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Abstract

Closed-loop control plays an important role in the treatment of epileptiform spikes by using brain stimulation. In recent years,
there have been many analytical methods for determining stimulus protocols and stimulus parameters. However, the analytical
method that can start the stimulus protocol when it is needed and stop the stimulus protocol when it is not needed is rather rare.
In this work, we design an analytic closed-loop control scheme which can starts control when epileptiform spikes are detected
and stops control when no epileptiform spikes are detected. The neural mass model is used to simulate the generation of
normal Electroencephalograph signals and epileptiform spikes. The detection of epileptiform spikes is completed via an alarm
threshold which is set by using the combination of cross approximate entropy, the Pearson correlation coefficient and the fuzzy
theory. If the detection result shows that there are epileptiform spikes in the neural mass model, the fuzzy proportion integration
differentiation control works so that the abnormal epileptiform spikes are restored to normal EEG signals, and vice versa. The
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simulation confirms the effectiveness of the proposed closed-loop control scheme.

Cross approximate entropy; closed-loop control; epileptiform spikes; neural mass model

1. Introduction

Epilepsy is a class of brain disorders caused by abnormal discharges
of brain nerve cells. The electrical activity of brain recorded by EEG
appears epileptiform spikes with different oscillatory frequencies
during seizures [1]. The functional disorders caused by seizures bring
physical and mental sufferings and lead to huge family and social
burdens [2]. Therefore, the detection and modulation of epileptiform
spikes play an important role for the prevention and treatment of
epilepsy, as well as for promoting the functional rehabilitation of
patients.

In 1954, Penfield and Jasper [3] first described cortical electrical
stimulation could reduce seizures. Since then, many therapy methods
to alter cortical excitability, such as cortical electrical stimulation
of epileptogenic zone [4—12], deep brain stimulation [13—17], tran-
scranial repetitive magnetic stimulation [18-20], vagus nerve stimu-
lation [21-24] and trigeminal nerve stimulation [25, 26], have been
available to normalize disrupted forms of brain activity for patients
with epilepsy. Brain stimulation seems to be gradually replacing sur-
gical surgery as the most promising means of treatment of epilepsy.
However, both the electrical stimulation and the magnetic stimula-
tion, where the selection and adjustment of the stimulus parameters
such as frequency, amplitude and pulse width, are largely dependent
on the actual experience of the designer or surgeon. The therapeu-
tic effect of brain stimulation is far from optimal. The closed-loop
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stimulation constructed by feedback of EEG signals can detect the
abnormal electrical signals of lesion sources in real time, and adjust
adaptively the stimulus parameters according to the specific situation
of detection, so that the therapeutic effect is optimized, and the side
effect, the degree of damage and the energy loss are reduced [27, 28].
In our previous work, we constructed a closed-loop control strategy
based on the neural mass model and the unscented Kalman filter
algorithm, and confirmed the effectiveness of the strategy in the
suppression of epileptiform spikes [29]. Meanwhile, we combined
the closed-loop control strategy with the fuzzy theory to further opti-
mize the control performance [30]. In view of the complexity and
high nonlinearity of EEG signals, we designed a fuzzy PID control
strategy based on the neural mass model to make the output track
an expected waveform [31]. The feedback linearization control was
applied to suppress seizures based on the neural mass model in [32].

Such closed-loop control frameworks have a common feature,
that is, the control action is always imposed on the controlled object
regardless of seizures or not. The actual situation is that epilepsy
patients are not always in the state of seizures. It is not necessary
to exert control when there is no seizures. Otherwise it may cause
unnecessary energy consumption and other problems, and in recent
years, the use of entropy to classify EEG signals has become a more
and more important analysis method. In view of this, we design a
new closed-loop control framework based on the neural mass model

http://jin.imrpress.org/
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Fig. 1. (A) The structure of the neural mass model. (B) Block diagram of the neural mass model.

which combines cross approximate entropy, the Pearson correlation
coefficient, the PID control algorithm and the fuzzy theory together to
detect epileptiform spikes and impose the control action on demand
according to the detection results. Specifically, the control action
is imposed on the controlled object and epileptiform spikes are
modulated to normal EEG signals when the detection results confirm
that there exhibit epileptiform spikes in the controlled object. On the
contrary, the control action stops working when the detection results
confirm that there are no epileptiform spikes in the controlled object.

