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Abstract
The aim of this study was to reveal the set of neurobiological parameters informative for individual quantitative prediction of
therapeutic response in schizophrenic subjects. Correlation and regression analyses of quantitative Positive And Negative Syn-
dromes Scale clinical scores, together with background electroencephalographic spectral power values and four immunological
parameters: enzymatic activity of leukocyte elastase and of alpha-1 proteinase inhibitor, as well as serum levels of autoantibod-
ies to common myelin protein and to nerve growth factor, were performed for 50 female subjects with hallucinatory-delusional
disorders such as attack-like paranoid schizophrenia. Background neurobiological data obtained before the beginning of a syn-
drome based treatment course were matched with Positive And Negative Syndromes Scale clinical scores of the same subjects
after a treatment course to the stage of establishment of remission. The multiple linear regression equations were created which
were described by only three or four (from an initial 80) background electroencephalographic parameters and one of four im-
munological parameters. These mathematical models allowed prediction of 65–76% of Positive and Negative Syndromes Scale
score variance after a treatment course. The data obtained may be useful for elaboration of methods for individual quantitative
prediction of treatment outcome for schizophrenic subjects.
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1. Introduction

The problem of optimization of the treatment of schizophrenia is
highly siginificant. It is due to a wide spread and chronic illness
with a course typically involving multiple relapses, serious distur-
bances of cognitive functions (memory, attention, perception, think-
ing, decision-making) and behavior of subjects, and by a rather high
percentage (up to 30%) of non-responders [1]. All these factors
lead to serious social problems including decreased ability to work,
impairment of educational and family adaptation to those who suf-
fer from it, and results in very unfavorable economic and social-
psychologic consequences.

The reality of the problem and the lack of useful clinical indica-
tors for prediction of therapeutic response in schizophrenia [1] deter-
mine the need of further clinical-biological studies aimed to search
for possible neurobiological predictors of individual efficiency of
treatment, with a final goal of treatment optimization for this severe
and socially significant mental disorder.

One of the possible ways forward for treatment optimization is a
search for objective neurobiological parameters (biomarkers), which
would serve as predictors of individual treatment outcome before
completion of a course of treatment (that takes up to 6–12 weeks),

best of all – just before prior to the beginning of treatment [2–4].

Among such biomarkers, electroencephalographic (EEG) ones
are the most widely used because of the relatively low cost of EEG
technology and its wide availability in clinical practice. However,
the great majority of studies are devoted to the search for EEG
predictors of treatment outcome in depressive subjects suffering
from a major depressive disorder or from some depressive phase
of a bipolar disorder [5, 6]. Design of these studies is similar: the
subject’s cohort is divided into responders and non-responders by
the conventional criterion of 50% decrease of clinical rating scale
(Hamilton’s Depression Rating Scale – HDRS, or Montgomery-
Asberg Depression Rating Scale, or Beck’s Depression Inventory)
scores after a course of treatment, or the difference between subgroup
mean values of certain statistically assessed EEG parameters.

The majority of these studies use only one particular EEG pa-
rameter. Thus, Ulrich et al. [7, 8], Knott et al. [9], and Bruder et
al. [10] explored alpha and/or theta spectral power. Knott et al. [11]
measured beta spectral power, Iosifescu et al. [12] – relative theta
power. Debener et al. [13] and Bruder et al. [14] used alpha and/or
theta hemispheric asymmetry, Suffin & Emory [15] – EEG coher-
ence, Tenke et al. [16] – alpha current source density. Bruder et
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al. [17] and Kalayam & Alexopoulos [18] assessed amplitude and/or
peak latency of the P300 wave of auditory event-related potentials.

Only a few studies used combinations of alpha and theta spectral
power [12], or of absolute and related theta power – “cordance” [19–
21], or even more EEG variables [15, 22].

One part of these studies used only one background value of an
EEG parameter. Another dealt with changes of EEG parameters after
several days [4, 8, 12, 21], or even after several hours [22] from the
beginning of a treatment course, that required at least double EEG
recordings.

Few studies deal with EEG predictors of treatment outcome in
schizophrenia. Some of them have explored single EEG parameters
as possible predictors: entire alpha (8–13 Hz) spectral power [23],
alpha-1 (8–9 Hz) spectral power [24], or EEG coherence [25]. While
others have investigated wide-band EEG: “EEG profiles” [22], or
so called “referenced EEG” combining both EEG frequency band
spectral power and its coherence [15].

