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The number of electrode channels in a brain-computer
interface affects not only its classification performance,
but also its convenience in practical applications. How-
ever, an effective method for determining the number of
channels has not yet been established for motor imagery-
based brain-computer interfaces. This paper proposes
a novel evolutionary search algorithm, binary quantum-
behaved particle swarm optimization, for channel selec-
tion, which is implemented in a wrapping manner, cou-
pling common spatial pattern for feature extraction, and
support vector machine for classification. The fitness func-
tion of binary quantum-behaved particle swarm optimiza-
tion is defined as the weighted sum of classification er-
ror rate and relative number of channels. The classifi-
cation performance of the binary quantum-behaved par-
ticle swarm optimization-based common spatial pattern
was evaluated on an electroencephalograph data set and
an electrocorticography data set. It was subsequently
compared with that of other three common spatial pat-
tern methods: using the channels selected by binary par-
ticle swarm optimization, all channels in raw data sets,
and channels selected manually. Experimental results
showed that the proposed binary quantum-behaved par-
ticle swarm optimization-based common spatial pattern
method outperformed the other three common spatial pat-
tern methods, significantly decreasing the classification er-
ror rate and number of channels, as compared to the com-
mon spatial pattern method using whole channels in raw
data sets. The proposed method can significantly improve
the practicability and convenience of a motor imagery-
based brain-computer interface system.
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1. Introduction
A brain-computer interface (BCI) is a type of communication

system that establishes a no-muscular pathway between the brain
and the outside world (Wolpaw et al., 2002). As such, BCIs can

help people with motor disabilities communicate with external en-
vironments or control an external device. BCI systems can be di-
vided into non-invasive and invasive types (Leuthardt et al., 2004).
Non-invasive human BCIs currently use electroencephalography
(EEG), magnetoencephalography (MEG), functional magnetic
resonance imaging (fMRI), and functional near-infrared spec-
troscopy (fNIRS) as brain imaging techniques. Among them, EEG
and fNIRS have been attractive due to their low cost and portabil-
ity (Arvaneh et al., 2011; Aydemir et al., 2018; Blankertz et al.,
2008; Ehrsson et al., 2003; Hong et al., 2017, 2015; Khan and
Hong, 2017; Naseer and Hong, 2015; Shin et al., 2012). In contrast,
invasive human BCIs are primarily based on electrocorticography
(ECoG) signals recorded from the cortical surface (Lal et al., 2005;
Leuthardt et al., 2004).

Various paradigms are used for building a BCI system. One of
them utilizes motor imagery (MI) to generate distinguishable brain
signals (Ehrsson et al., 2003; Pfurtscheller and Neuper, 2001).
For example, imagination of a limb movement results in two neu-
rophysiological phenomena – event-related desynchronization or
event-related synchronization (ERD/ERS) (Pfurtscheller and da
Silva, 1999; Toro et al., 1994). This is a decrease/increase in power
of EEG signals in the frequency bands of µ rhythm (8–14 Hz) and
β rhythm (16-28Hz) over themotor and sensorimotor lobes. Com-
mon spatial pattern (CSP) is an effective algorithm for extracting
ERD/ERS features from EEG data (McFarland et al., 1997). As
a powerful spatial filtering algorithm, CSP can detect the oscil-
latory characteristic of EEG signals in specific brain areas, thus
facilitating its use for discriminating between the two classes of
EEG patterns (Muller-Gerking et al., 1999). However, these spe-
cific brain areas may vary between people based on differences in
physiology and anatomy. One approach then is to apply as many
as channels as possible to record data from BCI systems. How-
ever, this introduces significant noise in the data and can cause an
overfitting problem for the CSP algorithm (Blankertz et al., 2008).
Furthermore, using a large number of electrodes impedes the con-
venience of practical applications.

To balance the need for both performance and convenience in a
BCI, it is crucial to remove task-irrelevant channels using a chan-
nel selection method (Arvaneh et al., 2011). So far, the meth-
ods for channel selection can be divided mainly into three cat-



Figure 1. (a) The placement of the 118 electrodes in the EEG data set according to extended international 10/20 system; (b) The placement
of the 8 × 8 electrode grid used for recording ECoG data of the second patient in the ECoG data set. It was placed on the right hemisphere.

egories, namely filtering, wrapping, and embedded (Alotaiby et
al., 2015). Filtering methods are independent of the subsequent
learning algorithm, and rely on certain criteria to evaluate candi-
date channel subsets. For example, Arvaneh et al. (2011) formu-
lated a sparse common spatial pattern (SCSP) algorithm as an op-
timization approach to reduce the number of channels (Arvaneh
et al., 2011). Filtering methods can reduce the number of chan-
nels at high speed, but usually at the cost of classification accu-
racy. Conversely, wrapping methods employ a different strategy,
whereby channel selection is combined with a classification al-
gorithm. Candidates are assessed by classification accuracy, and
can therefore yield more robust results, but are also more computa-
tionally expensive than filteringmethods. Aydemir et al. (2018) re-
cently presented such a sequential forward search method (SFSM)
for channel selection. Finally, in an extension of wrapping tech-
niques, embedded methods select channels based on criteria gen-
erated during the learning process of a specific classifier. For
example Lal et al. (2004) embedded feature selection algorithms,
recursive feature elimination (RFE), and zero-norm optimization
into support vector machines (SVM) to recursively eliminate the
channels that yield the worst classification results. Together, all
these methods can reduce the number of channels to a consider-
able degree.