Neural mass model. Fig. | presents the structure and block
diagram of the neural mass model with multiple coupled populations.
As shown in Fig. 1 A, the individual neural mass model mainly
consists of two subsets. One denotes pyramidal cells, and the other
denotes local interneurons (i.e. other non-pyramidal cells, stellate
or basket cells). Pyramidal cells receive excitatory and inhibitory
feedback from interneurons and excitatory input from neighboring
or more distant populations. Local interneurons receive excitatory
input only from pyramidal cells. The interaction between pyramidal
cells and local interneurons produces oscillations. Two functions
named “pulse-to-wave function” and “wave-to-pulse function” by
freeman [33, 34] are used to characterize each subset. The former
is a linear transfer function that transforms presynaptic information
(average density of afferent action potentials) into postsynaptic in-
formation (average excitatory or inhibitory postsynaptic membrane
potential). The latter is a static non-linear function that associates the
average level of membrane potential of the neurons with an average
pulse density of potentials fired by these neurons. The linear transfer
function can be represented by a second order low pass filter with
the form:

H(s)=G/(s+g),

where s is the Laplace variable, G = A and g = a for the excitatory
case, G = B and g = b for the inhibitory case, A and B stand for the
average excitatory and inhibitory gain, a and b are the membrane
average time constant and dendritic tree average time delays. The
parameters A, B, a and b can modulate the sensitivity of excitatory
and inhibitory synapses. The impulse response of the linear transfer
function is given by:

he(t) = Aate™™ (1)

for the excitatory case and:

hi(t) = Bbte™"" 2

for the inhibitory case. The static non-linear function is represented
by a sigmoid function:

_ 26()
- 1+er(v07v)’

S(v) 3

where e, vo and r represent the maximum firing rate, the postsynap-
tic potential corresponding to ey and the steepness of the sigmoid
function, respectively. A gain constant K;; is applied to define the
degree of coupling between population / and population j, where
[=12,--- M, j=1,2,--- M, 1+ j, M is the total number of con-
sidered populations. The corresponding block diagram of population
I (I =1,2,...,M) in the neural mass model is accordingly derived,
as shown in Fig. 1 B. The model can be considered as a feedback
system driven by a noise input p! (¢) that globally denotes the aver-
age density of afferent action potentials from neighbouring or dis-
tant populations. Here p'(¢) can be any arbitrary function including
white noise. The delay associate with connections from population /
is characterized by a filter with an impulse response hy(2), hy(t) be
chosen as being similar to /4 (z):

/’ld (t) = Aadte_“"’, “4)

where a; represents the average time delay on efferent connection
from a population. The variables y)(¢), ¥, () and y} () denote the
feedback of the pyramidal cells to the excitatory postsynaptic mem-
brane potential of the interneurons, the average excitatory and in-
hibitory postsynaptic membrane potential, respectively. The substrac-
tion of y} () from y! (¢), i. e., ¥} (t) —y}(t), is to be taken as repre-
sentative of the cortical EEG. Let y'(¢) = y} (t) — y4(¢). The variable
yé(z) denotes the output of h4(¢) which establishes the connection
from population / to other populations. The interaction between the
pyramidal cells and interneurons is characterized by four connec-
tivity constants C; — C4, which account for the average number of
synaptic contacts.

According to (1), (2), (4) and Fig. 1 B, we can deduce that each
function (h,(t), h;i(t) or hy(r)) introduces a two-order differential
equation
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¥y (1) =Js (1),
Ve (1) = ¥4 (1),
the formulas in (5) can be transformed into:
V5 (t) = AaS [y (1) =4 (1)] —2ay} (1) —a?y; (1),
M
V() =4Aas pl()+CS[Cyg ()] + ¥ Kijve (t)}
J=1j#l %)

—Zayi (t) - aZyll (t) )
V5 (1) = BbCyS [Cayf ()] —2by5 (1) —b7¥5 (1),
V5 (1) = AagS [ (1) =5 (1)] = 2aay} (1) — azyg (1)
In conclusion, the neural mass model given in Fig. 1B can be repre-
sented as the following set of eight differential equations:

¥h (1) =5 (1),

¥ (@) =y (1),

¥h (1) =25 (1),

V5 (1) = AaS [y} (1) =y (1) ] — 2ay} (1) — a®y} (1),
)"f;(t)—Aa{Pl(f)+C25[C1Yf)(f)]+_ % Kljylé(t)} ®)