Most of these studies demonstrated rather high accuracy: sensi-
tivity and specificity were as great as 70–80%, in other studies [21]
as high as 100 %. But a common limitation of all studies listed above
is that prediction of treatment outcome in terms of “responder/non-
responder” determines only the fact that the subject’s condition after
a course of treatment improves, but does not quantify the degree of
any such improvement.

Several recent studies [26–28], using several different ap-
proaches have been employed by this group to search for EEG pre-
dictors of treatment outcome in affective disorders and schizophrenia.
They have been directed towards quantitative prediction of treatment
outcome by using the values of clinical rating scale scores. For this
goal, correlation coefficients were calculated between background
EEG parameters (recorded before the beginning of a course of treat-
ment) and quantitative clinical assessments obtained after treatment
at establishment of remission. EEG data comprising absolute spec-
tral power values in eight narrow frequency bands: delta (2–4 Hz),
theta-1 (4–6 Hz), theta-2 (6–8 Hz), alpha-1 (8–9 Hz), alpha-2 (9–11
Hz), alpha-3 (11– 13 Hz), beta-1 (13–20 Hz), and beta-2 (20–30 Hz),
proved to be informative in assessment of brain functional states of
subjects in previous studies. Clinical assessments were HDRS scores
in depressive subjects, Young Mania Rating Scale scores in subjects
with mania, and Positive And Negative Syndromes Scale (PANSS)
scores in schizophrenic subjects. Values of these correlation coef-
ficients then were then topographically mapped for better visibility
using “BrainSys” software [29].

In depressive subjects increased EEG beta-1 (13–20 Hz) and
beta-2 (20–30 Hz) spectral power values in temporal regions and of
alpha-1 (8–9 Hz) all over the scalp were associated with relatively
worse treatment outcome [26–28]. In subjects with mania, it was
increased beta-1 (13–20 Hz) and beta-2 (20–30 Hz) spectral power in
frontal regions, and decreased spectral power in 2–13 Hz frequency
range all over the scalp [26]. In schizophrenic subjects, it was mainly
increased EEG delta (2–4 Hz) spectral power in anterior (frontal-
central-temporal) regions [26].

Based in the data obtained, it was suggested that sets of back-
ground neurophysiological parameters would be more informative
for prediction of treatment outcome than single parameters, and the
discovery of such sets has been attempted, so as to provide quantita-
tive prediction of treatment outcomes.

Contemporary data emphasize the role of processes of neuro-
plasticity and neuroinflammation in pathogenesis of endogenous

mental disorders, including schizophrenia [30–33]. In particular, it
has been shown that high activity of leukocyte elastase (LE) and
alpha-1 proteinase inhibitor (α−1−PI) has been associated with
exacerbation of endogenous mental disorders, while in remission
their activity decreased [33, 34]. Moreover, these immunological
parameters not only reflected the acuity of illness, but also may pre-
cede the clinical signs of relapse [33]. Appearance of autoantibodies
to neuroantigenes (to common myelin protein–AAB CMP and nerve
growth factor–AAB NGF – S100B protein) in serum is associated
with the most severe and highly aggressive forms of mental disorders
reflecting nonreversible changes in brain tissue [33]. Some positive
correlations between quantitative clinical assessments and the levels
of autoantibodies to AAB CMP and AAB NGF were identified in
subjects with depressive-delusional and manic-delusional disorders
such as attack-like paranoid schizophrenia [26, 35]. Thus, together
with the requisite EEG parameters, those immunological parameters
that may have predictive value could be combined to form sets of
potentially informative neurobiological variables.

In a pilot study, using appropriate mathematical modelling meth-
ods [36], the possibility of rather accurate quantitative prediction of
treatment outcome (in PANSS scores) was shown for subjects with
manic-delusional disorders such as attack-like paranoid schizophre-
nia [35].

The goal of the present study was to reveal the sets of neu-
robiological parameters (including both EEG and immunological
variables) informative for quantitative prediction of treatment out-
come in another group of schizophrenic subjects that suffered from
hallucinatory-delusional disorders such as attack -like paranoid
schizophrenia.

