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The dynamic process of epilepsy is modeled as a cas-
cading failure model in functional networks derived from
graph theory. The aim is to test whether cascading fail-
ure identified from functional magnetic resonance imag-
ing data could simulate epileptic discharges in 18 sub-
jects with generalized tonic-clonic seizure and 17 demo-
graphically matched healthy controls. A cascading failure
model was used to simulate the neural networks underly-
ing generalized tonic-clonic seizure and healthy controls
by stimulation of the node with the greatest number of con-
nections. Results showed that the efficiency of generalized
tonic-clonic seizure dropped significantly when compared
to controls. Particular nodes whose efficiency altered sig-
nificantly showed a correlation with the symptoms of gen-
eralized tonic-clonic seizure. Results also indicated that
the left middle frontal lobe may be a potential focal area
in the initiation of generalized tonic-clonic seizure.

Keywords
Cascading failure; functional magnetic resonance imaging; shortest
path; generalized tonic-clonic seizure; graph theory

1. Introduction
Generalized tonic-clonic seizure (GTCS) is a subtype of idio-

pathic generalized epilepsy (IGE), that exhibits loss of conscious-
ness with tonic rigidity and clonic uncontrolled jerking as its main
characteristics. Its definitive pathology is still unclear. Resting-
state functional magnetic resonance imaging (fMRI) is a tech-
nique with high spatial resolution that in particular contributes to
epilepsy research at the network level. An increasing number of
studies have applied complex network theory to investigation of
the pathology of GTCS (Li et al., 2016; Liu et al., 2017).

EEG-fMRI analysis has revealed that thalamo-cortical and
default mode networks (DMNs) have a strong relationship with
the generalized spike wave observed in IGE (Moeller et al.,
2008). Morphometric study based on structural magnetic reso-
nance imaging has documented significant reduction in cortical
thickness in IGE (Bernhardt et al., 2009). Regional homogeneity
analysis has demonstrated that altered regional synchronization of
brain activity exists in GTCS during the interictal period (Yuan

et al., 2011). Graph theoretical analysis has revealed disrupted
structural and functional organization of the brain connectome in
GTCS (Li et al., 2016). Liu et al. (2017) implemented a method of
functional network connectivity to study GTCS and reported that
state-specific functional network connectivity disruptions occur in
a model of GTCS.

However, as the collection of data during seizures is difficult
and not always accurate, many studies focus on the network at-
tributes of the static state to study the dynamic effects of seizures
on brain networks. The theory of complex networks has been at the
forefront of interdisciplinary research, along with “small-world”
networks such as those proposed byWatts and Strogatz (1998) and
the “scale-free” networks proposed by Barabasi and Albert (1999).

Cascading failure refers to the fact that the breakdown of a sin-
gle node may have a profound effect on a whole network due to
dynamic redistribution of activity flows. This progression is sim-
ilar to the disease process, therefore, here it is hypothesized that
a cascading failure model could simulate the dynamic process of
GTCS seizures. A cascading failure model (CLM) proposed by
Crucitti et al. (2004), is employed in this study.

Kinney et al. (2005) has applied this model to North American
power grids and found that the average efficiency decreased signif-
icantly when stimulating the node with the largest load. This node
was significant for the network because of the massive information
flow it received. As such, the node with the largest load could be
fragile and the whole network might suffer an avalanche of alter-
ation as it overloads. Concurrently, a new view has emerged that
the pathology of epilepsymay potentially originate at such an over-
loaded node (Wang and Lu, 2012). Therefore, it was concluded
that the node with largest load might be related to the pathology
of GTCS.

This study examines functional connectivity with respect to the
node with the largest load and that node’s response to stimulation
in both GTCS subjects and healthy controls. This is followed by
investigation of overloaded nodes and how their efficiency was
altered with respect to GTCS. The data processing assistant for
resting-state fMRI software (DPARSF) is employed to initially
process group GTCS and control data. An automated anotomical
labeling (AAL) atlas is then used to divide the whole brain into 90



Table 1. Clinical data for GTCS subjects and healthy controls (HC)

Male Female
Age

(year)

Average age

(year)

Duration

(year)

Average duration

(year)

GTCS 9 9 7 ∼ 46 26.4 ± 6.9 1 ∼ 30 6.2

HC 8 9 15 ∼ 37 25.8 ± 6.2 - -

nodes and a Pearson correlation coefficient calculated for all node 
pairs. Subsequently, a threshold is set to structure a binary logic 
network that represented the functional connectivity of the whole 
brain. Finally, a cascading failure model is applied to stimulate the 
node with the largest load in GTCS and alterations of whole brain 
were analyzed during GTCS.