J=1j#l
—2ay (1) —a®y (1),
L (1) = BbC4S [Cayh ()] — 2by% (1) — b2V (1),

All parameters in the neural mass model are set on a physiological
basis, and their default values are:
A=325mV,B=22mV,a=100s"',b=50s",
vo=6mV, eg=2.5s"", r=0.56mvV ", ay=33s"", ©)
C1 =135,C, =108, C3 =33.75, C4 = 33.75.
Detailed information on how these values were obtained is given
in [35].
Cross approximate entropy. Consider two time series
{u(1),u(2), ...,u(N)} and {v(1),v(2),...,v(N)}. The algorithm
of cross approximate entropy is given as follows.Firstly, two

m—dimensional vectors U (i) and V (j) are constructed by using the
components of the two time series given above

U(i) = [u(@),u(i+1),...;u(i+m—-1)],i=1,2,....N—m+1,
V() =p30),v(+1),...,v(i+m—1)],j=1,2,...

Secondly, the distance between U (i) and V () is defined as:

diu(@),V()l = max [uj—vjil (12)
k=0~m—1

Set a threshold value r > 0. Calculate the number of d[U (i), V (i)] < r

as C, the ratio of the C to the total number of vectors is given as

Ci'(r):

C

A —

(13)
Thirdly, take the logarithm of C/"(r) and denote the average of In
C"(r) for all i as ¢m(r):

1 N—m+1
Y Incl(r). (14)

i=1

om(r) = N—-—m+1
Similarly, ¢m+ 1(r) can be obtained by repeating above steps. Fi-
nally, The cross approximate entropy of the two time sequences is
defined as:

C—ApEn(m,r) = ¢m(r)— ¢m+1(r)

Pearson product-moment correlation coefficient. For two
given time series {u(1),u(2),...,u(N)} and {v(1),v(2),...,v(N)},
the mathematical expression of pearson product-moment correlation
coefficient (PPMCC) is defined as:

Ly (@) — @) (v() —7)
VI wli) — 2 X (v(0) — 72
where u and v are the average values of the time series {u(1),u(2),
..., u(N)} and {v(1),v(2), ...,v(N)}, respectively. The value of P, ,,
lies between —1 and +1, i. e., |P,,y| < 1. If | P, | is greater, the corre-

lation between {u(1),u(2),...,u(N)} and {v(1),v(2),...,v(N)} is
stronger.

Py = (15)

2. Results and Discussion

2.1. The closed-loop control scheme

In general, long-term observation of people with epilepsy is required
as seizures are unpredictable random episodes. The dynamic charac-
teristics of EEGs can provide important information for diagnosis
and the monitoring of epilepsy. However, the method of visual in-
spection is time-consuming, has low efficiency, and lacks standards.
Automatic detection of seizures during long-term EEG records is
much preferred. In previous work, traditional PID control has been
combined with FIS to form a fuzzy PID control algorithm to mod-
ulate epileptiform spikes generated by the neural mass model. It
achieves this by taking into account the nonlinearity and high com-
plexity of the model [31]. On the basis of the closed-loop frame-
work given in [31], a new closed-loop control scheme was designed
for the neural mass model. This enables on demand modulation of
epileptiform spikes according to the epileptiform spikes detected.
Fig. 2 presents a diagram of the closed-loop control scheme
designed for the neural mass model. The whole diagram can be
divided into three parts. The first part is the controlled object, i. e.,
the neural mass model. The symbols y(¢),y*(z) and e(¢) = y*(¢) —
¥(t) denote the column vector constructed from the output of three
populations, the expected output which is viewed as the desired
modulation, and the error signal which represents the degree of
deviation of y(z) from y*(r), respectively. The second part is the
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Fig. 2. Diagram of the closed-loop control scheme.

