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Abstract

This study aims to determine whether dentate neurons can be translaminarly neuromorphotopologically classified as ventro-
lateral or dorsomedial type. Adult human dentate interneuron 2D binary images are analyzed. The analysis is performed on
both real and virtual neuron samples and 29 parameters are used. They are divided into the classes: neuron surface, shape,
length, branching and complexity. Clustering is performed by an algorithm that employs predictor extraction (matrix attractor
analysis/non-negative matrix factorization and cluster analysis of predictor factors — separate unifactor analysis/Student’s ¢-test
and MANOVA) and multivariate cluster analysis (cluster analysis, principal component analysis, factor analysis with pro/varimax
rotation, Fisher’s linear discriminant analysis and feed-forward backpropagation artificial neural networks). The separate unifac-
tor analysis extracted as significant the following predictors from the natural cell sample: the N,;(p < 0.05), and from the virtual
cell sample: the Adt (p < 0.05), D,(p < 0.001), My(p < 0.01), Dyai(p < 0.001), Npa(p < 0.05), Nya(p < 0.001), N, /poq(p < 0.001),
Nmax(p < 0.01), Ds(p < 0.001), Cdf(N,/h,,d)s,(p < 0.05). For the multidimensional analysis, with the exception of the Fisher’s linear
discriminant analysis which gave a false positive result, all other analyses rejected the translaminar dentate neuron classification.
Thus, dentate neurons cannot be classified into ventrolateral/dorsomedial neuromorphotopological subtypes. Although some
differences were found to exist, they are not sufficient to carry this classification. The methods of multidimensional statistical
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analysis are again shown to be the best for such kinds of analysis.

Dentate neurons; 2D binary image; translaminar neuromorphotopological clustering/classification based upon un/supervised learning tech-
niques; parameter; multidimensional analysis; Fisher’s linear discriminant analysis; multidimensional approach

1. Introduction

The dentate nucleus (dentatus) is positioned in a central region of
the white matter of the cerebellum. Its main role is as a distribution
(relay) center for neural pathways coming from the Purkinje neurons
of the cerebellum [1]. Phylogenetically, it is the youngest and largest
of all the cerebellar nuclei and serves as the main pathway-crossing
relay center between other parts of the brain and the cerebral cortex.
It receives afferents from the supplementary motor and premotor
neocortex via pontocerebellar areas. Crossing over at the pontomes-
encephalic junction, its efferent pathways, the dentatus, project via
the superior peduncle through the rubral nucleus to the ventrolateral
thalamic nuclei. The dentate nucleus is involved in the processes of
planning, initiation, and control of volitional movement [2].

During development of the human DN, neuroprecursors that
will form the pool of mature neurons of the adult nucleus take their
final positions at gestation week 12.5 [3]. The DML continues its
development until gestation week 19.5. This occurs after precursors
of the small and large neurons are formed [3]. At that time neural
precursors of the VLL start to increase their size [3]. The peak of
VLL elongation is reached at the 23th week of gestation and the
beginning of folding is observed after a week and a half (23.5th
gestation week).
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With regard to the question of neuronal distribution across the
lamina, Maric [4] found a uniform distribution of all neuronal types
in both laminae. The small neurons are uniformly scattered through-
out the nucleus in the DML as well as in the VLL. Two types of
border neurons are arranged predominantly along the inner and the
outer quarter of both lamina. The interesting fact is that similarly
to border neurons, central neurons are also characterized by the
same uniform arrangement in both lamina i.e. along their inner two
quarters. Thus, for all neuronal types there are no differences in
translaminar arrangement [4].

Consideration of these reports suggest that the indices for neu-
rons belonging to these laminas should be histologically different.
Since previous studies have shown the characteristics and potential
classifications of central and border neuron types, the possibility of
histological clustering and classification based on topological criteria
is investigated. In other words, can DN neurons be translaminarly
neuromorphotopologically classified using methods of multidimen-
sional analysis. In a previous study dealing with the neuromorpho-
logical computational response surface methodology (RSM) model-
ing of DN neurons differently structured translaminar models were
explored [5].

The aim now is to determine whether these differences are sig-
nificant and sufficient to classify neurons accordingly. Additionally,
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by introducing matrix attractor analysis, the second, methodological,
aim is to further develop the previously described [6] classification
algorithm.

2. Materials and methods

The adult human dentate nucleus (DN) is characterized by two phy-
logenetically different parts, the younger ventrolateral lamina (VLL)
and older dorsomedial lamina (DML) (Fig. 1).

-or
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Fig. 1. 3D reconstruction of the dentate nucleus together with its laminar
structure. (a) dorsolateral view, (b) anteromedial view, (¢) inferomedial view.
From these three panels it can be seen that the DML occupies a much smaller
proportion of the nucleus when compared with the VLL.

The illustrations of the nucleus (1846) didn’t show these parts
of the nucleus to be different [7], but Gans [8] identified differences
when measuring the size of neurons in these two nuclear compart-
ments early in the twentieth century. The DML is the so called pale-
odentatus and is homologous with the lateral cerebellar nucleus of
lower species. The VLL represents the neodentatus which comprises
the majority of the nucleus in higher primates and humans. During
fetal development the neurons of the DML lamina can be seen to be
larger than the neurons of the VLL. Therefore, the DML lamina is
referred to as the magnocellular component of the nucleus while the
VLL comprise its parvocellular part [9, 10].

2.1. Impregnation procedure and acquisition of a 2D neuron
binary image

Material used in this study was collected during the period 2013—
2014 at the Department of Forensic Medicine, School of Medicine,
University of Novi Sad (Serbia), with the approval of the Ethics
Committee of the University of Novi Sad, School of Medicine (Ser-
bia). Independently of gender and side of the brain, the tissue sam-
ples of the dentate nuclei were taken from 30 brains, 24 male and 6
female, with an age range of 32—88 years old. Tissue samples were
taken from cadavers with undamaged brains and without diagnosed
cerebro/cardiovascular or nervous system disease. Independently of
the side, dentate nuclei were cut into slices 2.5 mm thick then fixed
using the KopschBubenaite impregnation technique [11]. Afterwards
tissue blocks embedded in paraffin were dehydrated by immersion
in increasing alcohol concentrations. Serial horizontal sections were
cut (90 pm thick) and mounted on glass slides.

a) c) S0m

b)

Fig. 2. Representative neurons from the laminae of the dentate nucleus. (a)
2D binary image of VLL neuron, (b) 3D reconstructive image of VLL neuron,
(c) 2D binary image of DML neuron, (d) 3D reconstruction DML neuron.

