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Abstract

In this paper, a personal authentication system that can effectively identify individuals by generating unique electroencephalo-
gram signal features in response to self-face and non-self-face photos is presented. To achieve performance stability, a se-
quence of self-face photographs including first-occurrence position and non-first-occurrence position are taken into account in
the serial occurrence of visual stimuli. Additionally, a Fisher linear classification method and event-related potential technique
for feature analysis is adapted to yield remarkably better outcomes than those obtained by most existing methods. Results
show that EEG-based authentication of individuals via brain-computer interface can be considered suitable as an approach to

biometric authentication.
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1. Introduction

Accurate personal authentication is often required in many fields of
information security and includes several biometric technologies that
rely on recognition by fingerprint, face, iris, and voiceprint [1-4].
Electroencephalogram (EEG) signals from the brain are processed
to generate novel biometric features, which can be used for biomet-
ric authentication. Among the internal biometric traits, brainwave
signals have emerged to become prominent features. Mukherjee et
al. [5] have described a new EEG-based system for robust online
biomedical content authentication and designed a web-based intelli-
gent EEG signal authentication and tamper detection system. Simi-
larly, Pham et al. [6] have presented a new method based on brain-
wave signals using the advantage of rich information for personal
authentication in multi-level security systems. Al-Hudhud ez al. [7]
have introduced a multimodal biometric system which overcomes
the weaknesses of biometric systems using biometric verification
techniques for operating devices.

A visual stimulus is a common experimental stimulus for EEG
signal collection. Numerous research projects adopting visual stim-
uli have been successfully used in the diagnosis of diseases. For
example, Coburn et al. [8] demonstrated use of the P2 component of
visual stimulation to diagnose Alzheimer disease dementia. Kim et
al. [9] studied attention deficit hyperactivity disorder (ADHD) and
employed color visual stimulation to help adolescents who suffer
from ADHD obtain visual function and color perception. Other
researchers have also made progress in studies of Parkinson’s dis-
ease [10] and diabetes through early visual pathways [11].

In the field of biometric authentication, visually stimulated EEG
signals are collected for analysis of identifing features. For exam-
ple, Yeom et al. [12] used the face of human participants to extract
differences between EEG features. In the study of visually evoked
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EEG signals, the occurrence sequence, probability, and repetitions
of an experimental target stimulus are important factors affecting
EEG features. A primary reason is that the occurrence sequence and
probability of target stimulus in visually evoked experiments can
impact the expectations and response to experimental repetitions. Es-
pecially in long-term repeated experiments, this can both familiarize
participants with an experimental environment and also cause visual
fatigue.

Following previous study [13], new elements have been added
to reorganize the experimental procedure as different procedures
have had different effects on the experimental results. Furthermore,
the effect of relevant parameters in visual stimulation experiments
were specifically evaluated, resulting in redesign of two aspects of
experiments including ‘random sequence’ and ‘aesthetic fatigue’,
where the term “random sequence” relates to the use of a self-face
photograph presented in different positions as a stimulus, while the
term ““aesthetic fatigue” refers to a subject’s visual concentration
on a photograph after multiple testing and verification during visual
stimulus exposure.

2. Experimental model design

EEG data were collected from ten subjects (6 male, 4 female). Choice
of sample size was determined by subject availability. During the
experiment subjects sat on a soft chair without armrests in a quiet
shielded room facing a computer screen and performed operations
according to the experimental requirements. The Academic Ethics
Committee of Jiangxi University of Technology approved the experi-
mental study.

The stimulation program displayed different images on a com-
puter screen. Five different pictures were displayed to each subject
during an experiment (Fig. 1). Each image was randomly displayed
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on the screen for 1000 ms, followed by a black screen for 250 ms, to
give a total duration of 1250 ms. The five pictures were presented a
total of 370 times in each experiment. Each image was shown the
same number of times. Of the five pictures displayed, one was an
image of the subject, the others were background pictures. Each
image included the head of a subject above the shoulder.

