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Abstract

The study of inter-regional synchronization between brain regions represents an important challenge in neuroimaging. Elec-
troencephalography, given the high temporal resolution, allows the investigation of brain activity, connectivity, and network orga-
nization in time and frequency domains. Here, some of the most common metrics used to estimate the strength of functional
interaction between pairs of brain regions are compared using source reconstructed time-series from resting-state high-density
electroencephalography. Results show that the investigated metrics, on the basis of their connectivity profiles, may be naturally
grouped into two main clusters. In particular, this finding shows that metrics which tend to limit the effects of volume conduc-
tion/signal leakage, although based on different properties of the original signals, may be partitioned into a specific homoge-
neous cluster, whilst the metrics which do not correct for these effects form a separate cluster. Moreover, this effect is even
clearer when the analysis is replicated at scalp level. In conclusion, although within each cluster different metrics may still cap-
ture specific connectivity profiles, this study provides evidence that the result of an arbitrary choice of metric that either does or
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does not correct for volume conduction and signal leakage is more relevant.

1. Introduction

It is clearly accepted that neuronal oscillations and their synchroniza-
tion, as measured between different brain regions, are fundamental
for normal brain function. This conclusion has triggered an enormous
interest in the development of quantitative techniques aimed to eval-
uate neuronal synchrony in electrophysiological data, namely elec-
troencephalography (EEG) and magnetoencephalography (MEG).
Analysis of the current literature, clearly shows that a large number
of metrics have been proposed to quantify inter-regional synchro-
nization. These metrics may roughly be separated into two main
categories: those that estimate functional connectivity (FC) and those
that estimate effective connectivity (EC). FC is defined as statistical
interdependence of neuronal activity recorded from different brain
regions. In contrast, EC refers explicitly to the influence that one
region exerts over another [1]. Although metrics of EC allow es-
timation of causal interactions, thus providing information on the
direction of interactions, FC metrics are still widely used to estimate
whole-brain inter-regional synchronization patterns. The aim of the
present paper is to compare a set of commonly used FC metrics, each
one able to distinguish (and be influenced by) different aspects of
signal interaction [2], so as to understand if different and specific
metrics may be grouped on the basis of particular properties of their
connectivity profiles. Indeed, each FC metric is based on detection
of specific characteristics of the original signals, thus may present
inherent advantages and disadvantages. For an exhaustive review of
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the different FC metrics proposed so far, refer to the recent survey
by Kida et al. [2]. Nevertheless, it is not easy to identify the rea-
sons that have motivated authors to choose one specific metric over
others. Consequently, in general, it may be difficult to understand
how related findings depend on the arbitrary choice of any particular
metric. Additionally, it is also difficult to understand the reasons that
have motivated the development of tens of new quantitative methods
without proper comparison with previously proposed methods. Fi-
nally, as pointed out in a recent review [3], different research groups
may employ different implementations of FC metrics, an issue that
may further hinder the interpretation of results. For all these rea-
sons, in this study, by use of an unsupervised approach, a set of
FC metrics are compared that have commonly been used for source
reconstructed resting-state EEG connectivity analysis, including: am-
plitude envelope correlation (AEC) [4], phase lag index (PLI) [5],
imaginary component of coherency (iICOH) [6], phase locking value
(PLV) [7], and spectral coherence (COH) [8]. It is hypothesized that
distinct techniques, although based on different mechanisms of inter-
action and differently influenced by diverse sources of noise, may
still be grouped together on the basis of common properties. The
same analysis was reproduced for scalp level data as, to date, several
EEG connectivity studies have still implemented this approach.
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2. Material and Methods

2.1. Dataset and preprocessing

Freely available [9] and widely used [10-12] eyes-closed resting-
state EEG recordings (64 channels, 109 subjects) were used in this
study. Raw EEG signals (one minute long) were re-referenced to a
common average reference and band-pass filtered to the alpha band
(8-13 Hz). Source-reconstructed time-series were obtained by using
whitened and a depth-weighted linear L2 minimum norm estimate
(wMNE) [13] and projected onto 68 regions of interest as defined by
the Desikan-Killiany atlas [14]. Finally, each preprocessed trace was
organized into five non-overlapping epochs of 12 seconds.

2.2. Functional connectivity metrics

To perform an exhaustive comparison, it was decided to include
some of the more common metrics used to estimate functional in-
teraction between brain regions. AEC [4] is a measure of amplitude
coupling based on linear correlations of band-pass filtered envelopes
performed after a symmetric orthogonalisation procedure to remove
zero-lag correlations. PLI [5] is a measure that ignores zero-lag
phase differences and quantifies the asymmetry of the distribution
of phase differences between time series. iCOH [6] is given by the
cross spectrum divided by the product of the two power spectra
and is not affected by linear mixing of an uncorrelated source. The
PLV [7] is a measure that quantifies the consistency of phase dif-
ferences, but is affected by zero-lag. Finally, the COH [8] is given
by the squared correlation coefficient that evaluates the consistency
of relative amplitude and phase between pairs of signals (in each
frequency band) and is strongly affected by the volume conduction
effect. In particular, the set of FC metrics investigated in this study
includes both metrics that do (AEC, PLI, and iCOH) and do not
(PLV and COH) correct for the effects due to volume conduction and
signal leakage. A summary of the main properties of the selected
FC metrics is presented in Table 1. Despite the importance of their
different properties, the effects potentially caused by arbitrary choice
of the FC metric are still overlooked, if not ignored. All analysis
was performed on five non-overlapping epochs of 12 seconds. The
application of each connectivity metric generates a symmetric square
(68 x 68) matrix where each value gives the strength of interaction
between paired regions (diagonal values set to zero). From each
matrix a connectivity profile, including all the pair-wise connectivity
values, was successively extracted as the upper triangular matrix.
All analyses were replicated at scalp level (without performing a
source-reconstruction procedure). In the latter case the connectivity
matrix was composed of 64 x 64 elements each representing a single
EEG channel.