2. Materials and methods
The present multidisciplinary clinical, neurophysiological, and neu-
roimmunological study was carried out at the Laboratory of Neu-
rophysiology, Laboratory of Neuroimmunology, and Department
of Endogenous Mental Disorders and Affective Conditions of the
Mental Health Research Center, and followed contemporary ethi-
cal norms and rules for biomedical research in accordance with the
World Medical Association’s 1964 Helsinki Agreement. All subjects
signed an informed consent prior to participation in the study.

2.1. Subjects

Subjects comprised 50 in-patients from the Clinic of Mental Health
Research Center (Moscow, Russia) who had been diagnosed with
hallucinatory-delusional disorders such as attack-like paranoid
schizophrenia (meeting the criteria of F20.0 by ICD-10 or 295.3 by
DSM-IV-R) were enrolled in the study as a learning sample. All sub-
jects were right-handed females, age 21–50 years (mean age 32.9 ±
10.8), and received standard syndrome based psychopharmacological
treatment with atypical antipsychotics.

Quantitative clinical assessments were recorded, and neurophys-
iological (resting EEG), and immunological parameters were both
measured twice in all subjects, before beginning the treatment course
(visit one), and after the course of treatment following pronounced
clinical improvement when remission was established (visit two).

2.2. Clinical assessment

The number of psychopathological signs were assessed quantita-
tively using PANSS scores for schizophrenia [37], in which higher
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score values correspond to more severe symptoms. The total sum of
PANSS scores (PANSS-sum), as well as sums of scores of the Pos-
itive And Negative Syndrome Subscales (PANSS-pos and PANSS-
neg, respectively) were also determined.

2.3. Neurophysiological (EEG) study

Multichannel recording of the background EEG was acquired prior to
the course of treatment by using “Neuro-KM” EEG topographic map-
ping hardware (“Statokin”, Russia) and “BrainSys” software [28].
The subject sat in a comfortable chair in a state of quiet wakefulness
with eyes closed. Monopolar EEGs were recorded from 16 Ag/AgCl
electrodes (impedance < 10kΩ) according to the International 10-20
system: F7, F3, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6,
O1 and O2 with ipsilateral ear-lobe references A1 and A2, and the
ground electrode placed between Fz and Fpz. The EEG was acquired
with a 35 Hz bandpass filter, 0.1 time constant, an additional 50 Hz
notch filter, and was recorded to computer hard disc with a 200 Hz
sample rate. Duration of EEG recordings was greater than 3 minutes.

Artefact rejection was performed automatically using a“BrainSys”
software option (amplitude threshold 4 SD). Low-amplitude artefacts
from slow eye movements were rejected manually accounting for
their specific frontal-posterior amplitude gradient.

Fast Fourier Transform based spectral analysis of artefact-free
EEG fragments (more than 30 epochs, 4-second duration) was em-
ployed using “BrainSys” software. Absolute spectral power values
(in µV2) were calculated for eight narrow frequency EEG sub-bands:
delta ∆(2–4 Hz), theta-1θ1 (4–6 Hz), theta-2 θ2 (6–8 Hz), alpha-1
α1 (8–9 Hz), alpha-2 α2 (9–11 Hz), alpha-3 α3 (11–13 Hz), beta-1
β1 (13–20 Hz), and beta-2 β2 (20–30 Hz) from frontal (F3, F4),
central (C3, C4), temporal (T3, T4), parietal (P3, P4), and occipital
(O1, O2) EEG leads.

2.4. Immunological study

Peripheral blood samples were taken from each subject as part of
their clinical assessment and EEG recording. Four immunological
parameters were measured: the enzymatic activity of LE and of
α-1-PI as biomarkers of neuroinflammation, as well as serum levels
of autoantibodies to AAB CMP and AAB NGF as biomarkers of
neuroplasticity processes. The measurements were performed us-
ing a standard solid-phase Enzyme-Linked ImmunoSorbent Assay
(ELISA) method [38] such as “Neuro-Immuno-Test” laboratory tech-
nology [39]. Measurement of these immunological parameters is
relatively simple and low cost in comparison to other neuroinflam-
mation and neuroplasticity markers.

2.5. Data analysis

Mathematical analysis of the obtained set of clinical and neurobio-
logical parameters was performed using the statistical package of
the “BrainSys” software, and computational facilities of the Depart-
ment of Computational Mathematics, M.V. Lomonosov Moscow
State University (R-package). In accordance with the main goal of
the study, neurobiological data recorded during visit one and were
matched with quantitative clinical assessments of the same subjects
obtained after their course of treatment following pronounced clini-
cal improvement at the stage when remission was established during
visit two.