In another authentication study similar to Yeom et al. [12], tem-
poral and spatial parameters the and number of subjects were the
same. Subsequently, in this study, three types of rule were employed
for each experimental arrangement, which included: (1) five images
of familiar people of the same gender, (2) two different genders were
included among the familiar images, or (3) a stranger’s image was
included among the five images. Subjects were asked to count the
number of occurrences of their image and the other persons’ imaqe in
the three sets of pictures. The possibility of authentication according
to EEG features was then analytically determined [13].
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Fig. 1. The experimental model to stimulate EEG activities for biometric au-
thentication. Among them, model 1 represents familiar subjects, model 2 rep-
resents the opposite gender, and a bald head denotes the stranger introduced
for model 3.

The experimental mode sequences and aesthetic fatigue that
were then introduced are now described:

(1) One of five images is presented with equal probability —
each image appears 74 times. Two rules are associated with each
image. Rule 1: Designated image is shown in the first place and
subject will see the designated picture. The second rule is that the
designated picture is shown at another place with respect to the first
one, and subject will see other persons’ picture. Throughout the
experiment, we let each subject count the number of occurrences
of their pictures and the subject could obtain the error occurrence
counting number. Thus, when the difference between the subject-
counted number and the actual number is less than five then in such
a case, the experimental data remains available.

(2) Designated pictures occur with small probability — each
designated picture appears for 36 times, while other pictures appear
for 83 times. Similarly, this experiment is carried out in two different
orders. For the first order, the designated picture is presented first
and the subject sees the designated pictures. For the second order,
the subject sees the designated picture subsequently to other persons’
picture. In the experiment, we let subject count the number of
occurrences of their pictures and the subject could obtain the error-

occurrence counting number. Thus, when the difference between the
subject-counted number and the actual number is less than five then
in such a case, the experimental data remains available.

(3) Long-term experiment: To test the effect of subject’ fatigue,
we selected 10 subjects, 6 males and 4 females. We choose equal
probability mode with designated pictures being placed first. The
experiment is performed once every three days, a total of 30 days.
This experiment design is shown in Fig. 1. A 40-channel Neuroscan
amplifier is used to collect EEG signals, and Scan 4.3 software was
adopted. The right mastoid is used to place the reference electrode.
The maximum sampling rate of our acquisition equipment is 1000
Hz, so we set the sample frequency to 1000 Hz which is not the
default frequency of the device. We use 200 Hz low-pass, 0.05 Hz
high-pass, and 50 Hz notch.
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Fig. 2. Comparison of EEG signal features before and after filtering. The
curve 2 describes the filter signal after filtering while the curve 1 is the
original signal before filtering. The X axis represents an experimental cycle
ranged from 150 ms to 1100 ms, and Y axis is the voltage difference of
brain signal. The electrode F8 is one of the electrode labels assigned by
international 10-20 system. Negative voltage parameter is used for highting
signal peaks and troughs.

3. Methods
3.1. Frequency filtering technique

We investigated different frequency components of EEG signals to
display in response to changes of the EEG feature under different
modes and before calculation, EEG signals were filtered before being
recorded. The frequency of collected EEG signals range from 0.05
Hz to 200 Hz. The frequency of studied EEG signal is concentrated
between 2 Hz and 45 Hz. The frequency filtering technique described
by Deller et al. [14] is used and after filtering the EEG signal features
are strengthened, as shown in Fig. 2. It shows a comparison of EEG
signal features before and after filtering, that takes the appearing
time ofstimulation to be 0 ms, and selects the EEG signal data at 150
ms before the stimulation appeared and1100 ms after the stimulation
appeared.

The negative part of the time axis does not mean that the time
is negative, but rather we recorded the signal data in advance for a
period of time to prepare for recording the event data. We marked
the time point when the stimulus photo appeared as the time-starting
point, which as “0”. The 10% or 20% signal data before the time-
starting point together with the signal data after the time-starting
point constituted a complete data sample. In order to maintain the
visual integrity in the EEG study, relative to the time-starting point
of the event, the time axis appeared in “negative” time.
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Fig. 3. Feature selection for Fisher distances. The subject number represents 30 electrode labels, and sample number is the time, and F represents the Fisher
distance. The four rectangular block areas describe the marked differences of the Fisher distance with the same electrode when the subjects scan their selfand
non-self photos. The Fisher distances for each subject looking at his/her own pictures marked with light gray and others picture marked with dark gray.