Despite the volume of research on channel selection, accu-
rately determining the number and position of channels is still a
big challenge for MI-based BCIs. This study employs the idea of
a wrapping method to construct a channel selection process, and
attempts to answer the following two research questions: 1) What
is the degree of improvement in the performance of a BCI sys-
tem using only selected channels for classification, as compared
to using all recording channels? And 2) What is the minimum
number of channels required to achieve satisfactory classification
performance (classification accuracy of approximately 90%)? We
selected the wrapping method for its higher classification perfor-
mance than the filtering method, and lower complexity of compu-

tation than the embedded method.

To address our research questions, we propose a novel evo-
lutionary search algorithm, the binary quantum-behaved particle
swarm optimization (BQPSO) (Xi et al., 2010), for channel selec-
tion in MI-based BCIs. The BQPSO evaluates all candidate chan-
nel subsets under the guidance of the fitness value, and continu-
ously updates the candidate subsets until the maximum number of
iterations is reached. Based on the chosen channels, the CSP al-
gorithm is used for feature extraction, and support vector machine
(SVM) for classification. The fitness function of the BQPSO is
defined as the weighted sum of classification error rate and the
relative number of channels, so that the number of channels can
be reduced as much as possible, on the premise that the classifica-
tion performance meets the need of BCI applications.

Another evolutionary search algorithm, binary particle swarm
optimization (BPSO) (Kennedy and Eberhart, 1997), has been
used for channel selection of MI-based BCIs by Kim et al. (2015).
To demonstrate the advantages of BQPSO for channel selection,
we evaluated the performance of BQPSO-based CSP on an EEG
data set and an ECoG data set, in comparisonwith the performance
of BPSO-based CSP, CSP with all recording channels, and with
manually chosen channels, according to prior knowledge of neuro-
physiology. We report that BQPSO-based CSP achieved superior
performance compared to the other three CSP methods.

2. Experimental data
In this study, two data sets were used for evaluating the perfor-

mance of the proposed CSP method. The first is a publicly avail-
able EEG data set – IVa of BCI Competition III (Blankertz et al.,
2006). The other is an ECoG data set provided by the authors of
Lal et al. (2005), and used in their study. These data sets were em-
ployed owing to their use of many recording electrodes. The two
data sets differ primarily in their signal-to-noise ratios (SNR) and
sizes (i.e. numbers of total trials).
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Table 1. The number and position of implanted electrodes, the tasks performed, and the trial number fulfilled by each patient. Modified
from Lal et al. (2005)

Patient # Implanted electrodes Electrode position Performed tasks # Trials

AM One 64-electrode grid Right hemisphere Little left finger vs. tongue 150

JS
One 20-electrode grid

Four16-electrode strips

Central

Frontal
Little right finger vs. tongue 100

SS
One 64-electrode grid

Two 5-electrode strips
Right hemisphere Inter hemispheres Left hand vs. right hand 200

Figure 2. (a) The timing scheme of each trial for the EEG dataset. In each trial, the duration of motor imagery was 3.5 s and the next 1.75-2.25
s was the time for a subject to relax; (b) The timing scheme of each trial for the ECoG dataset. In each trial, the duration of motor imagery
was 4 s and the next 2 s was the time for a subject to relax.

2.1 The EEG data set
The EEG data set was originally provided for classifying EEG

data with small training sets and is widely employed in BCI studies
to compare different classification algorithms. It consists of five
data subsets derived from five healthy subjects (aa, al, av, aw and
ay). Each subject participated in a MI-based BCI experiment, in
which they were required to conduct mental tasks of imagining
left hand, right hand or right foot movements, following a given
visual cue denoted by a letter (L, R, or F). Starting from the visual
cue, the subjects carried out the corresponding MI task for 3.5
s. These visual cues were presented intermittently with random
lengths ranging from 1.75 s to 2.25 s, during which the subject
could relax.

EEG signals were collected using a BrainAmp amplifier and
a 128-channel Ag/AgCl electrode cap. 118 electrodes were used
for recording experimental data, according to the extended inter-
national 10/20 system. The EEG data were digitalized at 1000 Hz
by the amplifier and re-sampled to 100 Hz by the competition or-
ganizers for offline analysis. A total of 280 trials per class were
performed by each subject. Only the data from MI tasks of right
hand (R) and right foot (F) were provided for the competition. The
electrode placement for recording EEGdata and the timing scheme
of each trial are illustrated in Fig. 1 (a) and Fig. 2 (a), respectively.

2.2 The ECoG dataset
The ECoG data set was recorded from three epileptic patients

(AM, JS, SS) with intracranial electrodes. All patients suffered
from focal epilepsy and had to undergo surgical operation to have
their foci resected. Prior to the surgery, the localization of epileptic
foci required placing electrodes onto the surface of the cortex and
into deeper regions of the brain. After several days of recovery
and follow-up examinations due to implantation surgery, the BCI
experiments were carried out in the hospital.

For the experiment, each subject was asked to repeatedly imag-
ine two different limb movements according to the visual cue.

Each trial started with a fixation cross displayed in the center of
screen and lasted for 7 s. At second 1, a visual cue appeared on the
screen indicating the MI task to be performed. The cue for patient
SS was an arrow pointing to the left or right hand, whereas that
for patients AM and JS was a picture showing either a tongue or a
little finger. The imagination phase lasted 4 s. In the final 2 s of
each trial, the patient could relax.

All three patients had grid electrodes implanted, but patients JS
and SS had additional strip electrodes. The electrode grids were
placed on the cortex under the dura master, covering the primary
motor and premotor areas as well as the frontotemporal region of
either the right or left hemisphere. The electrodes were connected
to an EEG amplifier by cables. The ECoG signals were recorded
at a sampling rate of 1000 Hz and re-sampled to 100 Hz for offline
analysis. The number and positions of implanted electrodes, the
tasks performed, and the number of trials recorded from each pa-
tient are listed in Table 1. The electrode placement for recording
ECoG data of the second patient and the timing scheme of each
trial are illustrated in Fig. 1 (b) and Fig. 2 (b), respectively.