Spectral analysis of EEG data obtained during visit one gave
80 variables for each subject (values of absolute spectral power for

eight narrow frequency bands in 10 EEG leads). Immunological
study during visit one gave four variables for each subject: values
for LE and α-1-PI enzymatic activity, and values of serum levels for
AAB CMP and AAB NGF. Quantitative clinical assessments (by
PANSS scale) during visit two gave three variables for each subject:
sum of scores of Positive Syndromes Subscale (PANSS-2-pos), sum
of scores of the Negative Syndromes Subscale (PANSS-2-neg), and
the total sum of PANSS scores (PANSS-2-sum).

Correlation coefficients were calculated between all 84 neuro-
biological parameters recorded during visit one and all three clini-
cal parameters obtained during visit two. Correlation coefficients
between clinical and EEG parameters were topographically mapped
for better visibility (Fig 1–3) using the “BrainSys” software.

Further, multiple linear regression equations were created for
each of three clinical parameters obtained during visit two (PANSS-
2-pos, PANSS-2-neg, and PANSS-2-sum) using the least squares
method. The goal was to identify the most informative set of neurobi-
ological parameters for quantitative prediction of treatment outcome:

y2 = ax1 +bx2 + · · ·+nxi +C

Dependent variables (y2) were the quantitative clinical assess-
ments (by PANSS scale) during visit two (PANSS-2-pos, PANSS-2-
neg, and PANSS-2-sum). Independent variables (x1,x2, . . . ,xi) were
the neurobiological parameters of the first visit most closely corre-
lated with the corresponding clinical parameter of the second visit.
a,b, . . . ,n were coefficients of the independent variables, and C ws a
free term of the equation.

The efficiency of these mathematical models (multiple linear
regression equations) was assessed using three criteria: the R-square
criterion indicated the extent of dependent variable variance ex-
plained by the model, a corrected R-square criterion used for compar-
ison of models with different numbers of independent variables, and
a variance inflation factor (VIF = 1/1−R2) enabled detection of the
presence of multicolinearity in the model. The model considered the
most efficient explained the highest percent of dependent variable
variance, had the highest value of corrected R-square criterion, and
was free from multicolinearity (VIF < 4).

The accuracy such models for quantitative prediction of treat-
ment outcome was tested in a group of subjects (control sample,
n= 10) with the same diagnosis, treated with the same antipsychotics,
but not included in the learning sample.

3. Results
3.1. Clinical assessments of treatment outcome

Statistical analysis of the dynamics of quantitative clinical parame-
ters in the treatment course revealed a significant decrease of group
mean values of PANSS scores that confirmed pronounced improve-
ment of subject’s clinical conditions after the course of treatment.
Scores of PANSS-pos decreased from 27.04 ± 6.03 to 12.04 ± 3.18
(p <0.001), scores of PANSS-neg decreased from 25.08 ± 6.09 to
16.84± 4.52 (p < 0.001), and scores of PANSS-sum decreased from
106.76 ± 21.82 to 58.76 ± 12.63 (p < 0.001).

3.2. Correlation analysis of clinical and neurobiological
data

For better visibility, results of the correlation analysis of clinical
and EEG data are presented in Fig. 1–Fig. 3 as topographical maps.
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Fig. 1. Topographic maps of distribution of values of Spearman’s correlation coefficients (r) between the PANSS-2-pos scores at the stage remission was
established (visit two) and spectral power values of eight narrow frequency bands of background resting EEG (visit one) in subjects with paranoid schizophrenia
and hallucinatory-delusional disorders. Color scale at right – in values of Spearman’s r.

Fig. 2. Topographic maps of distribution of values of Spearman’s correlation coefficients (r) between the PANSS-2-neg scores at the stage remission was
established (visit two) and spectral power values of eight narrow frequency bands of background resting EEG (visit one) in subjects with paranoid schizophrenia
and hallucinatory-delusional disorders. Color scale at right – in values of Spearman’s r.

The maps show the spatial distribution of correlation coefficients
between background values of absolute EEG spectral power in eight
narrow frequency sub-bands (visit one) and the outcome of clinical
assessments (visit two) – sum of scores of PANSS-2-pos, sum of
scores of PANSS-2-neg, and PANSS-2-sum.

