.07 Brodmann 37
inferior temporal
gyrus temporal

lobe

47.84 −76.77 4.5937 Brodmann 39
middle temporal
gyrus temporal

lobe

57.39 18.86 9.86 Brodmann 45
inferior frontal

gyrus frontal lobe

−54.56 21.62 2.3542 Brodmann 47
inferior frontal

gyrus frontal lobe

differences between the P300 sources of the two (pre and post-task)
states [30]. The results of this test showed there were significant
differences (p < 0.05) between activation of P300 sources in the pre-
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Fig. 8. P300 sources during an auditory task in the pre-task session found by LORETA, (a) right hemispheric view, (b) left hemispheric view, (c) superior view,
and (d) inferior view.

Table 5. P300 sources during an auditory task in the post-task session
reconstructed by the shrinking sLORETA

MNI Coordinates
Brodmann area

X Y Z

38.17 −87.14 −2.02 Brodmann 18
middle occipital
gyrus occipital

lobe

−63.48 −45.62 −8.25 Brodmann 21
middle temporal
gyrus temporal

lobe

57.77 −56.17 5.41 Brodmann 22
superior temporal

gyrus temporal
lobe

−8.59 −11.0025 66.25 Brodmann 24
cingulate gyrus

limbic lobe

64.16 −44.75 −13.07 Brodmann 37
inferior temporal
gyrus temporal

lobe

and post-task states for both visual and auditory stimuli.

Interesting results are obtained by comparing effective source
locations in both the visual and auditory recognition tasks. In the
visual task, the P300 component is more clearly detectable. The ef-
fect of fatigue on the P300 component is shown with an insignificant
increase in latency and an insignificant decrease in the probability
of correct answers for the visual task. In the auditory task, none of

these patterns appear. Since the P300 wave is not clear in comparison
with the visual task, no increased latency and no decrease in the
probability of correct answers is seen.

Results presented for this study about the pre-task session demon-
strate that association areas are the main source of P300. This has re-
peatedly been confirmed by former reports [31–33]. Overall, results
imply that there exist multiple sources distributed over the inferior
frontal and association areas of neocortex for generation of the P300
component. It seems that activation of association areas is low in
the post-task state due to a decreased rate of neural firing among
inter-cerebellar connections.

No general fatigue index for humans has so far been proposed.
Fatigue is a subjective experience for which intensity varies from
person to person. To determine mental fatigue, some physiological
changes such as eye activity, heart rate, skin electrical potential, and
specially EEG activity can be used to detect cognitive states [34].
From amongst all the factors mentioned for assessing alertness level,
EEG signal [35] may be the most predictive as it immediately reflects
brain activity. Several studies [15, 16] have suggested the power of
the alpha band as the quantitative indicator for the determination
of mental fatigue. In this study, changes in alpha power were de-
termined for all subjects in the two sessions (pre- and post-task).
Findings show a significant increase in relative alpha power in the
post-task session when compared with the pre-task session.

Dalebout et al. [36] analyzed the variability between subjects
(inter-subject variability) and within subjects (intra-subject variabil-
ity) of the P300 component in comparison with earlier ERP com-
ponents (such as P1, N1, and P2). Their results showed that intra-
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Fig. 9. P300 sources during the auditory task in the post-task session found by sLORETA, (a) right hemispheric view, (b) left hemispheric view, (c) superior
view, and (d) inferior view.

subject variability was considerably greater for P300 than for the
earlier components. Variation in P300 parameters (latency and am-
plitude) could be associated with experimental variables (such as
intensity or task difficulty), subject trait variables (such as age or
cognitive ability), subject arousal level, and measurement error. De-
spite the capacity of the brain for flexibility that is seen as variability,
averaged responses for individual subjects are stable and repeatable.
Even the P300 component generated at the highest level of brain sys-
tems appears to be repeatable within and comparable among subjects.
With this assumption of repeatability of P300, grand averaging was
applied over all trials and all subjects. Synchronous grand averaging
over time-locked single-trial ERPs is known as the simplest scheme
for extraction of the P300 component.