3. Methods
The channel selection algorithm based on the wrapper is illus-

trated in Fig. 3. As shown in Fig. 3 (a), raw EEG data are first
temporally filtered in 8∼15 Hz, and then subjected to channel se-
lection via BPSO/BQPSO, and finally classified by SVM. To accu-
rately assess classification performance, 10-fold cross-validation
is applied, i.e. the whole data set is divided into 10 equal parts,
with each part being used for testing set once and the other parts
for training set. Measurements of average error rate and number
of channels are employed to calculate the fitness value at each it-
eration.

As shown in Fig. 3 (b), at each fold of the 10-fold cross vali-
dation, the temporally filtered EEG data from chosen channels are
fed into the CSP algorithm for estimating two spatial filters, used
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Figure 3. (a) BPSO/BQPSO channel selection and calculation of fitness values based on 10-fold cross validation for motor imagery BCIs.
To realize the 10-fold cross validation, the training data were divided into 10 equal-size parts. Each part was used for testing set once and
the other nine parts were used for training set; (b) Feature extraction and classification of EEG/ECoG signals based on CSP and SVM using
selected channels in one fold of the 10-fold cross validation process.

to filter both training and testing data. Feature signals are extracted
based on spatially filtered data. Feature signals from training set
are employed for training an SVM classifier model, which then
classifies feature signals from testing set.

3.1 Channel selection
The particle swarm optimization (PSO) developed by Kennedy

and Eberhart (1995) is a population-based evolutionary search
method. The main idea of the algorithm comes from the social be-
havior of animals, such as bird flocking, fish schooling, and animal
herding. The original PSO designed for continuous search space
was modified to be applicable to discrete binary search space, thus
termed binary PSO (BPSO) (Kennedy and Eberhart, 1997). From
the perspective of quantum mechanics, Shin et al. (2004) adapted
the PSO algorithm to develop a novel quantum-behaved particle
swarm optimization (QPSO), using the quantum uncertainty prin-
ciple to describe the motion state of particles. Subsequently, they
further generalized the QPSO algorithm to discrete binary search
spaces, developing the binary QPSO (BQPSO) (Xi et al., 2010).

3.1.1 Binary particle swarm optimization
In PSO, a particle swarm consists of M particles that denote

potential problems, X = {X1,X2, · · · ,XM}. A potential solution

to a problem is expressed as a particle flying in a D-dimensional
space having the position vector Xi = {Xi1,Xi2, · · · ,XiD} and the
velocity vector Vi = {Vi1,Vi2, · · · ,ViD}. Each particle maintains
a record of the position of its previous best performance (i.e.
the position with the best fitness value) in a vector, pbesti =
{pbesti1, pbesti2, · · · , pbestiD}. At each iteration, each particle
competes with others in the population for the best position, de-
noted as gbesti = {gbesti1,gbesti2, · · · ,gbestiD}. Thereby, parti-
cles move in the search space according to the following:

Vid = wVid +φ1(pbestid −Xid)+φ2(gbestd −Xid) (1)

Xid = Xid +Vid (2)

where i = 1,2, · · · ,M and d = 1,2, · · · ,D. The w is the inertia
weight introduced for accelerating the convergence speed of PSO.
φ1 and φ2 are two random positive numbers generated for each i
and d. At each iteration, the value of V id is confined to [-Vmax,
Vmax] .

In a discrete binary space, the velocity of a particle can be de-
scribed by the number of bits changed per iteration, or the Ham-
ming distance of a particle, between time t and t + 1. A particle
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Table 2. Parameters used for channel selection in BQPSO and BPSO. MaxItera denotes the number of maximum iterations and t is the
number of current iterations

BQPSO BPSO

Swarm size 20 Swarm size 20

Maximum iteration 100 Maximum iteration 100

Dimension of particles 1 Maximum of velocity 6

α (1−0.5)MaxItera−t
MaxItera +0.5 w (1−0.5)MaxItera−t

MaxItera +0.5

with zero bits flipped does not move, while it moves the “farthest”
with all bits flipped. Accordingly, the velocity of a particle can be
defined in terms of the probabilities that a bit will be in one state
or the other. That is to say, a particle moves in a state space with
each dimension confined to 0 and 1, where each V id denotes the
probability of bit Xid taking the value 1.

In summary, the particle swarm Eqn. (1) remains unchanged
in BPSO, but now pbestid, gbestid, Xid and Xid are taken as inte-
gers in {0, 1}. Since V id is a probability, it must be confined to
[0.0, 1.0]. This can be implemented by a sigmoid limiting trans-
formation function S(v) = 1/(1+exp(-v)). Thus, themain difference
between PSO and BPSO is that formula (2) is replaced by the fol-
lowing Eqn. (3):

if rand()< S(Vid) then Xid = 1 else Xid = 0 (3)

where rand() is a random number selected from a uniform distribu-
tion in [0, 1]. In BPSO, Vmax is retained, i.e. |V id| < Vmax, which
limits the ultimate probability that bit Xid will take on a binary
value.