Using light microscope magnification (x400), each slide was
observed in detail. Impregnation of slide samples was considered
successful when the region of interest showed a number of impreg-
nated neurons throughout the series of sections. Neuron images
were recorded and digitally transformed by digital camera “Leica
DC 100” (Leica Microsystem Wetzlar GmbH, Wetlzar, Germany)
with accompanying software (Leica Microsystem Wetzlar Ltd., Heer-
brurg, Switzerland). An image of each neuron was obtained by first
scanning it from six image slices by increasing the focal depth (15
pum). These partial neuron images were then imported into software
specialized for digital image analysis and reconstruction: Image J
(http://www.rsb.info.nih.gov/ij). Using the command ZProject, all
neuron images are projected onto a stack axis normal to the image
plane, while dendrite spines, axons, and background artifacts, were
digitally removed. The image obtained was a black 2D binary digital
neuron image on a white background (Fig. 2a and 2c).
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2.2. The neuromorphological computational parameters

This study employed 29 computational parameters that described
various aspects of neuron morphology. They were divisible into the
following categories: (1) neurocompartmental surface, (2) neuron
shape, (3) neuron compartmental length, (4) dendritic arborization
branching, and (5) computational neuromorphological complexity.
These were the main parameter classifications used for this study.
The majority of parameters were unstandardized (21 of 29). Com-
parisons based on unstandardized parameters are more integrative
due to the large amount of noise confounding hidden in the data and
are more realistic but less revealing in terms of a single factor of
influence in the determination of DN inter-laminar differences. Thus,
to more accurately perform inter-laminar comparisons, in terms of
single factors, standardized parameters of neuron morphology (8) are
also introduced in this study. They provide ratios for some param-
eters. To summarize, unstandardized parameters allow more holis-
tic inter-factor interplay than standardized factors which are more
successful in revealing the influence of any one factor on neuron
classification.

To keep track of the final classification result, details of pa-
rameter derivation and calculation are given in an Appendix. For
completeness, derivations are summarized in Table 1 and parameter
abbreviations are defined in the Appendix.

Table 1. Derivation and calculation of neuromorphological computa-
tional parameters of DN neurons

Parameter Method Formula
Ay Direct digital measuring ~ /
Ay Direct digital measuring  /
Agr Derivation Ay = A, — Ay
Anf Direct digital measuring ~ /
Adf Derivation Adf = Anf —As
Apns Derivation Apns =Aay —Aar
L Skeletonization /
e Fractal /
p Numbering /
Tt Numbering /
Dyarn Derivation Dyvarn = %
D, Fractal /
PR?
Mg M, = ﬁ
PR
Mn Mn = 471-_2/”
Naan Derivation Naatr = Npa + Nsa + Ny jnoa
Npa Numbering /
Nsa Numbering /
NiJhod Numbering /
Nmax Fractal /
Dy Fractal /
Cur Fractal /
Ly Derivation Ly = g
L D?
(Dwdth)sf Derivation (Dwdth)st = z{rh
) s
(re)st Derivation (re)st = 5
. . y Cyr
Car(Aap)s Derivation Car(Aup)se = ﬁ
L C,
Cay(Naait)st Derivation Cay(Ngai)st = ﬁ
- C,
Caf(Npa)st Derivation Caf(Npa)st = NI—Z
- C,
Cay(Nsa)st Derivation Cas(Nya)st = 3
. . ) CL
Cdf(Nt/hud)St Derivation Cdf(Nt/hoa')st = WZ’J

Output ~=0.93"Target + 2.7¢+02

X 104

Fig. 3. Linear regression analysis gives excellent NARX ANN performance
for data extrapolation used in real sample enlargement and thus generation of
the semi/virtual DN sample.

2.3. The DN neuron samples

The entire dataset of 337 neurons consisted of two DN sample groups,
i.e., VLL and DML. The real VLL sample comprised 152 (45.1%)
neurons while the virtual DML sample contained 185 (54.9%) neu-
rons. In this study, a virtual DN sample using the NARX/NAR neural
network [12] was employed due to the potentially small sample size
for the defined task and to validate results for larger (virtual) samples.
Thus, the virtual sample is actually semi-virtual as it contained both
real and computationally formed (virtual) neuron data. The structure
of the virtual sample was: 190 (14.16%) DML neurons and 1152
(85.84%) VLL neurons, for a total of 1342 semi-virtual neurons. Any
arbitrary choice of the NARX/NAR ANN parameters led to such a
sample structure despite varying but universally high performance
levels (Fig. 3). These two samples were analyzed separately for the
given parameters.

2.4. Statistical data analysis

Data were analyzed using nonnegative matrix factorization (NMF)
and cluster analysis of factor predictors (PFCLA) as parts of the ma-
trix attractor analysis. Subsequently, PCA and factor analyses with
promax/varimax rotation was undertaken, followed by a Fisher’s
multiple linear discriminant analysis (FMLDA), the two layer feed-
forward backpropagation artificial neural network (ANN), along with
Kohonen’s self-organizing map (SOM), cluster analysis, Student’s
t-test, and a factorial design two-way multivariate analysis of vari-
ance (MANOVA) as part of a separate unifactor analysis. The data
analysis of the Gaussian distribution pattern was performed using
the Kolmogorov—Smirnov and Shapiro—Wilk tests.

3. Results

3.1. Preliminary stochastic matrix attractor analysis/NMF
and PFCLA analysis

The translaminar VLL/DML neuromorphotopological clustering of
DN neurons was initiated with a matrix attractor analysis comprised
of NMF and PFCLA analysis (Fig. 4).
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Fig. 4. Flux diagram of the general neuron clustering applied to neurons
from the dentate nucleus.

Analysis extracted dominant clustering predictors at the level of
the entire data set for which it was expected to provide one of the
major driving forces. The NMF analysis is a dimension-reduction
technique based on a low-rank approximation of the feature space.
Besides providing a reduction in the number of features, NMF guar-
antees that the features are positive, producing additive models that
respect the non-negativity of physical quantities. For a sample matrix,
in the present case a DN neuron matrix, it finds two matrices W and
H as its computational matrix predictors. By further analysis of these
two matrices the real factor/predictors can be extracted [13, 14]. The
PFCLA is an ordinary hierarchical cluster analysis but with factors as
the objects of clustering. It is expected that these two analyses would
have different results when applied to the same data, but with some
common overlap. If such overlap exists, then the factors creating it
would represent the dominant driving forces stabilizing the system
(attractors of a system) and would be candidates for clustering if they
existed.

For the real DN sample, NMF analysis extracted as dominant
attractors of the DN neuron sample the A, f, Adf, and the A, pa-
rameters (Fig. 5a). The same result was obtained for the virtual
sample (Fig. 5b). PFCLA also extracted the same significant fac-
tors. The inter-grouping average linkage method on the real sam-
ple revealed two major clusters of factors: the first with the three
aforementioned predictors, the second with the remaining factors
(Fig. 6a). Again, A,y was found to be the strongest factor (factor
strength about 10) while A,y and the A s belonged to the same
sub-cluster with the same descending order by strength, 10 and 6,
respectively. Though A,y and A,y share the same level of strength,
the A, s was the strongest due to its singularity. The within-grouping
average linkage method revealed the same result but the three factors
exhibited the same order of descending power (Fig. 6b). The situa-

tion was identical for the virtual sample (Fig. 6¢ and 6d). Thus, the
cross-section between the NMF and PFCLA analyses was the full set
of extracted factors i.e. the full match. According to these results it
is expected that successful clustering will be obtained and that these
factors will play the major role in the clustering of DN neurons.

a), |

T Adf

Anf
- I r 1 . 1 1 > 1

02 04 [ 08 1

Fig. 5. NMF analysis biplot. (a) NMF analysis of the real DN neuron
sample dataset. Graph shows the entire DN neuron sample dataset is a
single elongated cluster with the three dominant driving factor/predictor
forces/attractors: Anf (factor strength of influence 92.17%), Ad f (93.62%)
and Apns (33.29%). With the exception of a few outliers, as the greatest
width and density of the cluster is at its center, the NMF analysis does not
indicate DN translaminar VLL/DML clustering. (b) NMF analysis on the
virtual DN neuron sample dataset shows an identical result, negligible and
insignificant variation, as for the real sample (colors and line widths represent
relative factor strengths).