Fig. 1 shows the spatial distribution of correlation coefficients
between background values of absolute EEG spectral power in eight
narrow frequency sub-bands (obtained visit one) and outcome sum
of scores of PANSS-2-pos (visit two). It is seen that values of
absolute EEG delta spectral power in the left temporal lead (T3)
correlates positively (r = 0.364, p < 0.05) with PANSS-2-pos scores.
Correlation coefficients between other background EEG parameters
and outcome PANSS-2-pos scores did not reach the level of statistical
significance.

Fig. 2 shows the spatial distribution of correlation coefficients
between background values of absolute EEG spectral power in eight
narrow frequency sub-bands (visit 1) and outcome sum of scores
of PANSS-2-neg (visit two). It is seen that values of absolute EEG
spectral power correlate positively with PANSS-2-neg scores in delta
(r = 0.357, p <0.05) and in alpha-3 (r = 0.411, p < 0.05) bands
in the left frontal lead (F3). Correlation coefficients between other
background EEG parameters and outcome PANSS-2-neg scores did
not reach the level of statistical significance.

Fig. 3 shows the spatial distribution of correlation coefficients
between background values of absolute EEG spectral power in eight
narrow frequency sub-bands (visit one) and PANSS-2-sum (visit
two). It is seen that values of absolute EEG spectral power in delta
band correlates positively with PANSS-2-sum scores in left frontal
lead (F3) (r = 0.456, p < 0.01) and in right frontal lead (F4) (r =
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Fig. 3. Topographic maps of distribution of values of Spearman’s correlation coefficients (r) between the PANSS-2-sum scores at the stage remission was
established (visit two) and spectral power values in eight narrow frequency bands of background resting EEG (visit one) in subjects with paranoid schizophrenia
and hallucinatory-delusional disorders Color scale at right – in values of Spearman’s r.

Table 1. Correlation coefficients between outcome clinical assessments (visit two) and background immunological parameters (visit one) in
subjects of the learning sample (n = 50).

Outcome PANSS scores LE α 1-PI AAT CMP AAT NGF

PANSS-2 positive −0.155 0.233 0.354* 0.113
PANSS-2 negative −0.227 0.049 0.201 0.146
PANSS-2 sum −0.212 0.073 0.195 0.365*

PANSS-2-positive – the sum of scores of the positive syndromes PANSS subscale assessed after treatment course at the stage of remission establishment (visit
two)
PANSS-2-negative – the sum of scores of the negative syndromes PANSS subscale assessed after treatment course at the stage of remission establishment (visit
two)
PANSS-2-sum – total sum of PANSS scores assessed after treatment course at the stage of remission establishment (visit two) LE – enzymatic activity of LE
(visit one)
α 1-PI – enzymatic activity of α 1-proteinase inhibitor before the beginning of treatment course (visit one)
AAT CMP – level of autoantibodies to common myelin protein before the beginning of treatment course (visit one)
AAT NGF – level of autoantibodies to nerve growth factor before the beginning of treatment course ( visit one)
*p < 0.05.

0.384, p < 0.05). Correlation coefficients between other background
EEG parameters and outcome PANSS-2-neg scores did not reach the
level of statistical significance.

Results of correlation analysis of clinical and neuroimmunologi-
cal data are presented in Table 1.

Table 1 shows that only two of four background immunologi-
cal parameters (AAB CMP and AAB NGF) correlated significantly
(p < 0.05) with outcome quantitative clinical assessments obtained
during visit two. They were correlation of the level of autoantibodies
to AAB CMP with PANSS-2-pos (r = 0.354, p < 0.05), and corre-
lation of level of autoantibodies to AAB NGF withPANSS-2-sum
(r = 0.365, p < 0.05). Other correlations did not reach the level of
statistical significance.

3.3. Mathematical models for quantitative prediction of
treatment outcome

Mathematical models for quantitative prediction of PANSS score
values in subjects with hallucinatory-delusional disorders such as

attack-like paranoid schizophrenia were created as multiple linear
regression equations. Dependent variables were quantitative clinical
assessments (by PANSS scale) obtained during visit two (PANSS-2-
pos, PANSS-2-neg, and PANSS-2-sum) The independent variables
were those of the neurobiological parameters of the first visit which
most closely correlated with the corresponding clinical parameters
of the second visit.