3.1.2 Binary quantum-behaved particle swarm optimiza-
tion

Quantum-behaved particle swarm optimization (QPSO) is a
novel variant of PSO and outperforms PSO in search abilities. In
QPSO, there are no the concepts of velocity and trajectory, but
those of position and distance. A particle moves in the continuous
search space according to the following equations:

mbest =
1
M

M

∑
i=1

pbesti

=
1
M

(
M

∑
i=1

pbesti1,
M

∑
i=1

pbesti2, · · · ,
M

∑
i=1

pbestid) (4)

pid = φ pbestid +(1−φ)gbestd , φ = rand() (5)

Xid = pid ±α|mbestd −Xid |ln(1/µ), µ = Rand() (6)

wherembest is the mean best position among the particles. pid is a
stochastic point between pbestid and gbestd , i.e. the dth coordinate
of the local attractor of the ith particle pi. φ and µ are two random
numbers distributed in [0, 1], and α is a parameter of QPSO called
contraction-expansion coefficient.

Since the iteration equations of QPSO are far different from
those of PSO, the methodology of BPSO does not apply to QPSO.
Because the position of a particle in a discrete space is expressed as

a binary string, the key problem of designing BQPSO is to define
the distance between two positions and the corresponding trans-
formation. In BQPSO, the distance is defined as the Hamming
distance between two binary strings X and Y, i.e. |X-Y | = dH (X,Y),
where dH () is the function for computing the Hamming distance,
i.e. the sum of different bits between the two strings. In BQPSO,
the variable Xid stands for the dth substring (i.e. dth decision vari-
able) of the ith particle, rather than dth bit of a binary string. Let
the length of Xid be ld , then the length of Xi can be calculated as

l =
D

∑
d=1

ld ,d = 1,2, · · · ,D (7)

The remaining problem for BQPSO design is in adapting the
continuous evolution Eqns. (4)-(6) to discrete binary spaces. In
QPSO, the mean best position of all particles (mbest) is derived
from Eqn. (4), whereas in BQPSO, the jth bit of mbest is deter-
mined by the states of jth bits of all particles’ pbests. The jth bit of
m best is 1 if mbest j > 0.5, 0 if mbest j < 0.5, and randomly taken
as 1 or 0 if mbest j = 0.5. In BQPSO, Pi can be generated through
crossover operation of pbesti and gbest, which can be divided into
one-point operations and multi-point operations.

The update Eqn. (6) for QPSO can be rewritten as |Xid - pid| =
α |mbestd - Xid | ln(1/µ), µ = Rand(). It can be further adapted for
use in BQPSO as follows

dH(Xid ,Pid) = ⌈b⌉ (8)

where b = αdH(Xid ,Pid)ln(1/µ). Function ⌈ ⌉ is a round sign
used for rounding towards nearest decimal or integer. According
to the above equations, a new substring Xid can be calculated with
time complexity O(bld). To reduce the computation cost, Xid is
generated by mutating each bit of Pid with the mutation probabil-
ity,

Pr =

{
b/ld
1, if b/ld>1

(9)

3.1.3 Fitness function
When BPSO/BQPSO is used for channel selection, individ-

uals in a population are represented in terms of n-bit binary
strings, corresponding to n channels used for data recording. The
BPSO/BQPSO operates on a population of binary strings and
chooses channels by optimizing a fitness (or objective) function.
There are two goals in channel selection: improving classifica-
tion accuracy, and reducing the number of channels. Accordingly,
the fitness function, f(z), can be defined as the weighted sum of
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Table 3. Classification error rates (%) and the number of channels yielded respectively by BQPSO-CSP and BPSO-CSP at weight
coefficients w1 = w2 = 0.5, the CSP methods using all channels and the 18 channels around the electrodes C3 and C4, and the best

channel selection method (SCSP-1) (Arvaneh et al., 2011) for the EEG data set. # Ch: Number of channels; ER: Error rate.

BQPSO-CSP BPSO-CSP Basic-CSP-1 Basic-CSP-2 SCSP-1

Subject # Ch ER # Ch ER # Ch ER # Ch ER #Ch ER

aa 16.4 11.22 33 14.50 118 21.36 18 21.60 17 19.29

al 9.6 2.17 27.6 2.42 118 2.79 18 3.72 12 2.86

av 20.6 18.00 34.8 20.80 118 32.79 18 29.74 33 42.86

aw 17.8 5.18 30.4 8.66 118 7.50 18 15.49 36 15

ay 10.4 3.74 28.4 4.54 118 4.57 18 8.31 15 8.58

Mean 14.9 8.06 30.8 10.18 118 13.80 18 15.77 22.6 17.72

two decision variables, the error rate of 10-fold cross-validation,
f 1(z), and the relative number of channels, f 2(z), for a minimiza-
tion problem (Hasan et al., 2010; Reyes-Sierra and Coello, 2006)

f (z) = w1 f1(z)+w2 f2(z) (10)

where the weights wi are normalized, i.e.,
2
∑

i=1
wi = 1. f 1(z) is ob-

tained from the given channel subset denoted by an individual, z,
and f 2(z) is derived by dividing the number of channels chosen in
the individual z by the total number of channels in raw data set,
i.e. the length of the binary string, n. Since the numerical value of
f 1(z) and f 2(z) ranges from 0 to 1, so does that of f(z).

Several important steps for BPSO/BQPSO based channel se-
lection are explained below:

1) Coding. Each particle in a population is coded as a binary
string, whose length is equal to the total number of channels in
a raw data set. When any bit of the binary string is 1, the corre-
sponding channel is retained; otherwise the corresponding chan-
nel is removed. Thus, each particle denotes a different subset of
channels, which is a candidate solution to the problem of channel
selection.

2) Initialization. An initial population with i particles (i = 20
in this study) is randomly generated, and each bit of binary string
for every particle is randomly set to 1 or 0.