2. Materials and methods
2.1 Subjects

Subjects were diagnosed with GTCS according to the criteria of 
the International League Against Epilepsy (ILAE) classification:
(1) Typical clinical symptoms of generalized tonic-clonic seizures, 
including tonic extension of the limbs, followed by a clonic phase 
of rhythmic jerking of the extremities, and loss of consciousness 
during seizures; (2) Generalized polyspike-wave in the interictal 
scalp EEG; and (3) No focal abnormality in the structural MRI. 
Subjects had no history of either neurological or psychiatric dis-
order. All subjects provided written informed consent prior to the 
study which was approved by the medical ethics committee of the 
Second Hospital of Lanzhou University in accordance with the 
Declaration of Helsinki and good clinical practice guidelines.

Resting-state fMRI data was acquired with a 3-T MRI 
(Siemens, Germany). Functional imaging was acquired by use of 
a gradient echo-echo planar imaging sequence. The scan range in-
cluded the whole brain and a baseline parallel to an anterior and 
posterior orientation. Scanning parameters were: time to repeat 
(2000 ms), echo time (30 ms), slice thickness (3.8 mm), slice 
spac-ing (0.38 mm), slice number (34), field of view (240 × 240 

mm2), matrix (64 × 64), fractional anisotropy (90◦), time points 
(200), and scan time (six minutes forty seconds).

Subject parameters are given in Table 1. A total of 20 pa-
tients were included in this study but two patients with head mo-
tion range greater than one millimeter were excluded. No controls 
were excluded. There were nine female and nine male rest GTCS. 
Their age ranged from 7 to 46 years, (mean 26.4 years). Dura-
tion of epilepsy ranged from one to thirty years (mean duration 6.2 
years). All of subjects were right-handed. There were 17 normal 
healthy controls, eight male and nine female. All controls were 
right-handed and aged from 15 to 37 years (mean age 25.8 years). 
The ages of both GTCS subjects and controls were normally dis-
tributed, (standard deviation 6.9 and 6.2 years, respectively). The 
age distributions of the two groups were not significantly different.

2.2 Data preprocessing
DPARSF (date processing assistant for resting- state 

fMRI) (Yan and Zang, 2010) and REST (resting-state fMRI data 
analysis toolkit) (Song et al., 2011) were employed to preprocess 
fMRI data with a software implementation in MATLAB (Math-
Works, Natick, MA, USA). DPARSF processing included: format 
conversion from DICOM (digital imaging communication in

medical) to NIFTI (neuroimaging informatics technology initia-
tive), removal of the first 10 time points, slice timing, realignment
(exclusion criteria: 1 mm and 1◦), normalization (EPI template),
smoothing (full width half maximum: 6 mm), detrending, and
filtering (0.01–0.08 Hz). The processes with REST included
covariable extraction and regressing out covariants (gray matter,
white matter, and cerebrospinal fluid).

2.3 Functional connectivity

The functional connectivity was instructed by the REST. The
AAL (automated anatomical labeling) brain atlas (Sporns et al.,
2005) was employed to define the regions of interest (ROI). The
whole brain was divided into 90 nodes and the time course of every
node extracted. The function ROI−wise from the REST software
was employed to compute the functional connectivities between
the 90 nodes. A 90× 90matrix was obtained from this calculation.
Matrix values ranged over [-1, 1].

2.4 Construction of the brain network derived from graph
theory

The brain network refers to a collection of several brain areas
and edges (connections) in graph theory . It consists of brain areas
and connections between them, which also indicate the functional
network topology of brain regions. Here, the brain network was
represented by an adjacencymatrixGwhich representing the brain
network. In this matrix, Gi j = 1 describes an edge between the ith
and jth nodes.