3.2. Potential clustering/separate unifactor analysis

A separate unifactor analysis is based upon the Student’s 7-test
and factorial design two-way MANOVA. On the real sample it ex-
tracted, as relevant for the DN neuron classification, one of the ob-
served parameters: the N,q(p < 0.05) (Table 2, Fig. 7-Fig. 11).
On the virtual sample (Table 3, Fig. 7-Fig. 11) the significant pa-
rameters are: the Ay (p < 0.05), Dy(p < 0.001), Ms(p < 0.01),
Dyyarn(p < 0.001), Npa(p < 0.05), Nya(p < 0.001), N;/poq(p <
0.001), Nmax(p < 0.01), Dy(p < 0.001), Cif(N; jpoq)st (P < 0.05).
The Student’s z-test and MANOVA showed the same clustering fac-
tors for both real and virtual neuron samples in terms of the extracted
relevant parameters. It can be seen from the Table 2 and Fig. 7—
Fig. 11 that DML neurons approximately have more developed den-
dritic branching than VLL neurons but a smaller complexity level
of shape and dendritic arborization. Fig. 2a and 2c shows extreme
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Fig. 6. Dendrograms of hierarchical cluster analysis of factors. (a) and (b) PFCLA obtained for the natural DN sample dataset. (a) Inter-group average linkage
method shows predictors Anf and Ad f to represent a one factor cluster with a factor/cluster strength level of about 10 with the lower level Apns (factor strength
about 7) within that predictor cluster as a branch of an Ad f sub-cluster. (b) Consistent with the foregoing, the within-group average linkage method shows that
the predictors Anf , Adf , and Apns have the strongest respectively decreasing factor/cluster strength — the Anf as the strongest represents the sub-cluster for
itself, while the other two following it are second and third sub-clusters, respectively (note similarity with results of the NMF analysis). Both diagrams show a
dispersed and thus negligible effect of the other factors making the second predictor cluster. Their vanishing resultant effect over the data clustering is much
better explained and demonstrated by the NMF analysis vector diagram.
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Fig. 6. (Continued.) (c) and (d) PFCLA obtained on the virtual DN sample dataset is identical to the real sample (axes signify parameters).

representatives from each group at the end of parameter distributions ~ be emphasized that although unifactor analysis extracts different fac-
to show how these neurons can be different despite the fact that they  tors from the samples, it cannot show whether interaction of number
actually belong to the same type as revealed by analysis. Differences and strength of such differences is sufficient to successfully cluster
are very obvious but to further increase this difference, 3D recon-  the data. Thus, to determine this, multidimensional analysis was
struction of 2D binary images were used (Fig. 2b and 2d). It should  employed.
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3.3. Cluster number determination/Kohonen’s SOM ANN
and cluster analysis

Cluster analysis provides a classification tool that uses parametri-
cal multivariate data. It is based on identification of the dominant
multi-parameter attractor values of clusters in a sample, so called
cluster centers. Clustering is thus performed using estimation of the
degree of separation between clusters i.e. it is based on determining
so-called Euclidian inter-cluster distances (ED). Depending upon this
value, the existence of clusters may or may not be established [15].
The SOM is an ANN with matrix representation of neurons where
each neuron has the possibility of representing single cluster centers.
This neuron is referred to as the cardinal neuron and carries the
majority of the observables, in this case, the DN neurons. Analo-
gously to cluster analysis, inter-cluster distances are then calculated
between given cluster centers/cardinal neurons [16]. Thus, similarly
to the cluster analysis, the SOM can be considered to represent some
kind of an ANN based cluster analysis. In this study three types of
cluster analysis are performed: k-means, two-step, and hierarchical.
The k-means cluster analysis is used to find the best inter-cluster
separation obtained for the three clusters on the real sample. The ED
1/2is 2.53 104, ED 1/3 3.42 104, ED 2/3 5.95 104 and the number
of neurons in each cluster is 150 (cluster I 44.51%), 136 (cluster 11
40.36%), and 51 (cluster III 15.13%). The average ED is 3.97 104.
The two cluster solution: ED 1/2 is 3.76 104 and the number of neu-
rons in each cluster is 228 (67.66%) in cluster I and 109 (32.34%) in
cluster II. The comparison of the ED 1/2 in the two-cluster solution
with the average ED in the three-cluster solution suggests that the
three-cluster solution as better due to larger inter-cluster distances
which confirm better cluster separation in that case. Additionally,
according to beta-error, for the clustering be successful, the number
of neurons/observables in each of the obtained clusters cannot exceed
20% of the ideal theoretical 50%/ 50% distribution in the case of
the two-cluster solution i.e. 33.33% in the three-cluster solution.
In the case of the given two-cluster solution obtained from the real
DN sample, the maximally allowed neuron distribution across the
clusters is 51 neurons (15%) (the minimal number) in one cluster
and 286 (85%) (the maximal number) in the other cluster. Since both
clusters satisfy the given limits, clustering in the absolute sense is val-
idated and the data are open to further analysis. For the three-cluster
solution, the maximal possible asymmetry of cluster structure is 34
(9.9%) neurons for two clusters and 269 (90.1%) for the third cluster.
Thus, this cluster solution is also valid, so the two solutions obtained
for the real DN sample can be compared in terms of the number
of neurons in each cluster. The larger average ED distance in the
three-cluster solution leads to one of two possible outcomes: either
one of the two clusters in the two-cluster solution is broken onto two
sub-clusters in the three-cluster solution or it is not, i.e. neurons are
clustered again with the total cluster reset without preserving one
of the clusters. In order to know which is correct, the concept of
beta-error is again employed, but now as the allowed SD value for
the number of neurons in each cluster identified for the two-cluster
solution. Analysis revealed that none of the combinations of two of
the clusters in the three-cluster solution leads to the clusters of the
two-cluster solution thus supporting the latter outcome. The neurons
are clustered through the total reset without either preservation of
one cluster or the break-down of the other. This supports the extreme
similarity of neuron morphology and the absence of any possibility
of classification. The reasons for the classification failure for DN
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Fig. 9. Length morphometric parameters of DN neurons; statistically significant (p < 0.05); ## very highly significant (p < 0.001) adjacent plots with the

same parameter sets represent real (red—left) and virtual samples (green—right).

neurons are: (1) Average ED in the three-cluster solution is larger
than for the two-cluster solution, (2) The three-cluster solution is
more valid than the two-cluster solution due to more uniform neu-
ronal distribution across clusters, and (3) Neurons remain clustered
through the total cluster reset, thus confirming their own neuromor-
phological similarity. Although this conclusion is not necessarily
due to any obvious failure of the two-cluster solution, as it is only
based on and ED comparison, it was undertaken to determine how
deeply the clustering failure goes, i.e. due to its semi-quantification.