3) Selection. Channel selection is equivalent to finding a global
minimum of the fitness function. At each generation, the particle
with the smallest fitness value is found. After each iteration, the
positions of all particles are updated, and the current best position
of each particle is compared with that of the best particle of the
previous generation to find the global optimal position, i.e. the
best particle at the current generation. The best particle at the final
generation includes the channels selected by BPSO/BQPSO.

3.2 Feature extraction
3.2.1 Data preprocessing

Prior to channel selection, both the EEG and ECoG data sets
were preprocessed with respect to time windowing, temporal fil-
tering, and electrode referencing. In the EEG dataset, the raw data
in a time window of 1-2 s after the visual cue were segmented from
each channel for classification (Shin et al., 2012). The windowed
EEG data were band-pass filtered between 8 to 15 Hz to extract µ
rhythm signals associatedwithMI (Shin et al., 2012). In the ECOG
dataset, the raw data in a time window of 0.5-2.5 s following the
visual cue were segmented from each channel for classification.

The data segments used for classifying the two data sets were not
optimized, but were determined experimentally and heuristically.
Common average reference (CAR) was used to re-reference the
windowed data to reduce sensitivity to artifacts (Ludwig et al.,
2009). Re-referenced ECoG data were band-pass filtered between
8 and 30 Hz to extract both µ and β rhythm signals associated with
MI (Wei et al., 2007).

3.2.2 Common spatial pattern

Common spatial pattern (CSP) is a powerful algorithm for spa-
tial filtering, which has been successfully employed in MI-based
BCIs for discriminating between two classes of EEG data. By
spatially filtering multi-channel EEG signals, CSP maximizes the
variance of one class while minimizing the variance of the other
class, making subsequent classification more effective (Blankertz
et al., 2008; Lotte and Guan, 2011; Muller-Gerking et al., 1999).

The purpose of CSP is to extract task-related signal compo-
nents and suppress task-unrelated components and noise. Assume
that there are two-class EEG signals evoked by two mental tasks,
e.g. MI of left hand and right hand. Let X1 and X2 respectively
denote a single-trial EEG signal of the two classes 1 and 2, with
the dimension of N(channels)T (sampling points). Two normal-
ized spatial covariance matrices, R1 and R2, are calculated with
X1 and X2, respectively, as

Ri =
XiXT

i
trace(XiXT

i )
, i = 1,2 (11)

where superscript T denotes the transpose operation, and trace(A)
stands for the trace operation, i.e. the sum of diagonal elements of
matrix A. The averaged spatial covariance matrix, R̄i across all
training trials can be obtained for each class. Subsequently, the
composite spatial covariance matrix Rc can be calculated as

Rc = R̄1 + R̄2 (12)

Since Rc is a real and symmetric matrix, it can be factored as
Rc = UcΣcUT

c , where Uc is the eigenvector matrix and Σc is the
diagonal eigenvalue matrix. Uc and Σc can be used for calculating
the whitening transform matrix as P =

√
Σ−1

c UT
c , which trans-

forms R̄i as follows

Si = PR̄iPT , i = 1,2 (13)

146 Zhang and Wei



Figure 4. The evolution of the classification error rates yielded by BQPSO-CSP and BPSO-CSP with the number of channels at the nine pairs
of weight coefficients (marked by red cycles and blue asterisks) on the EEG data set.

Consequently, S1 and S2 will share the same eigenvector. If S1 is
factored as S1 = BΣ1BT , S2 will be factored as S2 = BΣ2BT , and
Σ1 +Σ2 = I, where I is the identity matrix. Given that the sum of
two eigenvalues corresponding to the two-class EEG signals is al-
ways equal to one, eigenvectors with the largest eigenvalues for S1
will correspond to those with the smallest eigenvalues for S2, and
vice versa. This property is extremely important for classification
of EEG signals, because it means that when the signal variance for
one class is maximized, that for the other class will be minimized.

The CSP algorithm leads to a spatial filter matrix as follows:

W = (BT P)T (14)

where W ∈ RN×N . In general, the first and the last m rows are
used as two spatial filters W1 and W2 for the two mental tasks
respectively. The two spatial filters are optimal in the sense that
they extract task-related components and eliminate common com-
ponents.

3.2.3 Feature definition

The last step of feature extraction is to define feature signals for
classification. Suppose that task 1 causes a relatively increased
EEG variance over a specific area of the brain, and the variance
of the EEG component filtered by W1 is greatly enhanced com-
pared with that filtered byW2, and vice versa. Given a single-trial
spatiotemporal signal matrix, X, with unknown label, two runs of
spatial filtering by W1 and W2 are applied. Then, features f 1 and
f 2 are defined as follows:

fi = log
(

var(WiX)

var(W1X)+var(W2X)

)
, i = 1,2 (15)

where f i takes value between 0 and 1 before logarithmic operation. 
In theory, f1 takes value 0 for trials from task 2 and takes 1 for trials
from task 1. Contrary results will be yielded for f 2. The logarith-
mic operation is adopted to make the distribution of elements in f i 
more normal. Ultimately, the feature vector used for classification

can be structured as f = [ f1
1, f1

2, · · · f1
m, f2

1, f2
2, · · · f2

m] ∈ R1×2m.