The Pearson correlation coefficient matrices of GTCS subjects
and controls were computed individually. Initially, the Z-score
of each GTCS and control data matrix was computed to improve
the normality of the distribution of their correlation coefficients.
An average correlation coefficient matrix of all subjects was then
taken between groups and a threshold (t) binary network con-
structed (t > 0) (the threshold represented a critical value indi-
cating the presence of edges in brain regions). A Z-score matrix
was employed to construct the logic network. Values in the GTCS
and control matrices were set to 1 if the absolute value of the cor-
responding value was greater than threshold (t), otherwise matrix
values were set to zero. Diagonal matrix values were set to zero to
self-join. Adjacency matrices were then obtained that represented
the GTCS and control networks following their computation. Ac-
cording to (Achard and Bullmore, 2007), the brain network was
complex and sparse. When constructing the brain networks two
rules were followed: One was that there should be no isolated
nodes (Wang and Lu, 2012); the other that network density should
range from 10% to 50% (Xue et al., 2010). Network density was
obtained from:

m =
1

N −1

N

∑
i=1

Ki (1)
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where N is the sum of nodes and Ki is the degree of the ith node.
The topology of the GTCS network is then analyzed to find the
node with the largest load and further examine its pathological ba-
sis.

2.5 Analysis of functional connectivity of node with the
largest load

To assess whether the node with the largest load was abnor-
mal, it was initially selected as a region of interest (ROI) (Wang
et al., 2012). The resting-state averaged time series from the ROI
were then calculated and correlated with the time series of the re-
maining voxels in the whole brain to give a correlation map. To
improve normality this result was converted to a z map by using
Fisher’s r-to-z transformation (Wang et al., 2017). The GTCS and
control groups were examined and compared for differences by
two-sample t-test. Only results significant at p≤ 0.001 and cluster
size greater than 15 voxels were considered (Ke et al., 2017). The
cascading failure model is then applied to explore the networks of
GTCS and control subjects.

2.6 Cascading failure model

The network was represented by a weighted and undirected
graph G with N nodes, where G was given by an N ×N matrix
{ei j}. To define the initial efficiency ei j , the shortest path di j was
computed between the ith and jth nodes according to the adja-
cency matrix described above. The matrix containing the shortest
paths was represented by theN×N matrix {di j}, where the matrix
of initial efficiency {ei j} = { 1

di j
}. This model assumed that the

communication between generic node pairs were connected by the
most efficient path (Crucitti et al., 2004). Thus, the load Li(t)with
respect to the ith node at time t was defined as the total number
of the most efficient paths passing through the given node at the
given time. Each node was characterized by a capacity defined as
the maximum load a given node could accommodate. The capac-
ityCi of the ith node was proportional to its initial load Li(0):

Ci = aLi(0)(a ≥ 1), i = 1,2, ...,N (2)

where a gives the tolerance parameter of the network (every net-
work conclued a tolerance parameter which represented the degree
of protection itself). The average efficiency represented the mech-
anism of transportation in this model, and was given by:

E =
1

N(N −1)

N

∑
i ̸= j,i, j=1

ei j (3)

It was assumed that at time 0, the initial efficiency matrix was
{ei j} and one node was overloaded (removed). The removal of a
node changed the most efficient paths between nodes and caused
a redistribution of the loads, thus created overloads at some nodes.
Therefore, the efficiency at time t was obtained from the following
iterative rule:

ei j(t +1) =

{
ei j(0) Ci

Li(t)
, Li(t)>Ci

ei j(0), Li(t)≤Ci
(4)

where j extended to all first neighbors of i. In this rule, if the
ith node was congested at time t, the efficiency of all the trajec-
torys passing through it would be reduced, so that the new paths

which were most efficient would probably eventually alter. This
may trigger a further distribution in a repetitive process unless the
new paths were the most efficient, thus stabilized.

2.7 Analysis of network characteristics
When a network is overloaded by cascading failure, its topol-

ogy is likely to alter as both local and the global efficiency are
determined by this topology. Simultaneously, the decreased effi-
ciency of nodes after overload provided significant insight into the
topology. The global efficiency was given by:

Eglob =
1

N(N −1)

N

∑
i ̸= j,i, j=1

εi j (5)

and the local efficiency by:

Eloc =
1
N

N

∑
i=1

E(Gi) (6)

whereN represented the sum of nodes, E(Gi) represented the local
efficiency of the ith node. E(Gi) was defined as the efficiency of
the ith node among its all first neighbors. The decreased efficiency
of nodes was given by:

Di =
1

N −1

N−1

∑
i, j=1

Ei j(0)−Ei j(t) (7)

where Ei j(0) represented the initial efficiency of the i jth connec-
tion, and Ei j(t) represented the efficiency after the system had re-
laxed to a stationary state.