3.2. Fisher linear discriminant method

According to the experimental design, the samples about each subject
were divided into two categories: (1) stimulation of self photos and
(2) non-self photos. At the beginning of this study, we did not know
if the EEG data can be divided linearly with Gaussian distribution, so
we assumed that the EEG data has linearity and normality. Therefore,
as one of the commonly used linear analysis methods, the Fisher
linear discriminant method of two types is used to classify features.
For sample space of “stimulation of self photos” Rg (suppose m
samples) and sample space of “stimulation of non-self photos” Rp
(suppose n samples), the Ry expressed as X;(x1,x2,...,x,) and Rp
as Y;(y1,y2,--.,yn) their Fisher distance is calculated:

F = Fiy/Fou M
where

Fy = ni(pip)? @

Fpy = i(yx,» —x)2+ (tyi — yi)? 3)

i=1

Note: Ly and py; is the average value of x; and y; respectively,
and u is the mean value of all samples on the relative component,
and #; is the total sample number of the corresponding class.

3.3. Feature selection

We applied the Fisher linear discriminant method to measure the fea-
ture distance of different EEG signals. The Fisher linear discriminant
method is used to analyze the EEG via selecting the largest Fisher
distance among features. The distribution of the distance at all of the
time point is calculated for Fisher classification decisions including
30 electrodes. Feature selection is based on time points while select-
ing several time points with obvious features as the feature of the
subjects. Fig. 3 shows the fisher distances for each subject looking
at his/her own pictures (light gray) and others pictures (dark gray),
and the three dimensional data are time (sample number), electrode
(subject number), distance value (F). Shown in Fig. 3 are significant
differences between two EEG signals in the black area.

4. Results

4.1. Authentication accuracy

Comparing the descriptions of authentication, the results of test
samples are categorized into four classes: true sample and classified
as true (TT), true sample but classified as false (TF), false sample but
classified as true (FT), and false sample and classified as false (FF).
If the number of samples is N, we defined the correct ratio as TR
TT/N, and error ratio as FR (TF + FT)/N. For 10 subjects, we chose
500 pictures of subjects (true samples) and 200 pictures of other
persons (false samples). As indicated in Fig. 4, the classification
accuracy of small probability is obviously better than that of equal
probability, and it is obtained as a good classification performance
when the photo of subject is shown in the first position based on
specified probability.

To better study the feature changes caused by aesthetic fatigue,
we require that in long-term tests subject should look at the pictures
at least 10 times in the interval of two tests. On the other hand, the
experimental mode for long-term tests is equal probability mode
with objective pictures at the first place. Completing the full extent
of the experiment cycle is excessively long, thus only five subjects
completed the experiment tasks. According to the experiment time,
we selected six time modes over six weeks with the same time
interval. Tracing tests are made for 5 subjects, and the authentication
results are shown in Fig. 5. It is obvious that the brain activity of the
subject shows a process of initial increase followed by a decrease
and the classification accuracy shows significant decreasing trend.
This result demonstrates that the authentication accuracy does not
necessarily reflect increase in concomitant with the increasing of
brain activities.

4.2. Visual stimulation components analysis

EEG signals can capture some meaningful features in the time do-
main according to the peak and trough time of superimposed sig-
nals after superimposing the original brain electrical signals. The
original EEG signals from different experimental models were super-
imposed, displaying the superposition event related potential (ERP)
component as indicated in Fig. 6 and Fig. 7.
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Fig. 4. Authentication accuracy of different sequences as labeled for subset photo in the first position under specified probability conditions.
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Fig. 5. Shows the effect of long-term test on authentication for five subjects with corresponding recognition rates. Different bars indicate that each subject
carried out the experiment based on six time nodes over the same time interval, and the time order is from left to right, for six weeks over the same time interval.