3.3 Classification
A linear support vector machine (SVM) was used as the classi-

fier in this study. Proposed by Cortes and Vapnik (1995), SVM is a 
superior classification algorithm in the field of pattern recognition 
and machine learning. In the field of BCI studies, SVM has ex-
hibited robust classification performance (Blankertz et al., 2003; 
Kaper et al., 2004; Schlgl et al., 2005). The purpose of SVM is to
design a hyperplane g(V ) = wTV +w0 = 0, which maximizes the 
margin between two classes of training data, where w is a weight
vector and w0 is an offset. Due to this characteristic, the general-

ization performance of the classifier is guaranteed.
A linear SVM can be summarized as the following optimiza-

tion problem:
minimize J(w) =

1
2
∥w∥2 +C

N

∑
i=1

ξ 2
i

subjectto yi(wTV (i)+w0)≥ 1−ξι , i = 1,2, · · ·,N
(16)

where i is the index of training trials, ζ i is a slack variable and C is
a regularization parameter. The role of ζ i is to slack the require-
ment of linear separability, whereas that of C is to make a com-
promise between the bias and variance of classification results.

A linear SVM classifier (Mller et al., 2003) is trained with the
function fitcsvm in Statistics and Machine Learning ToolboxTM.
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Table 4. Classification error rates (%) and the number of channels yielded respectively by BQPSO-CSP and BPSO-CSP at weight
coefficients w1 = w2 = 0.5, the CSP method using all channels, and the channel selection method (RCE cross-val.) (Lal et al., 2005) for

the ECoG data set. # Ch: Number of channels; ER: Error rate.

BQPSO-CSP BPSO-CSP Basic-CSP-1 RCE cross-val.

Subject # Ch ER # Ch ER # Ch ER # Ch ER

AM 13.4 14.95 22.4 22.99 64 29.83 5.8 24.30

JS 6.2 23.40 16.6 27.80 84 32.89 21.5 26.80

SS 4.2 9.81 11.6 13.25 74 12.22 5.0 23.30

Mean 7.9 16.05 16.9 21.35 74 24.98 10.8 24.80

Usually, a model selection procedure is required for determining
the regularization parameter C, in order to improve classification
accuracy. Since the purpose of this research is to evaluate the
search algorithm for channel selection, we adopted the default pa-
rameter in fitcsvm, i.e. C = 1.

4. Results
The efficacy of the CSP algorithm depends heavily upon the

number and positions of channels used for classification. Hence,
before feature extraction was conducted by CSP, different channel
sets were applied, including i) channel subsets chosen by BQPSO
and BPSO, ii) whole/total channels contained in raw data sets,
and iii) 18 benchmarked channels around electrodes C3 and C4
for the EEG data set. These four CSP methods are hereafter la-
belled: BQPSO-CSP, BPSO-CSP, Basic-CSP-1, and Basic-CSP-
2, respectively.

The performance of BQPSO-CSP was tested and compared
with the other three CSP methods on the two data sets, EEG ad
ECoG. For the EEG data set, three pairs of most important spatial
filters (i.e. m = 3 in the Eqn. (14)) were used, according to their
contribution to classification. For the ECoG dataset, only one pair
of the most important spatial filters (i.e. m = 1 in the Eqn. (14))
were used. The parameters used for channel selection in BQPSO
and BPSO algorithms are listed in Table 2.

4.1 BQPSO/BPSO for channel selection
In this study, both the error rate and the number of chosen chan-

nels yielded by BQPSO-CSP and BPSO-CSP were the results of
10-fold cross-validation averaged across 5 independent executions
(Xi et al., 2016). The setting of w1 and w2 in the fitness function
(10) is a dynamically changing process, i.e. one weight coefficient
changed with the other. We tested 9 combinations of w1 and w2
in which w1 increased from 0.1 to 0.9 in increments of 0.1, while
simultaneously, w2 decreased from 0.9 to 0.1 in sequential reduc-
tions of 0.1. Thus, for each subject or patient, both the BQPSO-
CSP and the BPSO-CSP had 9 sets of classification results.

Fig. 4 and Fig. 5 depict the classification error rate and the
number of channels yielded by BQPSO-CSP and BPSO-CSP at
the nine pairs of weight coefficients on the two data sets. Each
mark (cycle or asterisk) in each subplot represents the error rate
and the number of channels achieved at one pair of weight coeffi-
cients. When the weight of error rate (w1) was assigned the maxi-
mum value (0.9), the two methods for channel selection produced
the least (or near least) classification error rates, by excluding the
most redundant channels. On the contrary, when the weight of
channel number (w2) was assigned the maximum value (0.9), the

two methods retained minimal (or near minimal) number of chan-
nels, without increasing the error rates as compared to the CSP
method using all channels.

From each subplot of Fig. 4 and Fig. 5, it can be observed
that the changing curve of error rate with the number of chan-
nels yielded by BQPSO-CSP is always located on the left of that
yielded by BPSO-CSP. This means that to obtain a roughly equal
error rate, the latter needs to select many more channels than the
former. Examining data from subject al as an example, a 2.17% er-
ror rate required an average of 9.6 channels for the former, whereas
a 2.42% error rate required an average of 27.6 channels for the lat-
ter. Therefore, the proposed BQPSO-CSP method outperformed
the BPSO-CSP method, particularly when the number of channels
is small.

4.2 Spatial patterns
Fig. 6 and Fig. 7 display the topological analyses of spatial

patterns yielded by the three methods for channel selection in rep-
resentative subjects in the two data sets. The spatial patterns are
derived from the CSP filters, i.e., the inverse of the CSP filter ma-
trix (Eqn. 14). The first and the last columns of the inverse matrix
constitute the most important spatial patterns. In the two figures,
the first row plots the topological maps obtained from all channels,
whereas the second and third rows show the topological maps ob-
tained from channels selected by BPSO-CSP and BQPSO-CSP,
respectively. The dots in each topological map represent the posi-
tions of total channels or chosen channels.