fuzzy PID control algorithm imposed on the neural mass model. The
symbol u(¢) denotes the control law and has the form of the fuzzy
PID control:

de(t)

u(t) = kpe(t) +k,~/e(t)d, +kg——>,

I (16)

where k), , k; and k; are the proportion coefficient, the integral co-
efficient and the differential coefficient, respectively. These coef-
ficients are derived from online adaption system, the principle of
which is the same as that given in [31]. The third part, marked by
the dashed block, is used to detect whether epileptiform spikes ex-
hibited and decides whether the switch is closed. This part is mainly
composed of PPMCC method, Cross approximation entropy, FIS,
multiplier, comparator, and the alarm threshold. The inputs of the
blocks “Cross approximate entropy” and “PPMCC method” are y(t)
and y*(¢), more specifically, the output of the hyperexcitable popula-
tion 1 and the component yj(¢) of the expected output. The outputs
of the blocks “Cross approximate entropy” and “PPMCC method”
are p and C — ApEn respectively. The block “FIS” is introduced
to distinguish the normal EEGs and epileptiform spikes better, The
inputs of FIS are p and C — ApEn and the output of FIS is S. The
fuzzy inference system is mainly composed of fuzzification, a fuzzy
rule base, a fuzzy reasoning method, and defuzzification.

Although there are no restrictions on the form of the input mem-
bership functions, the triangular membership function is used in the
premise mainly because it has the characteristics of less computation,
easy implementation and good performance. A triangular member-
ship function is specified by three parameters (a, b, c, ) and has the
following form:

0, x<a,
= a<x<b
= f(x,a,b,c) =< b-@’ - =7 17
= f( ) = pex<e an
0, x>c

where a < b < ¢, u is the membership grade, b represents the cen-
ter of the membership functions, and a and ¢ determine the end-
point. The Mamdani minimax reasoning method is used for the
fuzzy logic reasoning. The membership functions are normalized
using five membership functions NB, NM, Z, PM, PB, as show in

A

Fig. 3. Here “NB” expresses the negative big, “NM” expresses the
negative medium, “z” expresses the zero, “PM” expresses the posi-
tive medium, “PB” expresses the positive big. To contain the value
accurately, z-shaped and s-shaped membership functions are used
as the boundary curve of P for PB and NB. The generation methods

of fuzzy control rules are based on the experience and knowledge

of experts, operator’s mode of operation and learning algorithms.
In the decision-making process, the posteriori fuzzy inferences are
determined by the twenty rules given in Table 1. These rules mainly
control the degree of influence of S on C — ApEn. Finally the gravity
center method is used for defuzzification and derivation of S. The
multiplier of S and C — ApEn:

6 = S x ApEn (18)

is used for comparisons with the alarm threshold 6. Once the com-
parison of results shows the presence of epileptiform spikes, the
switch is closed and the fuzzy PID control is imposed on the neural
mass model such that epileptiform spikes are modulated into normal
EEG signals. Otherwise, the switch is open and fuzzy PID control is
idle.

NB_NM Z PM PB [NB NMPM PB
& ‘ & A
£ 08 Z 0.8 /\
o Q |
£ e [
8 0.6 0.6 [\
=) g /
5 04 S04 /
o = 15
& 8
g 02 g02 \

0 0 / \

0.04 0.1 0.16 0.2 05 0.8
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Fig. 3. Input membership function.