3. Results
3.1 Brain network construction

The threshold was set within the range [0.2, 0.5] and increased
by 0.01 at each timestep when the network density was computed.
The relationship between network density (m) and threshold (t)

Figure 1. Decreased efficiency of nodes after overload among GTCS
subjects and controls. The horizontal axis label refers to the rest
nodes after overload, the vertical axis label refers to the decreased
efficiency among two groups, controls (green line) and GTCS (blue
line).
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was reported as shown in Fig. 1. In this figure, the density of the
network in GTCS is shown. We found that isolated nodes only ex-
isted when the threshold was raised above 0.37 for GTCS, but it
could be as low as 0.31 for the controls. No node should be iso-
lated within the network and network density should be within the
range [10%, 50%] when constructing both networks. The network
of healthy controls did not meet the above criteria as the threshold
was larger than 0.3, So this threshold was considered as a mean-
ingful value. Therefore, the threshold were set equal to 0.3 when
constructing both networks as network density (computed by Eqn.
1) was 17.6% in GTCS and 16.5% for controls, in the absence
of isolated nodes. Consequently, a pair of unweighted and undi-
rected adjacency matrices could represent the networks of GTCS
and controls.

3.2 Analysis of functional connectivity
The total time of every node contacted by all the most effi-

cient paths was computed and the largest load (the most times) for
GTCS was found at the left middle frontal node. It was considered
that this result might have a pathological basis, so this node was
selected as the seed node in an examination of the functional con-
nectivity with other brain areas in GTCS. Differences were then
examined by the two-sample t–test and only results significant at
p ≤ 0.001 for cluster sizes greater than 15 voxels were considered.
The brain areas which altered significantly are given in Table 2.
Here, it is shown that there were four areas which decreased signif-
icantly when compared with controls, the lingual, the left middle
occipital area, the left lower frontal triangle area, and left middle
occipital area. Hence, the functional connectivity of the seed node
(left middle frontal) demonstrated an abnormality when compared
with controls.

Table 2. Compared with controls, the regions of GTCS decreased
significantly within functional connectivity (p < 0.001 without

correction).

Brain regions Voxels
MNI coordinate

x y z

Right lingual 19 12 -39 -9

Left middle occipital 58 -36 -81 24

Left inferior triangle frontal 17 -51 30 33

Left middle occipital 15 -24 -66 42

3.3 Simulations
The left middle frontal node in GTCS indicated an abnormality

in functional connectivity when compared with healthy controls.
To determine how this brain area influenced the rest brain areas un-
der the cascading failure model, the left middle frontal node was
selected for overload in GTCS and controls with tolerance param-
eters. Results are shown in Fig. 2. Initial efficiency refers to effi-
ciency prior to network overload. The global efficiency in GTCS
and controls was 0.5354 and 0.5077, respectively, while the local
efficiency in GTCS and controls was 0.7560 and 0.7523 respec-
tively. This shows that the initial efficiency in GTCS was greater
than that for controls. The global efficiency of GTCS and con-
trols increased as the tolerance parameter was increased, and both
eventually approach their initial efficiency. Similarly, the local

efficiency of GTCS and controls showed positive correlation with
the tolerance parameter. This showed local efficiency to be greater
than global efficiency for both GTCS and controls. Only when the
tolerance parameter reached 1.2 was the global efficiency returned
to its initial value in GTCS. However, controls reached 1.02 when
returned to its initial efficiency. Overall, the network of controls
was vulnerable to reach stability compared with GTCS.

Figure 2. Relationship between threshold (t) and network density (m).
Red and blue lines indicate GTCS and control subjects, respectively.

Both networks were overloaded under different tolerance pa-
rameter values, so the global efficiency in GTCS and controls
would accordingly be decreased under these changes. This re-
sulted in the mean global efficiency of every node being altered.
Fig. 3 shows that alteration of controls were within the range [0,
0.05] (mean value 0.0022) and the alteration of GTCS was within
the range [0.19, 0.5] (mean value 0.3095). Overall, the change
in GTCS was larger than that of controls. The trend of controls
was to be less variable than that of GTCS. The encephalic regions
are specifically reported to exhibit greater alteration in GTCS (see
also Table 3). In Table 3 it is shown that the node with the largest
alteration was the right rolandic operculum, whose alteration of
effiency reached 0.4702.

