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Various bioactive substances isolated from natural prod-
ucts play a pivotal role in the prevention and cure of
neurodegenerative diseases, such as Alzheimer's disease.
Currently, there are many theories about the pathogenesis
of this disease. In this review we discuss among them, the
cholinergic hypotheses, the A toxicity hypothesis, and
the tau dysfunction hypothesis. Multiple potential targets
are a focus for the development of anti-AD drugs. There
is an urgent need to develop more effective therapies to
treat and delay the onset of the disease and to find safe
and effective drugs. In this review, the recent progress of
anti-AD effects and their principal targets are updated.
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1. Introduction

Alzheimer's disease (AD) is a chronic progressive neurodegen-
erative disease associated with memory loss and cognitive impair-
ment (Colligris et al., 2018). This disorder has reached worrying
epidemic proportions related to the aging of the global population.
Many studies have shown mechanisms for the pathogenesis of AD,
including among others, the cholinergic hypothesis (Leblhuber et
al., 2018; Mesulam and Geula, 1991), A8 amyloid toxicity hypoth-
esis (Verdile et al., 2007), tau dysfunction hypothesis (Bagyinszky
et al., 2018), vascular hypothesis (Snyder et al., 2015), insulin hy-
pothesis (Chornenkyy et al., 2018) and gene mutation hypothesis
(Ringman and Coppola, 2013). Among them, the most studied
have been the cholinergic, AB toxicity, and tau dysfunction hy-
potheses.

The cholinergic hypothesis proposes that increased AChE ac-
tivity in AD patients with brain lesions may lead to the loss of
the acetylcholine of cholinergic synapses, affect the conduction of
nerve impulses and result in cognitive and memory impairment
(Leblhuber et al., 2018; Mesulam and Geula, 1991). Thus, in-
creased AChE activity is one of the main causes of AD, and inhi-
bition of AChE activity may alleviate these symptoms in patients.
ACHhE inhibitors increase cholinergic transmission by blocking the
degradation of ACh and are therefore considered to be a promising
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approach for the treatment of AD. Currently, the main therapies
available for AD treatment are based on the cholinergic hypothesis
(Lleo et al., 2006; Reitz et al., 2011). As described by Barage and
Sonawane (Barage and Sonawane, 2015), the biochemical studies
of biopsy tissue and post-mortem brain tissues from AD patients
showing a reduction in relation to the choline acetyltransferase ac-
tivity, ACh synthesis, choline uptake and ACh release. These no-
table data indicated the clinical importance referred to degenera-
tion of cholinergic neurons and related loss of cholinergic neuro-
transmission, considering the cerebral cortex as well as other areas
that brought about a significant contribution to impairment of cog-
nitive functions in AD.

According to the so called Af toxicity hypotheses, the accu-
mulation of Af in the brain of AD patients is the principal patho-
logical event in AD, which eventually leads to a number of sec-
ondary neuropathological changes such as accumulation of the
hyperphosphorylated tau protein forming neurofibrillary tangles
(NFTs), synaptic degeneration, neuronal cell death and demen-
tia (Kuperstein et al., 2010). Among these, the extracellular de-
position of Af forming toxic plaques along with the intracellu-
lar accumulation of the hyperphosphorylated tau protein forming
NFTs in the brain, have been considered as the major patholog-
ical hallmarks of AD (Takahashi et al., 2017). The tau deposi-
tion in brain NFTs, has been suggested to be the consequence of
the accumulation of A plaques (Hutton et al., 1998; Lewis et al.,
2001). Furthermore, the pathogenic role of genetic variations at
the apolipoprotein E (apoE) locus has also been reported to involve
AP metabolism. Thus, knockout mutant mice for apoE (apoE-
deficient mice) exhibited strikingly reduced Af deposition (Bales
et al., 1997). A number of genetic variations, involving break-
down and clearance of Af3 have been correlated/linked to the risk
of AD development (Awasthi et al., 2016). Thus, ACH shows that
cerebral deposits of A are the main pathological trigger in AD
development, while the remaining changes, such as tau tangle for-
mation, result from an imbalance in the equilibrium between Af
production and clearance.