Table 1. Fuzzy rules

) C—ApEn g NM zZ PM PB

NB NB PB PM z NM
NM NB PB PM z NM
PM NB PM z zZ NM
PB NB NB NB z NM

2.2. Determination of the alarm threshold

An important aspect of the detection of epileptiform spikes is the
setting of an appropriate alarm threshold. This is achieved by using
the method given in Fig. 2. It has been shown that the main cause of
seizures is increased excitability of a a brain region [1]. In the neural
mass model, the ratio A/B controls the degree of excitability within
a given population. If A is increased from the standard value while
other parameters are maintained at their standard values, the neural
mass model produces epiletiform spikes. Thus, the alarm threshold
0 can be set based on these features. Consider the neural mass model
coupled to three neural populations as shown in Fig. 4. The value
of A of population 1 varies from 3.2mV to 4mV and the remaining
parameters are set at the standard values. The coupling coefficients
Kis, K»3 and K3 are set at 100. The function p!(z) is chosen as a
Gaussian white noise, mean value 101, and standard deviation 35.
The corresponding time series of y;(¢) and yj(¢) is chosen as
u(i) and v(i), and time step 0.001s. During calculation of C — ApEn,
the embedding dimension m is selected as two and the threshold
value r as 0.2cov[u(i),v(i)]. The setting of the values of m and r
gives reasonable statistical characteristics for judging complex sig-
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Fig. 4. Neural mass model coupled by three neural populations.
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nals [36]. Fig. 5 gives the relationships between 6 and A. The value
of 6 increases immediately from a small value to a relatively large
value when A equals 3.33mV. The alarm threshold 6 is set to 0.1
by taking into account the relationships between both the dynamics
and the value of A and the relationships between 6 and A. In other
words, epileptiform spikes exist in the controlled object if 6 > 0.1.
Fig. 6 gives the reference output of the neural mass model. It exhibits
no epileptiform spikes, sporadic random epileptiform spikes, and
sustained spike discharges when the value of A of population 1 is set
to 3.25mV, 3.34mV, or 3.6mV, respectively. These dynamics reflect
normal activities that resemble those of real EEG signals and real
EEG signals during the propagation of temporal lobe seizures [1].
For comparison, the relationship between C — ApEn and A is shown
in Fig. 7. It was observed that C — ApEn gradually increases with
fluctuations when A increases. The value of C — ApEn is not very
different between adjacent pairs of points. It is difficult to determine
an appropriate threshold according to Fig. 7. Thus, the combination
of the PPMCC and the FIS with cross approximate entropy well
implements the detection of epileptiform spikes in the controlled ob-
ject. To further confirm the validity of the given threshold selection
method, more simulations are provided. In Fig. 4, the parameter set-
tings are the same as for Fig. 5, with the exception that the inhibitory
gain B of all populations is set to 20mV and 24mV, respectively.
Fig. § presents the relationship between 6 and A, where the green
curve and the pink curve are the results for B =20mV and B = 24mV,
respectively. Comparing the results in Fig. 8, it was concluded that
the relationships between 6 and A under different settings of B have
similarities, that is, 6 suddenly increases from a small value to a
relatively large value for certain values of A. Thus, it is reasonable
to set the alarm threshold 0 to 0.1.

2.3.  Analysis of control efficiency

The neural mass model given in Fig. 4 is considered to verify the
effectiveness of the proposed closed-loop control scheme. To sim-
ulate the situation that epileptic patients are normal for most of the
time and in a seizure state for only short durations, the value of A of
population 1 is set randomly from 3.2mV to 3.4mV with high proba-
bility and set greater than 3.4mV with low probability. The other pa-
rameters are set to their default values, and the coupling coefficients
K>, K>3, and K3 are set to 100. The dynamics of the neural mass
model under these parameter settings are shown in the left column of
Fig. 9. It is observed that the controlled object exhibited epileptiform
spikes at 58s that continue thereafter. The moving window method
is used to calculate 0 in real time and the window moves 1s each
time. The blue curve at the bottom of Fig. 9 denotes the change of 0
with time. The value of 8 increases suddenly from small values to a
relatively large value at 58s, thus indicating initiation of epileptiform
spiking in the controlled object at that time. This detection result is
consistent with the actual case of the controlled object. Thus, the
detection method of epileptiform spikes is also efficient for the case
of the neural mass model actually considered. As the closed-loop
control scheme shows, the switch is closed and fuzzy PID control
is imposed on the neural mass model once epileptiform spikes are
detected. The right column of Fig. 9 is the modulated result after
activating the detection and control components. The output with
epileptiform spikes is converted into a normal EEG signal within
about 3s. The change of @ with time at the bottom of Fig. 9 (green
curve) confirms this point.

Further simulations are provided to verify the effectiveness of
the closed-loop control scheme. Consider a network model coupled
by eight neural populations, as shown in Fig. 10. The value of A of
population 1 is randomly set with either high probability between
3.2mV and 3.25mV or with a low probability of being set greater
than 3.4mV. The value of B of all populations is set at 24mV. The
remaining parameters are set at the standard values and the coupling
coefficients are set to 30. The dynamics of the network model under
these parameter settings are shown in the left column of Fig. 11. It
was observed that the controlled object exhibits epileptiform spikes
at 38s that continue after that time. The time window at the bottom
of Fig. 11 shows that 6 suddenly jumps from a small value to a
relatively large value at 38s. Thus, the detection of epileptiform
spikes is in agreement with that of the controlled object, and the
detection method for epileptiform spikes is efficient for the network
model. The right column of Fig. 11 presents the resulting dynamics
of the network model following activation of closed-loop control.
Epileptiform spikes disappear within a few seconds and the change
of @ with time at the bottom of Fig. 11 (green curve) confirms this.