The outcome for the virtual sample is identical to that of the real
one, even with a stronger three-cluster solution, in terms of both ED
differences and neuron inter-cluster distribution. Two step cluster
analysis of the real sample also showed a three-cluster solution with a
cluster strength of about 38% (reasonable clustering). For the virtual
sample it provided only an one cluster solution. This inconsistency
also shows the clustering failure for DN neurons. Hierarchical cluster
analysis confirmed the absence of clustering for both samples, real
and virtual (Fig. 12). Kohonen’s SOM was consistent with the results
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of the cluster analysis (Fig. 13 and Fig. 14).

3.4. Confirmation of clustering absence/PCA and factor
analysis

PCA analysis followed by factor analysis with promax/varimax rota-
tion was employed. The reasons for this include, (1) The particular
ability to potentially cluster data, if possible, and (2) Multivariate
data reduction together with the ability to reveal predictor/factor
groups as vectors that separate neurons into groups/clusters along
the main principal components that explain and carry the majority
of data variance, thus determine neuromorphology [17]. This im-
plies that besides classification of observables, in this case neurons,
these analyses also may serve in parallel as predictor cluster analy-
ses. The analysis was undertaken on the parameter correlation ma-
trix. Optimal loadings were obtained by rotating the three principal
components [18, 19]. For each of the samples it was observed that
the consistency of its situation was reflected in its complete irreg-
ularity, i.e. in each case, an absence of any clustering pattern. Al-
though the majority of data variability captured was constantly above
51% with three principal components, the inter-methodological and
inter-sample variances in factor loadings and orientation determining
pseudo/clusters was extremely variable, thus removing all possibility
of the existence of any kind of classification (Fig. 15).

3.5. Cluster association/FMLDA

FMLDA analysis was used in order to carry out a more integrative
approach, i.e. a more detained factor analysis based classification.
It is a way to classify observables, in this case neurons, by finding
adequate linear parameter combinations according to which neurons
can be classified into separate groups or clusters [20]. In contrast
with a separate unifactor analysis which represents the contribution
strength of each of the factors included, and analyzed separately,
FMLDA analyses the factors in an integrative manner. Any clustering
detected by previous unsupervised analyses allow the possibility of
investigating clustering association, i.e. identify preliminary clusters
where clusters obtained in an unsupervised manner can be associated
with the real DN cluster, including the VLL and DML clusters.
However, as no individual clusters were identified, the positive results
of FMLDA analysis could not be employed for cluster associations.
FMLDA analysis showed a positive result for both real and virtual
samples, at least with regard to Wilk’s lambda, 0.85 (p < 0.05) and
0.98 (p < 0.001), respectively, but with very weak factor loadings.
For the real sample, none of the factor predictors were sufficient to
determine clustering i.e. factor loading for every predictor was below
40%. This means that no driving force/forces was/were sifficient
to separate one cluster from the centrally located data grouping
(Fig. 16 and Fig. 17). In other words, weakly separated clusters
shared the same underlying dynamics, which points to a stochastic
pseudo/clustering process. For the virtual sample, the situation was
similar to that of the real one but with only D; being a valid parameter
(factor load 90%), which is inconsistent with the PCA/factor analysis.
Thus, FMLDA indirectly confirmed the absence of any translaminar
VLL/DML clustering.

3.6. Supervised clustering and the cluster identification/feed-
forward backpropagation ANN — neuron clustering us-
ing neural network — data matrices and training algo-
rithm

Neurons of the DN are clustered according to their histomorphologi-
cal and topological features, as expressed and quantified through ad-
equate quantitative parameters, using the MATLAB software/Neural
Network Toolbox. The network used was a two-layer feed-forward
backpropagation neural network. Data were presented to the net-
work as an input matrix comprised of parameter values and an out-
put/target matrix, i.e. DML/VLL target matrix. The network was
trained and used for the neuron classification problem. Clustering
was performed on both real and virtual samples.

Even at the stage of virtual sample creation using NAR/NARX
ANN, there was a hint of classification failure due to the high per-
formance level of the network (Fig. 18) and the penetration of the
VLL neurons into the virtual sample structure. This result indi-
cated a great similarity between these two neuronal populations, but
the previously described analysis was necessary for the provision
of clarity and completeness concerning the clustering/classification
analysis. Indeed, what was presupposed was shown to be the case,
the feed-forward backpropagation ANN operating in a supervised
learning mode again exhibited a failure to classify DN neurons, thus
excluding any chance of cluster identification (Table 4). As can be
seen from Table 4, none of the samples showed a correct level of
neuron classification (above 80%) for either VLL or DML. Only the
real sample of DML neurons was correctly classified (95.1%), but
with only 1.3% of VLL neurons correctly classified, this explains
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Fig. 11. Morphometric complexity parameters of dendritic arborization of DN neurons; statistically significant (p < 0.05); # highly significant (p < 0.01); ##
very highly significant (p < 0.001) adjacent plots with the same parameter sets represent real (red—left) and virtual sample (green—right).

nothing more than the extreme similarity of inter-cluster similarity.
Additionally, odds ratios in both cases of VLL and DML were below
one, thus confirming the extreme translaminar histological similarity
of the topology of these two neuron clusters.

3.7. The integrative decision analysis

Here, the results obtained are summarized and a final statement made
concerning the entire outcome of the analysis of the DN neuromor-
photopological clustering/classification. Despite the false positivity
of the FMLDA analysis, all other analyses, including ether super-
vised or unsupervised methods, demonstrated the lack of translami-
nar VLL/DML classification. This confirms the histological similar-
ity of these two topologically and developmentally different neuronal

clusters.