The tau dysfunction hypothesis proposes that helically twisted
filaments of hyperphosphorylated tau are crucial pathogenetic fea-
tures in AD. Based on the -amyloid hypothesis, which was pro-
posed in 1991, NFT generation is preceded by deposits of A
(Hardy and Allsop, 1991). The lack of balance between the for-
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mation and removal of Af from brain tissue results in a situation
that leads to toxic aggregation and production of senile plaques.
This process promotes hyperphosphorylation of tau protein, thus
resulting in destabilization of the cytoskeleton and degeneration of
nerve cells (de Castro et al., 2019). It is noteworthy that not only
plaque formation promotes hyperphosphorylation of tau, and this
finding is supported by the fact that the neurofibrillary degenera-
tion starts in the allocortex of the medial temporal lobe (entorhinal
cortex and hippocampus), thus spreading to the associative isocor-
tex. However, the entorhinal cortex is not susceptible to plaques
formation (Serrano-Pozo et al., 2011). Tau protein is characterized
by its implications in the stabilization of cytoskeletal microtubules
(Garcia and Cleveland, 2001). In AD, hyperphosphorylated tau
is displaced to the somatodendritic portion. Tau phosphorylation
is critical to its function, but hyperphosphorylated tau no longer
binds to microtubules, instead aggregating into paired helical fila-
ments (Lee and Trojanowski, 1992). The result is a general insta-
bility of microtubules and disruption of axonal transport that leads
to neuronal injury and cell death. Increased levels of phosphory-
lated or total tau in the CSF are strong indicators of neurodegen-
erative diseases or injury (Clark et al., 2003).

Acetylcholinesterase (AChE) inhibitors have been reported to
inhibit Af deposition and tau hyperphosphorylation. Some in-
hibitors are synthetic while others are natural. Although some
synthetic drugs have been clinically employed, their wider use
is limited due to side effects and inefficiencies (Bastianetto et
al., 2000). Alternatively, natural products exert anti-AD effects
through multi-targeting, which provides advantages and the pos-
sibility of wide application (McKenna et al., 2001; Morasch et al.,
2015; Zanforlin et al., 2017).

2. Inhibition of AChE activity
2.1 AChE in the pathogenesis of AD

The cholinergic hypothesis proposes that increased AChE ac-
tivity in AD patients with brain lesions may lead to the loss of
the acetylcholine of cholinergic synapses, affect the conduction of
nerve impulses and result in cognitive and memory impairment
(Leblhuber et al., 2018; Mesulam and Geula, 1991). Thus, in-
creased AChE activity is one of the main causes of AD, and inhi-
bition of AChE activity may alleviate these symptoms in patients.
AChE inhibitors increase cholinergic transmission by blocking the
degradation of ACh and are therefore considered to be a promis-
ing approach for the treatment of AD. Recently, AChE inhibitors
such as donepezil, huperzine A and galantamine have been used
for the treatment of AD. However, they only relieved the symp-
toms of AD rather than prevent, terminate and reverse develop-
ment of the disease. These current drugs exhibit some side effects
such as nausea, vomiting, and insomnia (Bastianetto et al., 2000).
It is therefore urgent to find novel drugs that can effectively pre-
vent and treat AD. Recently, with the rapid development of tech-
nologies in separation, purification and analysis natural products
have been sought for the prevention and treatment of AD. Natural
products might have advantages such as less toxicity in the pre-
vention and treatment of AD. Researchers have found many nat-
ural AChE inhibitors (see Table 1). In this section known natural
AChE inhibitors are summarized, and their chemical structures are
given by ChemDraw software. Most of them are alkaloids, includ-
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Table 1. IC50 of natural products as AChE inhibitors

AChE inhibitors ~ Compound IC50 (uM)
N-methylasimilobine 1.5
Taspine 0.33
Serpentine 0.775
Stylopine 15.8
Epiberberine 6.5
Pseudo-ocorydaline 8.4
Pseudo-berberine 4.3
Pseudo-copsitine 4.5
Berberine 0.44-0.8
Columbamine 0.44-0.8
Jatrorrhizine 0.44-0.8