It can be observed from Fig. 6 that the spatial patterns ob-
tained from all channels (1st row) have large weights scattered in
several locations irrelevant to the MI tasks. Especially for sub-
ject aa, spatial patterns yielded from MI of foot movement appear
messy, displaying no clear focus. After BPSO- or BQPSO-based
channel selection, the focus of spatial patterns (2nd and 3rd rows)
is clearer than that using all channels. Moreover, the foci of these
patterns are moved to (nearby) locations related to the MI tasks.

With respect to these two methods for channel selection, while
BPSO could reduce the number of channels employed, the posi-
tions of the chosen channels were relatively scattered. In addition,
some channels outside the focus area were also selected, raising
the potential to introduce noise into data used for classification.
By contrast, BQPSO selected fewer channels and these channels
were concentrated mainly on the focus area. The positions and
number of chosen channels explained the decrease in error rate
compared to that of BPSO and total channel method. Moreover,
channels selected by BQPSO were almost identical to those se-
lected in the focus area by BPSO, especially for subject AM in

148 Zhang and Wei



Figure 5. The evolution of classification error rates yielded by BQPSO-CSP and BPSO-CSP with the number of channels at the nine pairs of
weight coefficients (marked by red cycles and blue asterisks) on the ECoG data set.

Fig. 7. Together, these results indicate that the proposed BQPSO-
CSP method robustly selects channels which are more relevant to
mental tasks and interpretable from a neurophysiological point of
view.

4.3 Error rate and the number of channels

As shown in Fig. 4 and Fig. 5, the nine combinations of weight
coefficients resulted in nine pairs of error rate and number of chan-
nels. Thus, channels in a BCI system can be configured according
to these results and the requirement of the error rate for a specific
application. As an example, the error rate and the number of chan-
nels yielded by BQPSO-CSP and BPSO-CSP at the weight coeffi-
cients of w1 = w2 = 0.5 on the EEG and ECoG data sets are listed
in Table 3 and Table 4, respectively. As a comparison, the error
rate and number of channels yielded by Basic-CSP-1 and Basic-
CSP-2 are listed in Table 3, and those yielded by Basic-CSP-1 only
are listed in Table 4. (As Basic-CSP-2 contains results from the 18
benchmarked channels around electrodes C3 and C4 for the EEG
data set, there are no Basic-CSP-2 values for the ECoG data set in
Table 4). To compare the proposed method with previously pre-
sented methods for channel selection, the error rate and number
of channels yielded by sparse CSP for channel selection (SCSP-
1) (Arvaneh et al., 2011) and recursive channel elimination (RCE
cross-val.) (Lal et al., 2005), are also listed in Table 3 and Table
4, respectively.

It is observed fromTable 3 that BQPSO-CSP yielded the lowest
error rate for each subject among the four CSP methods. In partic-
ular, subject av demonstrated a substantial drop in error rate from
32.79% (yielded by the full complement of 118 channels) to 18%
(by an average of 14.5 channels selected by BQPSO). On average,
BQPSO-CSP achieved a reduction of 2.12%, 5.74%, and 7.71%
in error rate compared to BPSO-CSP, Basic-CSP-1, and Basic-
CSP-2, respectively. These decreases are remarkable in terms of
MI-based BCIs. Paired Wilcoxon signed rank tests at 95% con-
fidence level establish a significant difference in error rate be-
tween BQPSO-CSP and the other three CSP methods, and be-
tween BPSO-CSP and the two Basic-CSP methods, with p values
all equaling 0.043. In addition, the average number of channels

used by BQPSO-CSP was considerably decreased to an average
of 14.9, as compared to 30.8 (in BPSO) and 118 (in Basic-CSP-1).
Paired Wilcoxon signed rank tests at 95% confidence level reveal
a significant difference in the number of channels between any
two of the former three CSP methods, with p values all equaling
0.043. Finally, compared with SCSP-1, BQPSO-CSP remarkably
reduced the average error rate by 9.66% and the average number
of channels by 7.7.

In the ECoG data set, Table 4 reveals that BQPSO-CSP yielded
an average reduction of 8.63% in the error rate of Basic-CSP-1, by
decreasing the average number of channels from 74 to 7.9. The
decrease in error rate is especially large for subject AM (14.98%).
Likewise, BPSO-CSP reduced the average error rate by 3.63%
with a remarkable drop in the average number of channels from
74 to 16.9. Hence, both BQPSO-CSP and BPSO-CSP are capa-
ble of reducing the error rate by removing a large number of re-
dundant channels. However, BQPSO-CSP was considerably more
effective than BPSO-CSP, evidenced by its considerably lower er-
ror rate with fewer channels selecte for each of the three patients.
Compared with REC cross-val., BQPSO-CSP reduced the average
error rate by 8.75% and the average number of channels by 2.9.

5. Discussion
Feature extraction is a crucial component in a BCI system as

the classification performance depends primarily upon the qual-
ity of feature vectors used for classification rather than the clas-
sifier itself. CSP is a powerful spatial filtering algorithm that is
widely used for feature extraction in MI-based BCIs. However,
the use of excessive electrodes for data recordings renders CSP
algorithm over-fitting, especially when the size of training set is
small. Furthermore, installing a large number of electrodes adds
inconvenience to practical application of BCIs. Thereby, it is an
extremely important step to determine the minimum optimal num-
ber and positions of electrodes for building a high-performance
BCI. This can be accomplished by channel selection.