The experiments in this study include three modes, i.e.,
equal/unequal probability, first/non-first place, and three back-
grounds. If background pictures show familiar persons of the same
gender, objects are placed at the first place, and each picture oc-
curs with equal probability, thus the code is 1aA. Under the equal
probability condition, the comparison of EEG for designated picture

at or not at the first place is shown in Fig. 6. The subject’s EEG
components when observing pictures placed at and not at the first
place are shown in Fig. 6a (Background pictures are familiar persons
of the same gender). Fig. 6b shows the EEG components under the
same condition as in Fig. 6a, but the background pictures include
two persons of different genders. While Fig. 6¢ shows the situation
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Fig. 6. Equal probability comparison under three modes. The brain topographies demonstrate different brain areas under three modes: (a) the mode with
background pictures of familiar persons of the same gender; (b) the mode with background pictures but including two opposite sex persons; (c) the mode with
background pictures but including a stranger. These three modes described in Fig. | in detail.

in which background pictures include strangers.

Fig. 6 shows the difference between two situations in which
designated pictures are at and not at the first place under the equal
probability condition. For three different kinds of background pic-
tures (i.e., familiar persons of the same gender, familiar persons
of different genders, and strangers, respectively), when designated
pictures are at the first place, the subject response is significantly
stronger than those in other situations. This is shown by the wave
shape from 150 ms to 400 ms in Fig. 6. This difference is also
shown in the random probability condition. When the designated
picture occurs with a small probability, the wave shape from 150
ms to 400 ms also shows difference between the situations where
designated picture is at and not at the first place. Subject response to
designated pictures at the first place is stronger than those pictures at
other places. By comparing the cases between equal probability and

unequal probability, it is found that the difference between subject
responses to whether designated pictures are put at the first place
or not in equal probability condition is bigger than those in unequal
probability condition.

Under small probability condition, the EEG features in time
domain when designated picture is placed at or not at the first place is
shown in Fig. 7. Fig. 7a shows the subject’s EEG components when
observing pictures placed at and not at the first place (background
pictures are familiar persons of the same gender). Fig. 7b shows
the EEG components under the same condition as in Fig. 7a, but
the background pictures include two persons of different genders.
Fig. 7c shows the situation in which background pictures include
strangers.

The absolute peak to valley differences (PVD) of amplitude from
150 ms to 400 ms for 10 subjects are shown in Table | (Unit: micro-
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Fig. 7. Small probability comparison under three modes. The corresponding brain topographies have a similar significance with three modes described in

Fig. 6 but these modes were implemented under small probability.

volt), where the average equal probability PVD of the three models is
6.14, while the average small probability PVD is 0.79. The average
equal probability PVD is 7.8 times of average small probability PVD,
which shows that the effect of object position under equal probability
mode is greater than that under small probability mode. The main
reason for the generation of visually simulated features is twofold:
(i) the reason of the stimulus themselves including the familiarity
of photos, the level of interest to the photos, etc. They are the basic
features of identification; (ii) P300 evoked expectations of target-
induced psychological feature. The feature under small probability
mode is more significant than that of under equal probability mode.
The data presented in Table 1 also prove and support the conclusion.

Furthermore, the average PVD under three experimental modes
under equal and small probability are (6.81, 0.77), (6.75, 0.79), (4.85,
0.80), which shows that the PVDs of equal probability are larger
than that of small probability (8.8 times, 8.5 times and 6.0 times).

The results also proved that the effects on features did not depend on
the experiment modes. However, for equal probability mode, when
unfamiliar persons exist in the series of pictures, it had a significant
effect on features. And interestingly enough, the PVDs for males
under equal probability are (7.11, 6.75, 4.80) while for females are
(6.37, 6.74, 4.92), hence the results for males under small probability
are (0.80, 0.76, 0.72) while for females are (0.73, 0.83, 0.93). Seen
from the results, the PVDs for males under equal probability with the
mode 1 and 2 are significantly higher than that of results for females,
but presented the opposite results with the mode 3, which implies
that females are more curious for strangers in the pictures. While
under the small probability, the performance for females compared
with males is shrinking but higher than results of males with the
mode 2 and 3, which implies that females are more interested than
males for novelty in small probabilities.