Alkaloids Coptisine 0.44-0.8
Tetradehydrocheilanthifoline 0.44-0.8
Coronaridine 8.6
Yoacangine 4.4
10-hydroxycoronaridine 29
19,20-dihydrotabernamine 0.227
19,20-dihydroervahanine A 0.071
Geissoschizine methyl ether 3.7
N-demethylpugietinone 6.4
Ebeiedinone 5.7
Hupeheninoside 16.9
Chuanbeinone A 7.7
Yibeinoside 6.5
Sophoflavescenol 8.37
Icariine 6.47
Demethylanhydro-icaritin 6.67

. 8-C-lavandurylkaempferol 5.16

Non-Alkaloids
Kaempferol 3.31
(4R ,4aS)-4-vinyl-4,4a,5,6,6-tetrahydro- 1
3H-pyrano [3,4-cpyran]-1-one
Secostrychnosin 0.5
Biatractylolide 6.54

ing isoquinolines, indoles, and quinolizines. There are also some
non-alkaloids, including terpenoids, flavonoids and phenolic com-
pounds (Orhan et al., 2009). Some of these natural products show
much lower IC50s than that of the agents currently employed (In-
gkaninan et al., 2006; Rollinger et al., 2006; Wang et al., 2016;
Yang et al., 2012). Ellman's method is currently the most widely
used for the evaluation of AChE inhibitors, and it can be used to
quantitatively determine the inhibitory activity of the tested drugs
(Pohanka et al., 2011).

2.2 Natural products that inhibit AChE activity
2.2.1 Alkaloids

A large number of alkaloids isolated from nature inhibit AChE
activity. N-methylasimilobine (C1) is a noncompetitive AChE in-
hibitor isolated from lotus and has strong AChE inhibitory activ-
ity with an IC50 of 1.5 ug/mL (Yang et al., 2012). Taspine (C2),
an alkaloid isolated from magnolia grandiflorum is a long-acting
AChE inhibitor (IC50 = 0.33 uM) in a dose-dependent manner
with better inhibitory activity than galantamine (IC50 = 3.2 uM).
Molecular docking studies have shown that taspine inhibits AChE
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activity through three pathways: (1) The planar aromatic ligand
forms a 7 - 7 stacking interaction with the Trp84 and Phe330
amino acid residues in AChE (Rollinger et al., 2006); (2) The es-
terification site connects with an amino side chain; (3) Hydrogen
bonds are interconnected. Serpentine (C3) isolated from Catha-
ranthus roseus inhibits AChE (IC50 = 0.775 uM) which is better
than that of physostigmine in vitro, and it might be developed as an
anti-AD drug (Wang et al., 2016). It has been shown that corydalis
plants are used to treat memory impairment (Pereira et al., 2010)
and demonstrated that several isoquinoline alkaloids extracted
from dentate corydalis root have AChE inhibitory activities (Hung
et al., 2008). These alkaloids include stylopine (C4), epiberberine
(CS5), Pseudo-corydaline (C6), pseudo-berberine (C7) and pseudo-
copsitine (C8). Their IC50 values for inhibition of AChE are 15.8,
6.5, 8.4, 4.3 and 4.5 uM, respectively. Among them, pseudo-
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(C15)

berberine and pseudo-copsitine have better activity, and pseudo-
berberine improves the memory damage induced by scopolamine.
It has been suggested that the benzylisoquinoline skeleton alka-
loids isolated from the genus Corydalis with aromatic methylene-
dioxy and quaternary nitrogen atoms show stronger AChE in-
hibitory activities. Neuroprotective alkaloids such as berberine
(C9), columbamine (C10), jatrorrhizine (C11), coptisine (C12)
and tetradehydrocheilanthifoline (C13) have been isolated from
the Coptis Chinensis root. They inhibit the activity of AChE with
IC50 values between 0.44 uM and 0.80 uM and all exhibit aro-
matic methylenedioxy groups (Ingkaninan et al., 2000).