While channel selection has been studied extensively, it is still a
huge challenge to accurately determine the number and positions
of channels for a specific subject. In this context, we propose a
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Figure 6. Visualization of the most important spatial patterns of the two MI tasks derived from three CSP methods for subjects aa and al in
the EEG data set (118 raw electrodes in total). The dots in each topological map represent the whole channels in raw data or the channels
selected by BPSO/BQPSO. The color at each electrode denotes the magnitude of spatial patterns.

novel evolutionary search algorithm, BQPSO to optimize channel
selection in MI-based BCIs to acquire better data – obtaining high
classification accuracy using as few channels as possible. BQPSO
combines the strength of genetic algorithm (GA) with the features
of PSO and is thus able to determine the global optimum of an op-
timization problem more efficiently than BPSO. This is verified
by our results from in Fig. 3 and Fig. 4, where BQPSO-CSP con-
sistently achieved a significantly lower error rate than BPSO-CSP
using a nearly identical number of channels, or a nearly identical
error rate at a significantly fewer number of channels.

What is the degree of performance improvement following
channel selection? This question might be answered by the re-
sults from Table 3 and Table 4. These results indicate that both
BQPSO-CSP and BPSO-CSP significantly decrease the average
error rate as compared to Basic-CSP-1, which uses all available
channels. Thus, these process of channel selection are more effec-
tive. Interestingly, Basic-CSP-2, which used 18 channels selected
manually from prior knowledge of neurophysiology, increased the
average error rate rather than reducing it. BQPSO-based channel

selection decreased the average error rate from 13.8% to 8.06% for
the EEG data set – an improvement of 41.59%; it was decreased
from 24.98% to 16.05% for the ECoG data set – an improvement
of 35.75%.

It is important to note that these results were achieved at only
one combination of weight coefficients, i.e. w1 = w2 = 0.5. Con-
sidering that there were nine additional pairs of weight coeffi-
cients, further improvements in classification performance are en-
tirely possible. It must also be noted that since electrodes for the
ECoG data set were arranged for removing epileptic foci, they did
not cover the whole motor area important for MI-based BCI study.
This may explain why the average error rate of the ECoG data set
was larger than that of the EEG data set, although the former had
higher SNR. Despite this, the average improvement in error rate
remained as high as 35.75%. This should be attributed to BQPSO-
based channel selection which displayed success in selecting infor-
mative channels, while removing redundant ones.

For MI-based BCI paradigms, different types of brain signals
can be used as input for a BCI system. In the study conducted
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Figure 7. Visualization of the most important spatial patterns of the
two MI tasks derived from three CSP methods for the patient AM in
the ECoG data set (64 raw electrodes in total). The dots in each
topological map represent the whole channels in raw data or the
channels selected by BPSO/BQPSO.

by Naseer and Hong (2015), fNIRS signals arising from two men-
tal tasks of right and left wrist MI were exploited for building a
BCI. The mean and slope of changes in oxygenated hemoglobin
(HbO) concentration were extracted as the feature signal for clas-
sification. The results, based on the slope of changes in HbO con-
centration, suggest an average classification accuracy of 87.28%
across ten subjects using the data segment of 2-7 s. This degree of
accuracy is on par with that obtained in our study (91.94% for the
EEG data set, and 83.95% for ECoG data set), demonstrating the
promising potential of fNIRS-based BCIs.

How many channels are necessary to achieve satisfactory clas-
sification performance (∼90%) for MI-based BCI? The answer
depends upon several factors, including the effect of subjects, ex-
perimental conditions, and signal processing algorithms used for
classification. In the case that the latter two factors are fixed, the
number of channels required for a high accuracy rate becomes
subject-specific, i.e. it is heavily determined by the subjects them-
selves. It can be observed from Fig. 3 that an error rate of 10%
was achieved by subjects al, aw, and ay, using 10 or fewer chan-
nels, and by subject using 20 channels. The subject av could not
achieve the error rate regardless of the number of channels used
for classification. It can be observed from the third row of Fig. 5
and Fig. 6 that the optimal position of electrodes might vary for

different subjects, but was nevertheless primarily located in motor
areas related to corresponding limbs. Note that results in Table 4
cannot be used to explain the problem of the number of channels
as the ECoG recording channels were confined to localized brain
regions for the purpose of surgery. In summary, for most well-
trained subjects, about 20 carefully selected channels can ensure
satisfactory classification performance if the experimental condi-
tions and classification algorithms are well-designed.

This study focused on channel selection methods in MI-
based BCI applications. There are two requirements for channel
selection–first, to reduce the number of channels, and second, to
reduce the error rate compared to that yielded by using all available
channels in raw data. To this end, the BQPSO-based wrapping ap-
proach is proposed for channel selection. Although it is compu-
tationally demanding, the subset of selected channels can achieve
better classification results. The proposed BQPSO-CSP method
for channel selection outperforms Basic-CSP-1, in terms of both
classification accuracy and the number of selected channels. That
is to say the BQPSO-CSPmethod can achieve higher classification
accuracy with fewer channels compared to the CSP method using
all available channels. As such, the convenience (fewer channels)
and practicability (lower error rate) of a BCI system can be im-
proved simultaneously.

6. Conclusion
To increase the classification ability of CSP, an evolution-

ary search algorithm, BQPSO, is proposed for channel selection,
which is achieved by a wrapping manner. The fitness function
of BQPSO is defined as the weighted sum of the error rate and
the relative number of channels. The classification performance
of BQPSO-based CSP method was tested on two data sets and
compared with that of BPSO-based CSP, and Basic-CSP which
employs either all, or manually selected, channels. Experimental
results demonstrate that the proposed BQPSO-CSP method out-
performs the BPSO-CSP method, by both reducing the error rate
and the required number of channels for a MI-based BCI, as com-
pared to Basic-CSP methods using all channels.
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