The mathematical models obtained contained only three or four
(from the initial 80) background EEG parameters, one of four im-
munological parameters, and a free term in the equation. The models
were as follows:

Model I: PANSS-2-pos = 0.999×∆ T 3+0.139×α2 P3−
0.847×θ1 O1+7.624×AAB CMP+15.854

Model II: PANSS-2-neg = 1.969×∆ F3+1.467×α3 F3+

0.886×β2 C3−0.548×θ1 O1+9.869
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Table 2. An example of testing of mathematical models for quantitative prediction of clinical outcome. Subject I., Female, age 30 (control
group). D-s: attack-like paranoid schizophrenia with hallucinatory-delusional disorders (F20.0 by ICD-10; 295.3 by DSM-IV-R).

PANSS scores Actual score after treatment Predicted score after
treatment

Deviation predicted vs.
Actual scores

Permitted deviation (p <

0.001)

PANSS-2 positive 16 14 12.5% ± 38%
PANSS-2 negative 19 17.5 8% ± 24%
PANSS-2 sum 76 71.4 6% ± 36%

PANSS-2-positive – the sum of scores of the positive syndromes PANSS subscale(visit two)
PANSS-2-negative – the sum of scores of the negative syndromes PANSS subscale (visit two)
PANSS-2-sum – total sum of PANSS scores (visit two)

Table 3. An example of testing of mathematical models for quantitative prediction of clinical outcome. Subject B., Female, age 32 (control
group). D-s: attack-like paranoid schizophrenia with hallucinatory-delusional disorders (F20.0 by ICD-10; 295.3 by DSM-IV-R).

PANSS scores Actual score after treatment Predicted score after
treatment

Deviation predicted vs.
Actual scores

Permitted deviation (p <

0.001)

PANSS-2 positive 10 11 10% ± 38%
PANSS-2 negative 16 17 5% ± 24%
PANSS-2 sum 60 74 24% ± 36%

PANSS-2-positive – the sum of scores of the positive syndromes PANSS subscale (visit two)
PANSS-2-negative – the sum of scores of the negative syndromes PANSS subscale (visit two)
PANSS-2-sum – total sum of PANSS scores (visit two)

Model III: PANSS-2-sum = 3.671×1∆ F3+0.478×α1 P3−
2.137×β1 C3+19.694×AAB NGF+28.885

Model I explains 62% of PANSS-2-pos variance (p < 0.00006),
Model II explains 76% of PANSS-2-neg variance (p < 0.000006),
and Model III explains 64% of PANSS-2-sum variance (p <

0.00004), where: PANSS-2-pos – sum of scores of Positive syn-
dromes subscale after the course of treatment; PANSS-2-neg – sum
of scores of Negative syndromes subscale after the course of treat-
ment; PANSS-2-sum – total sum of PANSS scores after the course
of treatment; ∆ F3 – delta (2–4 Hz) spectral power (in µV2) in left
EEG lead (F3); ∆ T 3 – delta (2–4 Hz) spectral power (in µV2) in left
temporal EEG lead (T3); θ1 O1 – theta-1 (4–6 Hz) spectral power
(in µV2) in left occipital EEG lead; (O1) α1 P3 – alpha-1 (8–9
Hz) spectral power (in µV2) in left parietal EEG lead (P3); α2 P3 –
alpha-2 (9–11 Hz) spectral power (in µV2) in left parietal EEG lead
(P 3); α3 F3 – alpha-3 (11–13 Hz) spectral power (in µV2) in left
frontal EEG lead (F3); β1 C3 – beta-1 (13–20 Hz) spectral power
(in µV2) in left central EEG lead (C3); β2 C3 – beta-2 (20–30 Hz)
spectral power (in µV2) in left central EEG lead (C3); AAB CMP –
level of autoantibodies to common myelin protein (in optical density
units, OD); AAB NGF – level of autoantibodies to nerve growth
factor (in optical density units, OD).

3.4. Testing of the mathematical models that were developed

The validity of mathematical models obtained were tested in a control
group of subjects (n = 10) with the same diagnosis, treated with the
same antipsychotics, but not included in the learning sample. The
values of corresponding background EEG and neuroimmunological
variables (visit one) were inserted into the equations obtained, and
the results were compared with PANSS scores obtained by clinicians
(visit two). Two examples of such testing are presented below in
Table 2 and Table 3.

Table 2 and Table 3 show that prediction accuracy was rather
high. Deviation of predicted PANSS score values of the control
group from PANSS values (visit two) varied from 5% for PANSS-2-
neg (permitted deviation 24%, p < 0.001) to 24% for PANSS-2-sum
(permitted deviation 36%, p < 0.001).