Several monoterpene indole alkaloids such as coronaridine
(C14) and voacangine (C15), isolated from the traditional Chi-
nese medicine Cynodon dactylon, potentially inhibit AChE activ-
ity. The structural difference between them is that their methoxy
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(C22)

groups are on different positions of the aromatic rings. Their IC50
values for inhibiting AChE are 8.6 uM and 4.4 uM, respectively,
which are similar to those of galantamine (3.3 uM). However, the
IC50 value of 10-hydroxycoronaridine (C16) was 29 uM, mainly
due to the introduction of hydroxyl groups on the aromatic ring
(Rai et al., 2011). The previous study has identified several bisin-
dole alkaloids in the roots of Ervatamia divaricata. Among them,
19,20-dihydrotabernamine (C17) and 19,20-dihydroervahanine A
(C18) showed strong AChE inhibitory activities with respective
IC50s of 0.227 uM and 0.071 uM (Zhang et al., 2007).

The traditional Chinese medicine Uncaria rhynchophylla is
commonly used in the treatment of epilepsy and other neurolog-
ical disorders. It has been shown that extracted alkaloids have
neuroprotective effects (Atta Ur et al., 2002).
methyl ether (C19), a reversible non-competitive inhibitor, effec-
tively inhibits AChE with an IC50 of 3.7 uM. The traditional
Chinese medicine Fritillaria is mainly used for relieving cough,
asthma, and as an expectorant. Several new terpenoid alkaloids

Geissoschizine

have been extracted from it and show a mild inhibitory effect
on AChE activity (Atta Ur et al., 2002). Lin et al. (2006) con-
ducted a cholinesterase activity assay on 18 alkaloids from five
Fritillaria plants. Results showed N-demethylpugietione (C20),
ebeiedinone (C21), hupeheninoside (C22), chuanbeinone A (C23)
and yibeinoside (C24), isolated from Fritillaria cirrhosa, Fritillaria
ussuriensis, Hubei Fritillaria, Fritillaria delavayi and Fritillaria
pallidiflora Schrenk, respectively, had strong inhibitory activity
against AChE with IC50s of 6.4, 5.7, 16.9, 7.7, and 6.5 uM, respec-
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tively. Following structural analysis of these AChE inhibitors, it
was found that these compounds typically contain five or six het-
erocycles or carbocyclic C-27 cholestane carbon skeletons. The
study of structure-activity relationships showed that the C-3 po-
sition and the C-6 ketone group enhanced inhibitory effects on
AChE. The introduction of hydroxyl at C-20 and the introduction
of N-methyl reduced the effect of AChE inhibition.

2.2.2  Non-alkaloids

Although most potential AChE inhibitors are alkaloids, there
are many potential non-alkaloid AChE inhibitors in traditional
Chinese medicine, including terpenoids, sterols, flavonoids, phe-
nols compounds and some other small molecules (Boonyaketgo-
son et al., 2018; Huang et al., 2013; Jung et al., 2011; Orhan et al.,
2009).

Flavonoids isolated from Leguminosa flavescens have strong
anti-AD activity. Sophoflavescenol (C25), icaritin (C26),
demethylanhydro-icaritin (C27), 8-C-lavandurylkaempferol (C28)
and kaempferol (C29) show strong inhibition of AChE activity
with IC50 values of 8.37, 6.47, 6.67, 5.16 and 3.31 uM, respec-
tively (Jung et al., 2011).

Biatractylolide is an active component existing in Atractylodis
Macrocephalae Rhizome. This small molecule has a symmetrical
structure containing a novel double sesquiterpene ester. Xie et al.
(2016) showed that biatractylolide (C30) had a significant effect
on inhibiting the activity of AChE in the brain and improved the
memory ability of dementia mouse induced by aluminum trichlo-
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ride. The IC50 values of inhibiting AChE activity is 6.55 uM and
its molecular mechanisms includes not only binding to AChE but
also reducing AChE expression by inhibiting the activity of glyco-
gen synthase kinase (GSK) 3.