4. Discussion

A previous study dealing with the neuromorphotopological classifica-
tion of DN neurons in the central and border zones [12] showed that
these DN neurons could not be histologically classified as two topo-
logical neuron subtypes. This led to the further conclusion that the
histologically observed DN neuron distribution is uniform through-
out the whole gray nuclear mass. However, a subsequent study,
similar with the previous one [10], demonstrated strong clustering
of the border neuron type into two sub-clusters, i. e., external and
internal border neurons. This result complemented the understand-
ing of histological neuron types distributed throughout the nucleus:
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Table 2. Data mean =+ SD, 7- and the p-values for parameters of DN neuron morphology taken from the real sample

Parameters VLL DML t-value p-value
Unstandardized parameters
Surface parameters
Ag 1143.41 £+ 514.32 1230.76 + 588.18 —1.43 p > 0.05
A, 7170.76 £ 2849.02 7537.64 +3118.24 —1.12 p > 0.05
Agr 6492.62 + 2970.59 6368.83 £+ 3254.31 0.36 p > 0.05
Anf 34824.31 4+ 16252.56 38612.1 £ 20360.28 —1.86 p > 0.05
Agr 28495.26 £+ 11270.98 30527.43 £+ 14903 —-1.39 p > 0.05
Apns 21465.24 +9741.32 21810.81 + 12146.71 —0.28 p > 0.05
Length parameters
L 1527.95 4+ 605.8 1604.09 + 665.26 —1.09 p>0.05
Te 41.25 £ 15.71 40.24 + 14.93 0.6 p > 0.05
p 43.15 £ 14.53 45.58 +13.44 —1.59 p>0.05
T 89.62 £ 23.06 93.32 £ 2445 —1.42 p > 0.05
Dyamn 6.75 +4.53 6.54 +4.98 0.4 p > 0.05
Shape parameters
D, 1.19 £ 0.36 1.21 +0.35 —0.56 p > 0.05
M 1.19 £0.11 1.21 £ 0.11 —1.51 p > 0.05
M, 347 +£2.44 4.68 +£9.01 —1.61 p > 0.05
Branching parameters
Nyan 31.34 £ 11.05 33.24 + 13.03 —1.43 p > 0.05
Npa 7.04 £1.86 7.59 £2.06 —2.57 p < 0.05
Ny 10.7 £ 5.61 12.04 £ 6.83 —1.94 p>0.05
Nijhod 13.64 £ 8.38 13.63 £9.53 0.006 p > 0.05
Complexity parameters
Nmax 14.34 £+ 4.81 14.78 £ 4.79 —0.84 p > 0.05
Dy 1 4+ 0.0000001 1 £+ 0.03 —-0.91 p > 0.05
Cuy 448 £4.74 4.7 £5.65 —0.39 p > 0.05
Standardized parameters
Length parameters
L 2453.53 4+ 1841.51 2659.41 4+ 1981.58 —0.98 p > 0.05
(Dyrn)st 0.01 £0.01 0.01 £0.01 —0.1 p > 0.05
(re)st 201 +£22 1.7+ 1.29 1.58 p > 0.05
Complexity parameters
Car(Aaf)st 0.001 £ 0.01 0.0004 £ 0.002 0.85 p > 0.05
Caf(Ngair)st 0.16 = 0.18 0.17 £0.26 —-0.44 p > 0.05
Car(Npa)st 0.69 + 0.77 0.75 £ 1.13 —0.54 p > 0.05
Caf(Nya)st 0.69 + 1.21 1.24 +4.52 —1.45 p > 0.05
Caf (N jhoa)st 0.65 £ 1.56 0.94 £3.65 —-0.93 p > 0.05

Branching parameters are fractional due to semi-computational NARX-based manner of extrapolation and sample enlargement used for missing values of the

real sample.

the histological neuron type corresponding to the external/internal
border neuron cluster also corresponded to the portion of the cen-
tral neurons that exhibit the same morphological properties. Thus,
though the histological neuron subtypes are probably scattered inside
the central region, what is certain is that they are organized on the
border of the nucleus into two sub-clusters, one external and the
other internal, with equivalent neuro-functional implications [10]. In
this study an attempt was made to try and complete understanding
about the distribution of DN neurons. Results have shown that VLL
and DML neurons share the same structural properties and that the
previous description is complete. The only unknown, is whether the
central region has any internal topological compartmentalization, as
it is considered to be an unified compartment. What is obvious from
previous results is that the only compartmentalization that exists in
the DN is an external/internal border neuron neuromorphotopolog-
ical compartmentalization. Although the neurons belonging to the
DML are magnocellular neurons [3], methods of multidimensional
analysis have shown that this parameter itself is not sufficient to

successfully confirm the classification. Fig. 2 shows two neurons
that on first sight appear very different but belong to the two dentate
lamina. However, upon a closer examination, DML neurons appear
to exhibit more developed dendritic branching and a slightly larger
cell body. Even the complexity of the dendritic field is not much
greater due to the regularity of dendritic curvature. This, by the
way, is just one more example of the relation between quantitative
computational studies and qualitative ones where the effectiveness
of the quantitative approach is shown once again, especially when
combined with the power of multidimensionality. Thus, facts about
DML magnocellularity are potentially based upon insignificant inter-
neuron differences in the cell body size or inadequate sample sizes.
Maybe a greater number of neurons in this lamina have a larger cell
body than neurons in the VLL, but this number is insignificant de-
spite the fact that maybe these large neurons represent DML specific
markers that cannot be found in the VLL. Even if this were the case,
though the difference in neuron size was not observed in this study,
the parameter is not by itself, according to the rules of multidimen-



116

Journal of Integrative Neuroscience

Table 3. Data mean + SD, ¢- and p-values for the parameters of DN neuron morphology taken from the virtual sample