Furthermore, we used 5 time multiplier for observing the effects
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Table 1. EEG feature changes under sequence effects

Subject Gender Mode Equal Small Subject Gender Mode Equal Small
1 Male 1 7.75 1.02 6 Male 1 7.42 0.68
2 6.50 0.73 2 7.19 0.85
3 5.49 0.88 3 5.06 0.56
2 Male 1 6.20 0.49 7 Female 1 6.44 0.90
2 7.48 0.48 2 7.24 0.64
3 478 0.85 3 443 0.95
3 Male 1 7.49 1.04 8 Female 1 6.66 0.97
2 6.06 1.16 2 6.29 1.02
3 4.19 0.54 3 5.17 0.79
4 Male 1 6.76 0.88 9 Female 1 6.16 0.50
2 6.69 0.80 2 6.76 0.61
3 4.26 0.44 3 5.10 1.15
5 Male 1 7.06 0.70 10 Female 1 6.25 0.55
2 6.60 0.56 2 6.70 1.08
3 5.02 1.05 3 5.01 0.85
Table 2. Effect of long-term test
PVD (microvolt)
Subject Gender Time multiplier
1 3 4 5
1 Male 5.86 5.84 10.29 3.28 1.05
2 Male 4.76 5.78 10.23 3.34 0.76
3 Male 5.20 6.02 9.45 3.39 0.63
4 Male 4.79 5.85 10.82 3.56 0.99
5 Male 5.82 6.07 10.37 321 0.78
6 Male 4.67 5.75 9.85 4.01 0.70
7 Female 5.59 5.78 10.16 4.05 0.78
8 Female 5.65 5.73 9.94 3.63 0.62
9 Female 5.71 5.72 9.31 3.62 0.64
10 Female 4.77 6.05 9.63 3.48 1.07
MEAN 5.28 5.85 10.00 3.55 0.80
STD 0.49 0.13 0.46 0.28 0.17

for subjects with the long-time experiment. The PVDs from 150 ms
to 400 ms for 10 subjects are listed in Table 2 (mean of 10 subjects
and standard deviation). In the header of Table 2, 1-5 corresponds
to 5 time multiplier as a computation standard for each subject, and
the value is the absolute peak to valley differences (PVD). With the
increase of time multiplier, the PVDs for each subject is a growth
process and reaches a stage high when the time multiplier is 3,
which the most likely reason is that the attention of the subjects is
increasing after many experiments. However, continue to increase
time multiplier, the value of PVDs began to decline obviously. The
results clearly show that the experimental duration of subjects has
remarkable influences on EEG data characteristics, due to the fact
that the subjects had a feeling of boredom and disgust doing on
experimental tasks for a long time. Therefore, the application of
visual stimulus model for person authentication, likely to be the
negative effects of the experimental period on the visual stimulation
of EEG signals need to be considered.

5. Discussion

The main stimulus patterns included in our study were visual stim-
ulus, motor imagery and resting state that can be compared to the
study of Yeom et al. [12], Marcel et al. [15] and Miyamoto et al. [16].

In fact Yeom et al. [12] used visual evoked potential as the input
signal source, obtaining an average accuracy of 86.1% for biometric
authentication, better than that of 80.7% based on motor imagery in
Marcel et al. [15] and that of 83.9% using resting state to identify
biometric authentication in Miyamoto et al. [16], while a lower FR
rate of 13.9% [12] is obtained as compared with 24.3% (FR) [15]
and 21% [16]). Our results show that the classification accuracy of
using the visual stimuli method is 82.3%, slightly lower than that
reported by Yeom et al. [12]; however this study gives the lowest FR
(11.2%). Therefore, this methodology should be suitable for use in
visual evoked potentials to identify biometric authentication.

We carried out EEG-based identity recognition with picture stim-
ulus as the object of study to conclude on the accuracy of results
during experimental repetitions. The height between the absolute
peak to valley differences (PVD) as a feature parameter when we
implement three different experimental criteria for better stability
and analyzing the results, we draw on the conclusion that responses
to designated picture at different places vary, in terms of the absolute
peak to valley difference from 150 ms to 400 ms. The same conclu-
sion is also obtained small probability and equal probability cases.
After multiple tests on the subjects, visual fatigue appears despite
the use of short enhancement on visual effect and the difference
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between subjects’ responses to objective pictures and other pictures
becomes smaller. For authentication, both different sequences and
aesthetic fatigue have effects on recognition results which further
indicate that the stability of EEG signals based on visual stimulation
was improved.
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