Lee et al. (2007) isolated two compounds from Gentiana
macrophylla: (4R, 4aS)-4-vinyl-4, 4a, 5, 6, 6-tetrahydro-3H-
pyrano [3, 4-cpyran]-1-one and secostrychnosin. Their minimum
inhibitory doses against AChE were respectively 1.0 pwg/mL and
0.5 pg/mL (Lee et al., 2007).

The classical function of AChE is to hydrolyze ACh and termi-
nate nerve conduction. AChE inhibitors can relieve excessive hy-
drolysis of ACh in the brain of AD patients and enhance cognitive
function. AChE inhibitors ameliorate the symptoms of AD but
do not significantly alleviate disease progression (Zimmermann,
2013).

3. Inhibition of A deposition
3.1 AB in AD pathogenesis

Senile plaque is one of the pathological signs of AD (Hardy
and Selkoe, 2002). An imbalance of Af production and clearance
leads to Af accumulation in the central nervous system (CNS).
As a cause of AD, this production and clearance is a key target for
the development of therapeutic agents (Verdile et al., 2007). The
amyloid precursor protein (APP) produces Af protein through
two pathways, either by a-secretase shearing or shearing by -
secretase in the extracellular domain and 7y-secretase in the trans-
membrane domain of APP to produce soluble Af} protein (Gotz
and Scharnagl, 2018; Klein et al., 2001; Resende et al., 2008;
Zetterberg et al., 2010). AB production and clearance dysfunction
lead to plaque generation (Hefti et al., 2013; Walter et al., 2001).
Thus, inhibiting the accumulation of Af precipitation and accel-
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erating the clearance of A3 have become a focus for the develop-
ment of anti-AD drugs (see Table 2). In this section the natural
products known to target A production or clearance dysfunction
are summarized, and their chemical structures are given by Chem-
Draw software.

3.2 Natural products that inhibit AP aggregation

The marginal effects observed in recent clinical studies of both
solanezumab, which targets monomeric Af3, and bapineuzumab,
which targets amyloid plaques, support the opinion that AD drug
discovery should focus on soluble A rather than fibrillar Af3 de-
posits (Hefti et al., 2013; Walter et al., 2001). Accumulating data
suggests that soluble A oligomers represent the optimal inter-
vention target within the amyloid domain. Investigators have de-
termined that some compounds inhibit A3 aggregation, including
flavonoids, polyphenols, alkaloids, and terpenoids.

3.2.1 Flavonoids

Quercetin (C31), a polyphenolic flavonoid, is widely dis-
tributed in natural food. Dhawan et al. (2011) found that the ad-
ministration of quercetin through intravenous injection provided
an obvious protective effect for AD rats. A high dose of quercetin
significantly inhibited A3 aggregation and reduced H,O;-induced
oxidative stress. Low doses (5-20 uM) of quercetin reduced Af-
induced neuronal apoptosis in hippocampus (Manca et al., 2014).
Luteolin (C32), a crystal flavonoid, is widely distributed in food.
Liu et al. (2011) reported that luteolin down-regulates the expres-
sion of ABPP decreases the production of Af31-42 and exerts a
neuroprotective effect in copper-induced SH-SYSY cytotoxicity.
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3.2.2  Polyphenols

Resveratrol (C33) is one polyphenol widely distributed in
fruits and nuts (Mullin, 2011). Pharmacological studies show that
this polyphenol has antitumor, anti-inflammatory, cardiovascular
protective, hypoglycemic, and neuroprotective effects (Li et al.,
2012b). Li et al. (2012a) found that resveratrol provides a neu-
roprotective role by reducing Af production and increasing Af3
clearance. Ge et al. (2012) reported that it inhibits A} aggregation
by binding to different Af sites Curcumin (C34) is a polypheno-
lic compound with anti-AD biological activity found recently. It
(5-10 uM) exerts a neuroprotective effect by inhibiting oxidative
stress injury, inhibiting calcium influx and inhibiting tau hyper-
phosphorylation (Park et al., 2008). Xiong et al. (2011) reported
that curcumin could both significantly reduce A production in a
dose-dependent manner in SH-SY5Y neuroblastoma cells trans-
fected with APP and reduce Af production by inhibiting GSK3 -
mediated PS1 activation. Therefore, curcumin exerts its anti-AD
effect through multiple targets.