Table 3. Encephalic regions with greater alteration in GTCS

Encephalic regions Value of alteration

Right rolandic operculum 0.4702

Right anterior cingulum 0.4323

Left pallidum 0.3874

Right lingual 0.3821

Right posterior cingulum 0.3801

Right insula 0.3762

Right inferior occipital 0.3757

Right superior occipital 0.3756

Right supramarginal 0.3618

Left putamen 0.3491

Right precuneus 0.3436
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Figure 3. Relationship between the global efficiency, local efficiency
and the tolerance parameter among GTCS and controls. The ordi-
nate (E) gives the efficiency (global and local) among GTCS and con-
trol groups and the abscissa (a) represents the tolerance parameter,
the red line indicates controls, and the blue line gives the response
under GTCS.

4. Discussion
The shortest path was found to be relevant to transport prop-

erties in a complex network. However some nodes in the shortest
path may be heavily loaded and jammed by considerable activity.
Goh et al. (2001) defined the total time taken for the most effi-
cient paths to pass activity through a as "load" (Goh et al., 2001).
Here, the node with the largest load (left middle frontal) was vi-
tal to the network because of the information it transmitted. This
node could severely impact the whole network in the cascading
failure model similarly to the disease process of epilepsy. There-
fore, it was hypothesized that the cascading failure model stud-
ied here could simulate the dynamic process of seizure in GTCS
where the node with the largest load was the potential focal area.
The functional connectivity of left middle frontal node was exam-
ined along with other brain areas in GTCS. Results demonstrated
abnormality in functional connectivity between it and other brain
areas when compared with the controls, which suggested that this
brain areamight reflect a pathophysiological mechanism inGTCS.
The fourth largest load in healthy controls was observed for the left
middle frontal area, which indicates that this brain area was also a
vital area for the controls. Based on the hypothesis, the left middle
frontal area was overloaded by use of the cascading failure model
in GTCS and controls.

Brain networks were constructed to model GTCS and control
groups. It was found that the network density of GTCS and con-
trols was decreased with increased threshold. This indicates that
the threshold is of significance for GTCS and control networks.
Furthermore, the selection of threshold may affect subsequent net-
work behavior. Generally, the density of a brain network model
should be within the range [10%, 50%], a requirement that was
also the main reason for selecting the threshold. Consequently, the
threshold was set to 0.3 when constructing both networks. What-
ever the threshold was, it should ensure that network density is

maintainedwithin the range [10%, 50%]when constructing a brain
network model.

Latora and Marchiori (2001) showed that the local efficiency
determined the extent of fault tolerance in a system, thus this mea-
sure showed how efficient the communication was between the
first neighbors of the ith node following its removal. Alterna-
tively, the global efficiency focused on the entire network, so a
few nodes with extremely slow connections did not mean that the
efficiency of the entire network was diminished (Latora and Mar-
chiori, 2001). Here, it is noted that both the global and local ef-
ficiencies in GTCS showed a positive correlation with the toler-
ance parameter. This indicates that the tolerance parameter was
conductive to the robustness of the GTCS network, as Crucitti et
al. (2004) reported that the tolerance parameter was a realistic as-
sumption in the design of an infrastructure network but was limited
by the cost. The reason for the tolerance parameter enhancement of
the robustness of GTCS was that it enhanced node capacity. Here,
the capacity of every node was decided by the shortest (most ef-
ficient) paths. The larger the capacity of a node, the shorter the
paths that contacted it. The shortest paths of nodes represented
the functional information flow. An enhanced tolerance parame-
ter meant the functional connectivity of nodes was strengthened.
Hence, stronger functional connectivity supported greater robust-
ness in GTCS. Studies report that patients with GTCS suffer long-
term neuropsychological impairment (Vlooswijk et al., 2010).