Parameters VLL DML t-value p-value
Unstandardized parameters

Surface parameters

Ay 1167.77 £+ 359.22 1198.37 £+ 613.05 —-0.97 p > 0.05

A, 7277.84 £+ 2471.97 7339.28 £+ 3306.01 -0.3 p > 0.05

Agr 6626.94 + 1950.95 6201.23 £ 3369.75 2.46 p <0.05

Anf 36410.85 4+ 13059.17 37595.99 + 21023.27 —1.05 p > 0.05

Agr 30203.43 £+ 10097.69 29724.074 + 15499.32 0.56 p > 0.05

Apns 21994.33 4+ 5651.42 21236.84 + 12485.71 1.38 p>0.05

Length parameters

L 1629.45 4+ 462.6 1561.88 4+ 705.09 1.71 p>0.05

Te 41.39 +£11.32 39.18 £+ 16.09 2.33 p > 0.05

p 43.53 £9.26 44.38 = 15.15 —1.06 p>0.05

T 88.7+15.17 90.86 + 28.4 —1.57 p > 0.05

Dyyirn 472+£393 6.44 £ 4.96 —5.38 p < 0.001

Shape parameters

D, 141 +£0.16 1.18 £0.39 14.18 p < 0.001

M 1.19 £ 0.06 1.18 £0.22 2.62 p <0.01

M, 438 +6.2 4.56 + 8.92 —0.34 p>0.05

Branching parameters

Nyan 31.51 £591 3237 £13.92 —1.45 p>0.05

Npa 7.36 £1.34 7.39 £2.37 —0.28 p <0.05

Ny 9.99 +3.84 11.73 £7.02 —5.01 p < 0.001

Nijhod 16.26 £4 13.27 £ 9.65 7.37 p < 0.001

Complexity parameters

Nmax 15.08 £2.9 1439 +£53 2.6 p <0.01

Dy 1.24 + 0.1 0.98 £0.16 30.28 p < 0.001

Cuy 491 £2.32 4.58 £5.63 1.38 p > 0.05

Standardized parameters

Length parameters

Ly 2529.58 4+ 1334.73 2589.42 £+ 2001.24 —0.53 p > 0.05

(Dyrn)st 0.006 £ 0.004 0.006 £ 0.01 1.35 p>0.05

(re)st 1.82+11.66 £1.31 2.05 p <0.05

Complexity parameters

Car(Agf)st 0.003 £ 0.005 0.0004 £ 0.002 7.08 p < 0.001

Caf(Ngair)st 0.18 = 0.19 0.16 £ 0.26 0.87 p>0.05

Car(Npa)st 0.71 £0.51 073 £1.13 —-0.29 p > 0.05

Caf(Nya)st 1.05 + 1.84 1.21 +£4.47 —0.82 p>0.05

Caf (N jhod)st 1.32 £2.07 092 +£3.6 2.17 p < 0.05

sional analysis, sufficient to claim the classification exists and is
valid only because of that. In this case it is no more than merely a
qualitative observation of one neuron population unconfirmed by any
quantitative computational multivariate study. Also, in additional
support of these findings, Maric [8] found a uniform distribution of
all histological and topological neuron types throughout the nuclear
lamina, thus pointing to their similarity despite the occurrence of po-
tentially characteristic neuron markers, they were unable to confirm
any classification. Braak and Braak [21] reported that the soma of
the large neuron generates a great number of dendrites that radiate
in all directions when the neuron is located in the central portion
of the dentate nucleus. Analogously to this, but more generally,
are the results of Fiala and Harris [22], the so called Harris—Fiala
pattern. Accordingly, it is an universal fact that large neurons are
characterized by both large cell bodies and consequently more elab-
orative dendritic fields with respect to neuroperikaryion size and
vice versa for small granular neurons. Other studies additionally
either support or discard this relation as valid for other neuron types.
Studies performed on thalamocortical cat neurons using linear re-
gression analysis have shown that cross-sectional area or neurosoma

diameter provide a poor predictor of dendritic length. In contrast
with this, the number of first order dendrites and the values of their
total diameter provide a good estimate of overall size of thalamo-
cortical neurons [23]. The analysis reported here, has not detected
the same relations in terms of neurodendritic branching but it has
yet to be applied to the other type of neuron. Additionally, a study
by Conlee et al. [24] reports reduction of neuron size in parallel
with reduction of dendritic length in the medial superior olive of
stressed albino rabbits. Though this wasn’t the case for all parts,
these results represent an excellent example of adaptive morphologi-
cal changes taking place in neurons [24]. Although these are counter
examples, this study also suggests that constructive adaptation can
be expected as well, provided of course, there is an adequate neu-
rostimulatory environment. As the largest portion of both laminar
samples employed for this study were comprised of central neurons
the correlation obviously may contribute to a false picture of DML
magnocellularity. Experience with the correlation—comparison anal-
ysis has shown that though some neuromorphological parameters
are in a particular correlational relationship, this does not necessarily
mean that such parameters are significantly different between the
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Fig. 12. Dendrogram of the hierarchical cluster analysis of DN neurons. (a)
Real sample case. The two main clusters are very similar to each other thus
eliminating the possibility of any successful clustering. DN neurons to the
left represent the insignificant third cluster of the outliers identified by the
k-means cluster analysis. (b) Virtual sample case. Although the situation is
a little bit different to that of the real sample, with a smaller number of sub-
clusters, the two main pseudo/clusters are even closer than they are for the
case of the real sample, thus confirming the absence of neuromorphological
DN classification in terms of topological criteria (axes signify the individual
numbered neurons).

samples, i.e. one of them might be, but the other one does not have
to be, significantly different. Thus, the significantly greater dendritic
arborization area of the DML neuron does not necessarily lead to sig-
nificantly larger cell bodies in the DML sample. Results supporting
this line of reasoning include those reported here, along with results
reported by Mihajlovi¢ and Zécevi¢ [7] and Maric [8] that show
independent dendritic morphology and did not confirm any pattern
of dendrite/perikaryon dependence. To summarize, the DML/VLL
magno/parvocellularity originates from insignificant qualitatively
based interneuron differences of perikaryon size and/or an insignifi-
cant number of such neurons. Either way, they are not convincing
enough to support the DML/VLL DN neuron classification. This is
additionally supported by Mihajlovic¢ and Zecevicé [7] and Hayaran
et al. [25] who found that asymmetrical and fusiform neurons are
ubiquitous neuronal types that uniformly invade both laminae and
make them the dominant neuronal populations. Similarly, but with

histologically different neuron types, are the results of Hayaran et
al. [25], that human adult dentate nucleus is only comprised of large
multipolar neurons. Very probably, during the first stages following
formation of specific laminar neuron types, these differences are
sustainable but with the later development of the VLL after gestation
week 19, either a very small portion of DML neurons become more
like VLL neurons Mihajlovi¢ and Zecevi¢ [7], or some neural migra-
tions are still occurring with uniform effect upon neurons belonging
to these two lamina. As shown by Conlee et al. [24], neural synaptic
adaptation may even be sufficient to shape these neurons similarly
in the adult brain. However, the results of some studies [7, 25-31],
also support the analyses reported here by not showing marks and
indicators of neuron compartmentalization besides those of structural
differentiation of neuron precursors that determine nucleus function.
Thus, ether embryonic scenario may lead to the uniformity of neu-
rons reported for the adult DN. The virtual sample showed some
additional inter-neuron differences but due to the low performance
rate of the feed-forward network caused by an absence of differ-
ences, such results are suspicious and rate validity lower in terms
of precise specification differences. But the results obtained for the
virtual DN sample have full and legitimate validity concerning the
confirmation of complete absence of a translaminar DML/VLL DN
neuron classification as previously has already been shown for the
real sample.

Though some positive conclusions, based upon the results of
separate unifactor analysis, could be proposed, in conclusion it can
be said that DN neurons cannot be classified into VLL/DML neu-
romorphotopological subtypes. Although some differences exist
they are not sufficient to support any classification. The methods of
multidimensional statistical analysis are once again shown to be the
best for such difficult tasks.

Appendix

A.l1. The neuron surface parameters

Expressed in squared microns (um?), the neuron surface parameters
determine various aspects of surfaces and compartments of a neuron’s
2D binary image. These parameters represent the size of neuron
and its various compartments. They include: a) Surface area of the
entire neuron (A,), b) Surface of the neurosoma/perikaryon (Ay) [32],
¢) Surface area of the dendritic tree of a neuron (A, ), d) Surface
area of neuron field (A, ), e) Surface area of dendritic field (Ayr),
and f) Surface area of perineuronal space (Apps). The A, parameter
represents the actual real surface of the entire area of a neuron’s 2D
binary image (Fig. A.1a). Values for a particular neuron are obtained
by direct computational measurement analysis of the neuron image
(Image J software). The Ay parameter defines the actual real surface
of a neuron perikaryon image after digital removal of dendrites
(Fig. A.1a).