3.2.3 Alkaloids

Huperzine A (C35) is an anti-AD drug in the clinic. Stud-
ies focus on clarifying its mechanisms of action, and it improves
cognitive impairment in transgenic AD mice by activating the
PKC/MAPK signaling pathway and increasing phosphorylation
of GSK3f (Ratia et al., 2013). Wang et al. (2011) found that
huperzine A reduces the level of Af in transgenic APP over-
expressing mice and enhances cleavage of non-beta-like forms of
amylin by inhibiting the activity of GSK3a/f and activating the
Wat/B-catenin signaling pathway to exert its neuroprotective ef-
fect. Berberine (9) is an isonicotinoid alkaloid with many bio-
logical activities including antioxidant, inhibition of AChE, BChE
and monoamine oxidase activity and reduction cholesterol activ-
ity (Vuddanda et al., 2010). It has been shown that berberine has a
neuroprotective effect on TecCRNDS transgenic AD model mice,
reduces the levels of soluble and insoluble Af3 and activates the
Akt/GSK3 signaling pathway in mice (Durairajan et al., 2012).
Zhu et al. (2011) found that in HEK293 cells transfected with the
APP695 gene of a Swedish mutation, berberine inhibits the ex-
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pression of B-secretase by activating the ERK1/2 signaling path-
way and ultimately reduced the production of AB41/42 (Zhu et
al., 2011). Kim et al. (2017) found that the alkaloid manzamine
A (C36) isolated from Halicrona sp. is a strong cell GSK in-
hibitor that non-competitively inhibits GSK3 and CDK-5 during
Tau protein phosphorylation. Hymenaldisine (C37) is a class of
marine alkaloids containing bromopyrrole and sulthydryl groups
which were isolated from Agelacsidae. Meijer et al. (2000) found
that Hymenaldisine is a GSK-38 competitive ATP inhibitor and a
CDK-5/p35 inhibitor.

3.2.4

Ginkgolide (C38) is a terpene compound that is isolated from
the traditional Chinese medicine Ginkgo biloba. Ginkgolide
blocks early apoptosis and decreases the levels of p53, Bax, and
caspase-3 in ROS-induced PC12 cell apoptosis (Zhou and Zhu,
2000). Shi et al. (2011) revealed that ginkgolide inhibits f-
secretase activity through the PI3K signaling pathway and reduces
the production of both AB and soluble ABPP.

Biatractylolide (C30) significantly reduces cholinesterase ac-

Terpenoids

tivity in AD model rats and improves the behavior and memory of
these rats when induced by Af|_40. It has also been confirmed
that biatractylolide has a neuroprotective effect on glutamate-
induced injury in PC12 and SH-SYS5Y cells through a mechanism
of the PI3K-Akt-GSK3S-dependent pathways (Zhu et al., 2017).

4. Inhibition of tau hyperphosphorylation
4.1 Tau hyperphosphorylation in AD pathogenesis
Intracellular tau aggregations form in several neurodegenera-
tive diseases in a condition termed tauopathy. Tauopathies include
AD, progressive supranulear palsy, corticobasal degeneration, and
front temporal dementia (Liu et al., 2006). An abnormally high
level of phosphorylated tau aggregation resulting in nerve entan-
glement (NFT) is one of the pathological signs of AD. Normal
tau protein promotes microtubule stability, participates in the cell
skeleton and maintains the normal physiological function of cells.
It regulates physiological functions through phosphorylation and
dephosphorylation which are respectively catalyzed by protein ki-

H,oN N
HN
\
H——o Br /\
) = H NH
HoN O
(C36)

-clg(1-2)clgO’

(C39)
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Table 2. Current anti-Alzheimer’s disease effect of natural products and their principal targets