A previous study (Ling et al., 2016) had also found a negative
correlation between duration and reduced long range functional
connectivity density (FCD) in GTCS. This indicates that long-
term functional impairments decrease the functional connectivity
of some nodes. Meanwhile, functional impairments would have
a direct effect on exchange and consequently decrease robustness
of the whole network. These reports indirectly provided evidence
that functional connectivity had a positive correlation with robust-
ness in GTCS. When functional connectivity was strengthened it
could protect the whole network from breakdown. Nevertheless,
functional connectivity could not be infinitely large because the
brain network is a sparse network (the construction of the network
was based on the functional connectivity). The result of global and
local efficiencies in controls indicate that the networks of controls
exhibited stronger robustness when compared to that of GTCS. Es-
pecially, when the network of healthy controls maintained a sta-
tionary state, GTCS produced a large drop in efficiency when the
tolerance parameter ranged over [1.02, 1.12]. The reason for this
might be that the left middle frontal node had the largest load in
GTCS, so this node had a stronger relationship with other nodes.
The networks of controls showed a higher robustness when com-
pared with that of GTCS. This result also indicated that the left
middle frontal gyrus had an essential position in the GTCS net-
work.

The decreased efficiency of every node in GTCS was much
larger than for controls. It was noticed that the trend of alter-
ation in controls was more uniform than for alterations in GTCS.
The alteration was determined by an iterative efficiency rule and
the changing node load. Small changes in efficiency meant that
the new node load was barely altered. This suggests that removal
of the left middle frontal area has little effect on control network
topology. As Crucitti et al. (2004) reports information might flow
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through another path as one node is overloaded (removed). This
was the case for the GTCS network, where the information flow
chose alternative paths to complete functional connectivity when
the left middle frontal area was removed. Consequently, node load
might alter greatly as the efficiency of nodes greatly reduced. In
conclusion the topology of networks in GTCS altered significantly
as a consequence of overloading the left middle frontal gyrus. In a
previous study, Schindler et al. (2008) analyzed seizures from the
EEGs of a large patient group and found that the changing func-
tional network topology during seizures was accompanied by an
initially decreased stability of the global synchronized state. The
results reported here are in accordance with Schindler et al. (2008).
The alteration of topology may have a deep influence on the func-
tion of nodes in GTCS.

It was found in this study that the efficiency of some brain areas
in GTCS were extremely decreased compared with their initial ef-
ficiency. These brain areas included the right back cingulum, right
precuneus, right rolandic operculum, right side of tongue, upper
and lower right occipital areas and right insula. The right posterior
cingulum and right precuneus belong to the DMN. The posterior
cingulum especially is the core of a DMN (Dum and Strick, 2002;
Salvador et al., 2005), an area that generated a drop of 0.3801 in
its efficiency. The literature reports that the DMN may have a
strong relationship with the loss of consciousness during seizure
(Blumenfeld, 2012; Sporns et al., 2008). Both nodes in the DMN
which decreased greatly might provide new evidence for the loss
of consciousness during GTCS seizures.

It was also found that the right rolandic operculum, right side
of the tongue, and upper and lower right occipital areas belong
to the motor areas. These regions, which produced a large drop
in their initial efficiency, enabled the functions of motor disor-
der. This may have a direct association with voluntary movement
and generalized tonic clonic activity. Concurrently, Gotman et al.
(2005) has shown that the insula is correlated with an epileptic at-
tack, which may produce impairment with respect to the insula.
So this may indirectly explain why the efficiency of right insula
decreased significantly. Overall, the mean drop in efficiency was
0.3095 in GTCS. This suggests that the whole brain suffered se-
rious damage and most functions would cease to work naturally.
Such results show that the cascading failure model was significant
in the study of GTCS pathology. Moreover, the left middle frontal
area was chosen as the overloaded node in the cascading failure
model to simulate the disease process. The pathology character-
istics indicated that the left middle frontal area may be a potential
focal area in the disease process of GTCS.

5. Conclusions
In this study, it was found that the left middle frontal area was

the node in a model of GTCS with the largest loads and that this
area also exhibited a greater load in control subjects. Thus, it is
considered that this nodemight be the pathogenic brain region. For
this reason the node was selected as the seed node in a model net-
work developed to examine its functional connectivity with other
brain areas. This node was found to exhibit abnormal functional
connectivity when comparedwith controls. The left middle frontal
area was pathological and it was hypothesized that the cascading
failure model described in this paper was suited to simulate the

dynamic process of seizure in GTCS. The left middle frontal area
was oversimulated to induce GTCS in controls by employing cas-
cading failure to simulate the disease process. Tthe efficiency of
the network was altered and the function of nodes with larger drops
of efficiency were analyzed. It was found that a cascading failure
analysis was of great significance in studying the pathology and it
is concluded that the left middle frontal may be the focal area in
the disease process of GTCS.
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