In summary, fuzzy PID control has advantages of speed and sta-
bility in the modulation of epileptiform spikes produced by the neu-
ral mass model. Meanwhile, the entire closed-loop control scheme,
including the detection of epileptiform spikes and activation of fuzzy
PID control, is validated for the automatic detection and modulation
of epileptic EEG signals produced by the neural mass model.

2.4. Analysis of control energy

An important consideration in the modulation of epileptiform spikes
is the control energy required to achieve the modulation process.
The proposed closed-loop control scheme has advantages in the
control of energy because of the presence of epileptiform spike
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detection. In what follows, this point is demonstrated by providing
simulation data for the neural mass model, given in Fig. 4. The
simulation time was 40s and evenly divided into four periods. The
value of A for population 1 during each period was set to 3.25mV,
3.26mV, 3.44mV, and 3.29mV. Other parameters are set to their
default values and the coupling coefficients K}», K3, and K3; are
set to 100. The dynamics of the neural mass model under these
parameter settings exhibits epileptiform spikes in 20s ~ 30s and
normal EEG signals in the remaining time, as shown in the left
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Fig. 8. Relationships between 6 and A.

column of Fig. 12. The features of the dynamics can be deduced
by analysis of results and used to determine the alarm threshold. To
verify the advantages of the control energy required to implement
the epileptiform modulation, a conventional fuzzy PID control that
lacked the detector and the proposed closed-loop control scheme
given in Fig. 2 are used respectively for modulation of abnormal
EEG signals. The control energy is defined as u” (¢)u(t). The right
column of Fig. 12 presents the result of using the proposed closed-
loop control scheme given in Fig. 2, where the blue curve denotes
the desired normal EEG signal and the red curve denotes the output
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Fig. 10. Network model coupled to eight neural populations.

of the neural mass model the control is applied to. It shows that the
proposed closed-loop control scheme was successful in achieving the
appropriate modulation. The output curve of the neural mass model
with the imposition of conventional fuzzy PID control without the
detection component is similar to that given in Fig. 12 and thus is
omitted. Fig. 13 and Fig. 14 illustrate the variation of the control
energy with time and the total control energy required to realize the
required modulation for the conventional fuzzy PID control and the
proposed closed-loop control scheme. Fig. 14 shows that the control
energy is OmV during the first, second, and fourth intervals during
which the controlled object exhibits normal EEG signals, and is
192.9 x103mV? during the third interval when the controlled object
exhibited epileptiform spikes. However, it can be found from Fig. 13

that the control energy is always generated whether or not there
are epileptiform spikes in the controlled object. The total control
energy needed is 235.5 x 10°mV2. Thus, the proposed closed-loop
control scheme has advantages when compared to the control energy
otherwise required for successful modulation.

3. Conclusion

A new closed-loop framework has been proposed here that enables a
neural mass model to modulate abnormal epileptiform spikes into
normal EEG signals. The most obvious feature of the proposed
framework is its ability to control on demand according to the detec-
tion of epileptiform spikes. In other words, the controller acts on the
neural mass model when seizure is detected and stops working on the
neural mass model in the absence of seizures. Thus, the advantages
of the proposed framework have been demonstrated for the control
energy required to achieve appropriate modulation.

In this work, the detection of epileptiform spikes and the fuzzy
PID control are combined to achieve modulation in an EEG genera-
tion model initially proposed by Lope Da Silva [33] and extended
by Wendling et al. [1]. Recently, more sophisticated models that can
simulate EEGs with different rhythms have been proposed such as the
model of impaired gabaergic dendritic inhibition [37], realistically
coupled neural mass models [38], the neural mass model for investi-
gation of event-related potentials in the frequency domain [39], non-
linear conductance-based neural population models [40], a model to
fit the impulse response in three cortical regions of interest recorded
during a series of TMS/EEG experiments [41], and a lumped compu-
tational model of the thalamo-cortico-thalamic circuitry [42]. It is
planned that some of these sophisticated models will be incorporated
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Fig. 11. Dynamics of the neural mass model with and without control action.

to study the detection and modulation of spikes. The alarm threshold
is obtained by using cross approximation entropy and an adjustment
factor derived from a fuzzy inference system. The current work
can also be extended to another closed-loop scheme presented in
earlier work [29], where an unscented Kalman filter control is used
to suppress the epileptiform spikes of a neural mass model. It is of
interest and value to extend the current framework to networks of
neural populations for the modulation of brain dynamics. It is hoped
this work can further assist in the treatment of epilepsy and other
brain diseases.
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