Like A,, Ay is also directly measured and the value obtained in
pixels is converted to squared micrometers. A ; gives the actual real
surface of the neuronal dendritic tree following digital removal of the
perikaryon. This parameter is derived from the difference between
A, and Ay:

Agr = An — As. (A1)

Apy represents a surface of the minimal radial field occupied
by a neuron image. It is obtained by measuring the surface of the
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Fig. 13. Kohonen’s SOM ANN classification output for the natural DN neuron sample. (a) Percent of DN neurons belonging to each cluster — it can be seen
that the third SOM cardinal neuron representing cluster III (lower left) carries the greatest number of DN neurons while the second neuron/cluster (upper
right) includes the least. Potential association of either cluster III or IV with one of the other two clusters would have resulted in successful classification. (b)
Inter-cluster Euclidian distances (ED) — ED1/4 > ED1/2 > ED1/3 > ED2/3 > ED2/4 > ED3/4. ED2/3 is calculated in a semicomputational manner based on
the others. Graph shows the previous assumption fails as clusters II-IV are very close to each other. (c) Reconstruction of the inter-cluster relations shows the
obvious failure of the DN classification as cluster I carries less than 30% of the DN neurons (see explanation in text). (d) SOM five-rank artificial neuron matrix
confirms DN classification failure — the lower right more distant sub-clusters (outliers) are dispersed and terminal, i.e. do not represent the separation zone
between clusters of closer neurons (yellow colored ED distances) representing the one and only one single cluster (major upper left artificial neuron cluster).

Table 4. Confusion matrix of feed-forward backpropagation ANN performance for neuromorphotopological clustering of DN neurons

Neuron type % of correctly classified % of misclassified neurons Classification ratio Modified odds ratio
neurons

The real DN sample

VLL 1.3 98.7 0.01 0.26
DML 95.1 49 19.41
The virtual DN sample
VLL 64.4 35.6 1.81 0.88
DML 32.6 67.4 0.48
polygon outlining a neuron image with the tips of the dendrites as Apns = A —Ay. (A.3)

its vertices (Fig. A.1b). Ay gives the surface of the minimal radial
field occupied by a dendritic tree image after the perikaryon has been
digitally removed. This value is calculated as the difference between
Appand Ay

Since the perineuronal space is filled with neuroglial cells, as
well as axon bundles, dendrites and small interneurons [1], Apug
might be thought of as a partial neuromorphological measure of neu-
roglial connectedness and supportiveness or from neurophysiological
Agp = Any—As. (A2) asp(?ct it can be interpreted as the partial neurotrophic strength 9f the

particular neuron. These surface parameters are all unstandardized.

Apns gives the inter-dendritic surface, i.e. the surface between
the dendrites. It is obtained from the A,y polygon after the whole
neuron has been digitally removed. It is calculated as the difference ~ All neuron shape parameters are also unstandardized. They measure
between A,y and Ap: and determine various aspects of neuron shape as well as its compart-

A.2. Neuron shape parameters
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Fig. 14. Kohonen’s SOM ANN classification output for the virtual DN neuron sample. For all four panels the outcome is the same as the real sample case, thus
leading to the same conclusion as for cluster/neuron 1 as insufficient to support the classification.

ments from a neuron’s 2D binary image, including: a) The fractal
dimension of a neuron’s 2D binary image outline (D,), b) The index
of asymmetry of a neuron (M,), and c) The index of the somatic
asymmetry (M;). D, gives a quantitative computational measure of
the real shape of a neuron. It is obtained by the box-counting method
where the outline of a digital 2D B&W neuron image is sequentially
covered by squares with discretized edge/diameter values, i.e. with
boxes of different precisely defined sizes calculated by a base two
geometrical progression. The number of squares is plotted against
the diameter values and fit by a first-order polynomial. The graph
slope coefficient gives the value of D, (Fig. A.2a and A.2c).

M, is a measure of the inverse circularity of the shape of a
neuron. It reflects a neuron’s roundness and compactness of shape
and is calculated from:

PR},
4r-A,

n= (A.4)
where PRy gives the perimeter of the pericaryodendritic/general
somatic compartment. It is also equivalent to the asymmetry index
of the dendritic field (M) if the statistical difference between My ¢
and M, is not significant (p > 0.05). My provides the majority of
shape variance due to large interneuronal variation in the shape of

the dendritic tree and the M,, variance primarily depends upon it.

M; gives the inverse circularity of the neurosomatic shape and is

equivalent to M,,. Its value is obtained using the same formula after
digitally removing the dendrites:

2
PRy

M =
ST 4w A

(A5)
where PRg becomes the perimeter of a neurosoma without dendrites.

A.3. Unstandardized compartmental neuron length parame-
ters

Expressed in microns (pum), the unstandardized compartmental neu-
ron length determines the length of various aspects and compart-
ments of a neuron’s 2D binary image morphology. These are, a)
Total dendritic length (L), b) Radius of the circle with the maximal
number of intersections with dendrites (r.), ¢) Radius of the circle
with the maximal number of intersections with dendritic branching
points or radius of the maximal number of dendritic branches (r},),
d) Radius of the circle with the maximal number of intersections
with dendritic terminating points or radius of the maximal number of
dendritic terminations (r;), and e) Average dendritic width (D,,41,)-
L gives the sum of all dendritic lengths [33, 34]. It is obtained from
a skeletonized neuron’s 2D binary image after digital removal of the
perikaryon, i.e. on a dendritic tree image. The surface of such an
image is actually L as the dendrite width is reduced to one pixel. The
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Fig. 15. PCA/FA for real and virtual DN neuron datasets. Graphs (a)—(c) Real neuron data sample. (a) PCA analysis, (b) FA with the varimax rotation, and (c)
FA with promax rotation. Graphs (d)—(f) Virtual neuron data sample. (d) PCA analysis, (e) FA with varimax rotation and (f) FA with promax rotation. PCA/FA
analysis of virtual sample shows three highly irregular and variable inter-analytically observed pseudo/clusters while real sample data are grouped into a single
cluster. Colors of driving forces/factor predictors indicate direction and location of potential pseudo/clusters with respect to others — Graphs show the high level
of the cluster-matter inconsistency, thus contesting the DN translaminar or any other classification. It is interesting to note arrangement of the three-cluster

solution on panels (d) and (f).

position of the maximal dendritic arborization density is given by r.,
which represents the radius of the circle that has the maximum num-
ber of intersections with dendrites (empirically Npax) [32]. It is ob-
tained with a MATLAB plug-in (FRACTS) created by the authors for
digital image processing and analysis. In short, when the fifth-order
polynomial fitting, necessary for calculation of Cyy, is obtained, the
value of r, is obtained in a retrograde manner (Fig. A.3). Thus the
value of r. is obtained computationally from the theoretical fifth-
order polynomial interpolation giving Nmax. It can be considered a
partial complexity parameter as it is related very closely with Npax.
In contrast to r., rp and r; are non-theoretical parameters obtained
directly from image analysis (Fig. A.3).