Table 1. Properties of FC metrics

FC metric Influenced by Signal leakage correction
AEC amplitude and phase YES
PLI phase YES
iCOH amplitude and phase YES
PLV phase NO
COH amplitude and phase NO

2.3. Cluster analysis

The aim was to study natural clusters without any ‘a priori’ assump-
tions, including any knowledge concerning cluster number. Thus,
an unsupervised approach was used to reveal the existence of differ-
ent groups and to understand if the grouping underlay any common
properties among the different FC metrics. One of the goals of the
clustering was to gain insight into the structure of the data, with no
‘a priori’ knowledge about either data distribution or group organiza-
tion. The clustering procedure was based on a k-means approach, us-
ing the k-means++ algorithm for centroid initialization and squared
Euclidean distance. Five replicates were employed to search for
lower local minima. Since using the wrong number of clusters can
lead to meaningless results, a silhouette analysis [15], which can
be employed to study the separation distance between the clusters,
was used to define the optimal cluster number. Silhouette analysis
validates consistency within cluster data. It relates how well each
object lies within its cluster by comparing the similarity between an
object and its own cluster (cohesion) versus the similarity between
an object and other clusters (separation). A high silhouette value
indicates that the objects are well matched to their own cluster and
poorly matched to neighbouring clusters. In this way, the silhouette
values allow a more appropriate choice of the number of clusters
(M) for the problem at hand. The clustering process is unsupervised,
in that it can be applied in the absence of knowledge about the true
classes. In the given problem, however, the true classes can be cho-
sen and attributed to the patterns. For example, a class can be related
to the fact that a metric either corrects or does not correct for the
effects induced by volume conduction and signal leakage, or that a
metric is based on mechanisms of phase or amplitude interaction,
and so on. Using a hypothetical ground truth allows the assessment
of clustering quality. This step is necessary as the silhouette analysis
provides an indication of the number of clusters, even if there is no
appropriate clustering for the given problem.

To assess the clustering quality on the basis of the discovered
common properties between different FC metrics, the purity evalua-
tion measure was used. With M a set of clusters, D a set of classes and
N the number of data points, the purity measure may be expressed
as:

1
Purity = N mng;leal))( lmNd|
For each cluster, the purity value takes into account the number of
data points from the most common class in the cluster. So, a value of
the purity measure near unity indicates that the clustering obtained
individuates a group according to the ground truth of the problem. If
there is no correct clustering, a low purity value is obtained and the
number of clusters given by the silhouette analysis is meaningless.

3. Results and Discussion

The mean global patterns of connectivity from the source analysis,
obtained with the different FC metrics, averaged over all 109 subjects
and the five epochs, are depicted in Fig. 1. Given that the connectivity
matrices are shown only to disclose the global patterns of brain
region interactions, the values are intentionally not set on the same
scale.

As represented in Fig. 2 (left panel), the silhouette analysis for
source-based connectivity showed the optimal number of clusters
was K = 2, with a mean silhouette value of 0.69. At the next step,
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Fig. 1. The mean global patterns of connectivity for each of the five FC metrics for source-reconstructed analysis. Brain regions are organized as front (left) to
back (right) for the left and the right hemisphere, respectively. Connectivity values are intentionally not given at the same scale.

with K = 3, the corresponding mean silhouette value was lower
(0.60), thus the silhouette analysis gives a clear indication of the
required number of clusters. To test the hypothesis that such FC
metrics may indeed be grouped on the basis of their response to
the effects induced by volume conduction and signal leakage, the
corresponding purity measure was evaluated. This allowed clustering
quality to be assessed. Consequently, if it was assumed the two
clusters were organized on the basis of this property, namely AEC,
PLI, and iCOH in one cluster and PLV and COH in the second cluster,
a purity value of 99.45% was obtained. Alternative hypotheses, such
as assuming the discriminant property was signal phase, not signal
amplitude, lead to much smaller purity values. This suggested that
clustering may be primarily organized on the basis of how the FC
metrics respond to this effect. By replicating the same analysis at
scalp level, where the effects due to volume conduction and signal
leakage should be still more evident, a mean silhouette value of 0.88
for K = 2 and a purity value of 99.63% was obtained (see Fig. 2
right panel). As already reported for the source analysis, increasing
the number of clusters resulted in a decrease in the silhouette value
(with K = 3, the mean silhouette value was 0.68).
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Fig. 2. Mean silhouette values for K varying from 2 to 6 for the source-
reconstructed analysis (left panel) and scalp analysis (right panel).

This shows FC metrics that limit the effects induced by volume
conduction and signal leakage (namely AEC, PLI, and iCOH) may be
grouped together to give a high clustering quality and easy discrimi-
nation from other metrics (PLV and COH), which tend to generate
spurious connectivity values. In particular, the effect of this property
on the consequent group separation is greater than that induced by
the other properties, as phase or amplitude interaction mechanisms
should characterize the different FC metric. This result suggests, as
also visually depicted in Fig. 1, that spurious connectivity may in
some way overwrite and superimpose the real functional interactions.
Furthermore, this finding is strengthened by the scalp level analysis,

where the effects of volume conduction and signal leakage should
be even more evident. In this latter case, as shown in Fig. 2, the
separation into two clusters is still more marked.

4. Conclusion

In conclusion, this study confirms and suggests that caution should
be used when interpreting the results from connectivity analysis,
especially when metrics that do not limit the effects induced by
volume conduction and signal leakage are implemented.
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