There are no perfect denoising methods. Therefore, a small
component of stochastic additive noise such as background EEG,
EOG, and electromyography effects remain. Additionally, some
other detrimental factors such as fatigue-based effects which change
the amplitude and latency of P300, inter- and intra-subject variability,
variation of the EEG amplitude and its components (e.g. P300) from
one subject to another, etc., cannot be removed. Nevertheless, by
taking the grand average over all subjects and their P300 trials, such
factors are definitely diminished. What actually happens is that the
P300 waveform slightly varies through time for one subject or be-
tween subjects. Since no perfect P300 population template extraction
exists, by ignoring slight differences in P300, grand averaging can
be an acceptable method of approximation and produces reasonable
results as shown here.

Subjects in this study experienced mental fatigue. However, they
did not sacrifice accuracy as might be expected because of their

motivation. This finding accords with a previous study by Trejo
et al. [15]. They reported that behavioural activity progressively
increases while alertness progressively decreases over time. They
reported a progressively slowed response time, but response accuracy
was unaffected, no overall slowing of the EEG in mental fatigue,
while cognitive fatigue slowed central executive functions such as
working memory and decision making. Additionally, Lim et al. [37]
analyzed the fMRI of subjects performing a psychomotor vigilance
test task for 20 minutes. They found reduced frontal-parietal activity
with time and decreased cerebral blood flow in this network with a
decline in task performance. They suggested that increased alpha
rhythm could be a sign of withdrawal from executive and attentive
processing to direct more activity to the default mode network [38,
39].

Findings showed that the activation of association areas was
lower in the post-task state when compared to the pre-task segment.
However, this may be related to decreased brain activity. Since
P300 is an endogenous ERP whose generation requires attention
and discrimination of stimulus difference, slowing central executive
may influence the neural sources of P300. According to previous
studies [37, 39], increased default mode network activity has has
been associated with prolonged reaction times and lapse of atten-
tion. However, in this study response accuracy was not significantly
affected.

One defining feature of P300 is its endogenous origins. There-
fore, it may not be dependent on stimulus type (the physical param-
eters). However, authors of several studies [40, 41] have claimed
that P300 activity is not independent of the modality of the eliciting
stimulus. Ji et al. [40] investigated the topographic and source loca-
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tion of the P300 component for both visual and auditory recognition
tasks. Visual inspection along with the quantitative analysis of elec-
trical current source density (CSD) maps revealed that for both tasks,
CSDs are more asymmetric in the frontal area but more symmetric
in the occipital and temporal areas. Comparison of Tables 2 and 4
show neural activation in widespread neural areas is common for
both types of stimuli. There is a relatively symmetric source density
in posterior regions with asymmetric current source activities in ante-
rior regions that is concordant with previous reports [40, 42]. These
findings confirm the hypothesis of multiple neural generators of the
P300 component are differentially active in processing stimuli from
different sensory modalities (e.g., visual and auditory modalities).
Additionally, activation of postcentral gyrus (primary sensorimotor
cortex) may be related to the subject response to both visual and
auditory stimulus by pressing a button.

5. Conclusion and future work
The effect of mental fatigue on the P300 waveform and its sources
have not been investigated well. This study was undertaken to trace
the sources of the P300 waveform that appears in response to audi-
tory and visual recognition tasks in two different states. Applying
sLORETA and shrinking sLORETA to obtain grand average EEG
epochs demonstrates the variation in strength of the neural sources
of P300 when the pre-task to the post-task states are compared. The
variation of P300 sources through different Brodmann areas provides
key information to the physiologist so as to identify effects of fa-
tigue on the brain areas involved in cognitive information processing.
Moreover, the P300 waveform elicited by grand averaging over all
trials and subjects shows an insignificant difference in its latency,
throughout the visual and auditory recognition task studied from the
pre-task to the post-task states.
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