D41 gives the average dendritic width. It is obtained as the
following ratio:

Dyyarn = 7 (A.6)

A.4. Standardized compartmental neuron length parameters

All standardized compartmental neuron length parameters are stan-
dardized to A;. This eliminates variation and the dependence of the
compartmental length upon the size of a neuron’s soma and com-
parisons become more accurate for the unifactor analysis. They are:
a) Standardized total dendritic length (L), b) Standardized radius
of the NMAX circle ((r;)s), and ¢) Standardized average dendritic
width ((Dy,qsn)st)- They are calculated as:

12
La =, (A7)
2
re
(re)se = Aits’ (A-8)
D2
(Dyarn)se = =44 (A9)
S
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Fig. 16. FMLD 2D two-factor scatter plot of the natural DN neuron sam-
ple dataset. Graphs (a)—(c) illustrate 2D presentations with dimensionality
reduction of the DN neuron dataset for combinations of all three NMF-based
attractor factors, Anf, Adf, and Apns. Graphs (d)—(f) illustrate 2D presen-
tations with dimensionality reduction of the DN neuron dataset for some
of the PCA/FA-based dominant predictor classifiers, Cdf vs. An, Cdf vs.
L and Cdf (Nsd)st vs. Ndall. None of the six plots confirm existence of
DN translaminar VLL/DML clustering (it is of interest to note the similarity
between (a) and (b)).

A.5. Unstandardized dendritic arborization branching pa-
rameters

The unstandardized dendritic arborization branching parameters num-
ber neuron dendrites, they are: a) Number of primary dendrites (N,¢),
b) Number of secondary dendrites (N,;), c) Number of tertiary den-
drites (NV;q), d) Total number of tertiary and higher order dendrites
(Nt /hoa)- and ) Total number of all dendrites (Nyqp) (Fig. A4). Npg
counts the dendrites originating directly from the soma, i.e. primary
dendrites. Ny, gives the number of second order dendrites, i.e. den-
drites formed by branching of the first order dendrites or primary
branching (Fig. A.4). N,4I gives the number of tertiary order den-
drites, i.e. dendrites formed by second order dendritic branching or
secondary branching. N, ;.4 represents the sum of the tertiary and
higher order dendrites. Finally, Ny, is the number of all dendrites
of a neuron. The different orders of branching are not employed as
parameters in this study.

A.6. Unstandardized neuromorphological complexity pa-
rameters

The unstandardized neuromorphological complexity parameters are
the most important group of morphological parameters for describing
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Fig. 17. FMLDA 2D two-factor scatter plot of the virtual DN neuron
sample dataset. Graphs (a)—(c) illustrate 2D presentations with dimensionality
reduction of the DN neuron dataset for combinations of all three NMF-
based attractor factors, Anf, Adf, and Apns. Graphs (d)—(f) illustrate 2D
presentations with dimensionality reduction of the DN neuron dataset for
some PCA/FA-based dominant predictor classifiers, (Dwdth)st vs. As , Cdf
(Adf )st vs. Cd f and Cdf vs. Do. None of the six plots confirm the existence
of DN translaminar VLL/DML clustering (it is of interest to note the similarity
between (a) and (b)).

morphological features of a neuron. However, this does not mean
that significant internuclear differences are necessarily accounted
for in terms of these parameters. Neuromorphological complexity
as shape and the detailed complexity of a neuron’s image can be
reduced to branching pattern complexity [35], but it is highly depen-
dent on the branching characteristics and order (expressed through
the branching parameters) and the topological orientation of a neuron
in 2D space. Thus, a dendritic tree can be symmetric or asymmetric
and thus less or more complex in its branching degree when this
is balanced in a more or less radial manner or when viewed from
different perspectives. To capture and quantify all possible neuro-
morphological complexity and variation, originating mainly from
variations in dendritic branching pattern complexity, four integra-
tive unstandardized complexity parameters of neuron morphology
are defined here. They are: a) Fractal dimension of a skeletonized
neuron image (Dy) [36], b) Maximal complexity index of dendritic
arborization density (Nmax) [32, 34], and c¢) Dendritic branching pat-
tern complexity (Cyy). D represents a fractal dimension of the skele-
tonized neuron image reduced to the width of one pixel (Fig. A.2b
and A.2c). On such an image dendrites preserve the same length as
in the original image while a neuron body, due to its radial symmetry,
is reduced to one pixel. Thus, it can be also said that Dy selectively
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Fig. 18. ROC curve of feed-forward backpropagation ANN performance for
the task of neuromorphotopological supervised clustering of DN neurons. (a)
Real sample case, (b) Virtual sample case. In both cases graph shows very
low network performance thus pointing to the absence of any kind of DN
classification.

Fig. A.1. Graphical representation of the three surface parameters, namely
An, As and Anf.
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Fig. A.2. Calculation of the fractal Dn and Ds parameters. Diagram illustrates
the principle and application of the fractal box-counting method employed
for calculation of parameter values. N-number of boxes/squares covering a
neuron image of specific side/diameter value (r).
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Fig. A.3. Calculation of neuromorphological complexity parameters. The
diagram illustrates a modified Sholl’s analysis where rc, Nmax, and Cd f are
calculated when the distribution of the number of cross-sections between
the circles of a discretized radius and dendritic arbor is fit by a fifth-order
polynomial. rb and r¢ are also given as non-theoretical parameters obtained
by direct analysis of a neuron’s 2D binary image.
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Fig. A.4. Dendritic branch ordering. A higher order is assigned to the
terminal dendrites and their branches.

reflects just dendritic branching pattern complexity, i.e. the degree of
dendrite arborization curvature. It is also calculated using the fractal
box-counting method. The values of Nmax, ¢, and Cy S are obtained
following a fractally modified Sholl analysis where a neuron’s 2D
binary image is overlaid with concentric circles of predefined radii
and centered at the geometrical center of the soma. The circle with
the minimal/maximal number of dendritic intersections determines
the value of Niax and the radius of the Nyax circle gives r. (Fig. A.3).
It should be mentioned that values of Nyax are theoretical, obtained
retrogradely from the fifth polynomial fitting used for calculation of
Cyy- Cyy is the most integrative of all the three parameters describing
the complexity of neuronal shape as it combines Npax, Dy, 7¢, and
similar values, i.e. intermediate N values lying in the Nmax—Npin
range (Npi, is not used in this study). It is obtained in a fractal-like
manner when the number of intersections between dendrites and
circles with predefined radius values, plotted against one another, are
fit with the fifth-order polynomial on the basis of its match with the
bell-shaped function of the real data. Analogously with the fractal
algorithm, the first coefficient is taken as a measure of Cy 7 (Fig. A.3).

A.7. Standardized neuromorphological complexity parame-
ters

As the most important parameter, Cyr is associated with the largest
number of standardizations introduced in this study. As significant
inter-nuclear differences are expected, neurons must be matched in
terms of many parameters so as comparison of the values obtained
for Cy¢ give valid results. The Cyf (Ag4f)s parameter is calculated
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as:

Ca
Car(Aar)st = —4 .k,

(A.10)
Adf

where k is an arbitrary constant. In correspondance with this, other
parameters in this group are Czr (Ngqait)st» Car (Npa)st» Car(Nsa)st»
and Cyr (N, /h,,d) st- It can be seen that Cyy is predominantly stan-
dardized as branching parameters provide its major determinants.
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