4. Discussion
This study shows for the first time the possibility of predicting
treatment outcome, not only qualitatively (in terms: responder/non-
responder), but also with quantitative accuracy (as values of the
PANSS rating scale scores). Moreover, such prediction appeared to
be possible not only for total sum of PANSS scores, but also for the
separate sums of scores of PANSS-2-pos and PANSS-2-neg.

While the result of such prediction is not dichotomic (in terms:
responder/non-responder), but quantitative, it may be a characterizion
only by accuracy, not by sensitivity and specificity. Deviation of
predicted PANSS scores values in subjects of the control group from
their clinically determined values obtained during visit two varied
from 5% to 24% for different PANSS scales, and was significantly
lower than the expected deviation. It should be noted that prediction
accuracy was somewhat higher for PANSS-2-neg than PANSS-2-pos
or PANSS-2-sum scores. The corresponding equation explains 76%
of PANSS-2-neg variance, and deviation of predicted PANSS-neg
values vs. the clinically determined values obtained during visit two
was less than 10%.

Prediction is based entirely on the set of a few background neu-
robiological parameters obtained prior to the beginning of a course
of treatment, and does not use any background clinical assessment.
Thus, such an approach has some benefits in comparison with other
methods of assessment such as a subject being either a responder or
non-responder that must obtain clinical ratings at least twice.

According to the set of neurobiological variables included in
the equations, and the signs (positive or negative) of their coeffi-
cients, the EEG signs for predicting a poorer outcome for a subject
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with hallucinatory-delusional disorders such as attack-like paranoid
schizophrenia are increased amounts of left frontal delta activity (2–4
Hz EEG lead F3, for PANSS-2-neg and for PANSS- 2-sum) and in
left temporal (EEG lead T3, for PANSS-2-pos) brain regions, reflect-
ing decreased functional state of anterior (frontal-central-temporal)
brain areas – hypofrontality. Moreover, five other EEG spectral
power variables included in the equations are also located in the left
hemisphere: theta-1 in left occipital EEG lead (O1), alpha-1 and
alpha-2 in left parietal EEG lead (P3), alpha-3 in left frontal EEG
lead (F3), beta-1 and beta-2 in left central EEG lead (C3).

From a neurophysiologic perspective, the left hemispheric loca-
tion of these EEG signs, informative for outcome prediction, empha-
sizes a role for the left hemisphere in pathogenesis of schizophre-
nia that is in good concordance with the literature. It was shown
that schizophrenic subjects with activation dominance of the left
hemisphere demonstrated a prevalence of positive symptoms, while
subjects with the opposite asymmetry, i.e. with more active right
hemisphere and/or decreased functional state of the left hemisphere,
demonstrate a prevalence of negative symptoms [40, 41].

As well, the poorer clinical outcome associated with higher lev-
els of autoantibodies to AAB CMP, for PANSS-2-pos, and of autoan-
tibodies to AAB NGF, for PANSS-2-sum, reflect activation of de-
structive neuroplasticity processes that disturb the normal integrative
activity of the brain [33].

In contrast with earlier studies on EEG prediction of treatment
outcome in schizophrenic subjects using EEG alpha parameters [23,
24], in this study EEG parameters played the main role in delta
prediction. This discrepancy may relate to sampling differences,
and/or choice of only one EEG parameter as a predictor, and/or
assessment of subjects as responders/non-responders in the above-
cited studies.

The limitations of the present study (as well as of many similar
studies – see [5]) are related to its open, non-randomized design, and
the polypharmacy treatment with a variety of medications. Expansion
of the described approach to larger cohorts of schizophrenic subjects
with different syndrome structures of illness, and inclusion of male
subjects are the subject of ongoing studies.

It is suggested that the approach described here may help in
the prediction of individual effects of standard syndrome-based psy-
chopharmacological treatment for schizophrenic subjects with suffi-
cient accuracy, both on general treatment outcome and on decrease
of positive and negative symptoms separately. If a subject responds
insufficiently (in general or in relation to positive or negative symp-
toms), the clinician may pay special attention to them, perform addi-
tional diagnostic procedures to justify their condition and diagnosis,
may change or correct medications from the very beginning of treat-
ment, and do not need to wait for several days for clinically marked
treatment effects.
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