Principle targets  Inhibition of AChE activity Inhibition of Af3 deposition  Inhibition of tau hyperphosphorylation ~ Regulators
N-methylasimilobine Huperzine A Berberine Galantamine
Taspine Ginkgolide Dehydroevodiamine Hydroxamic acid
Serpentine Biatractylolide Isorhynchophylline Casealen B
Stylopine Manzamine A Lovastatin
Epiberberine Hymenaldisine
Pseudo-ocorydaline Manzamine A
Pseudo-berberine Hymenaldisine
Pseudo-copsitine
Berberine
Columbamine
Jatrorrhizine

Alkaloids Coptisine
Tetradehydrocheilanthifoline
Coronaridine
Yoacangine
10-hydroxycoronaridine
19,20-dihydrotabernamine
19,20-dihydroervahanine A
Geissoschizine methyl ether
N-demethylpugietinone
Ebeiedinone
Hupeheninoside
Chuanbeinone A
Yibeinoside
Sophoflavescenol Quercetin Ginsenoside Rbl
Icariine Luteolin Ginsenoside Rd
Demethylanhydro-icaritin Resveratrol Cornel iridoid glycoside
. 8-C-lavandurylkaempferol Curcumin Geniposide
Non-Alkaloids . . .
Kaempferol Ginkgolide Xanthoceraside
(4R ,4aS)-4-vinyl-4,4a,5,6,6-tetrahydro- Biatractylolide Biatractylolide

3H-pyrano [3,4-cpyran]-1-one
Secostrychnosin
Biatractylolide

nase and phosphorylase. When unbalanced, excessively phospho-
rylated tau leads to NFT (Baskaran and Velmurugan, 2018). The
main protein phosphorylases are PP1, PP2A and PP2B. Both the
abnormal activation of protein kinases and the down-regulation of
phosphorylase activity leads to hyperphosphorylation of tau (Gu
et al., 2010; Nisbet et al., 2015). Hyperphosphorylation of tau un-
dermines the structural and physiological functions of cells and
exacerbates Af} neurotoxicity, which leads to accelerated AD pro-
gression. In clinical trials for severe AD patients the treatment
effect of drugs on tau protein may be better than that of anti-Af3
agents (Zhao et al., 2013). Therefore, an increasing number of
investigations are focused on the anti-AD drugs that inhibit the
hyperphosphorylation of tau protein (see Table 2). Inhibition of
phosphorylation of the Tau microtubule-binding region (pthr251
and pser396) is significant for preventing aggregation and hyper-
phosphorylation. Natural anti-tau compounds include saponins,
terpenoids, and alkaloids. In this section these natural products
summarized and their chemical structures are given by ChemDraw
software.

Volume 18, Number 3, 2019

4.2 Natural products that inhibit tau hyperphosphorylation
4.2.1 Saponins

The active ingredients of ginseng express anti-AD activity. Ev-
idence shows that ginsenoside Rb1 (C39) inhibits hyperphospho-
rylation of tau in aluminum-induced AD mice by reversing the
expression of p-GSK3 and PP2A (Wei et al., 2016). Ginsenoside
Rb1 also reduces the level of p25 and AS-induced hyperphospho-
rylation of tau through the CDKS signaling pathway (Xie et al.,
2007). Zhang et al. (2014) reported that ginsenoside Rd (C40)
reduced phosphorylation of tau in cerebral ischemia-induced AD
mouse models via the PI3K/AKT/GSK3f signaling pathway.

4.2.2 Terpenoids

Iridoid glycosides isolate from the Cornus Officinalis exhib-
ited anti-aging effects. In an ADSK-N-SH cell model induced by
wortmannin and GF-109203X, cornel iridoid glycoside (C41) up-
regulates the activity of PP2A by demethylating PP2Ac. This leads
to the inhibition of hyperphosphorylation of tau protein (Jung et
al., 2009). Geniposide (C42), an iridoid from gardenia, improves
the learning ability of STZ-induced AD rats by upregulating the
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expression of GSK38 (pS-9, pY-216) and reducing the level of
tau phosphorylation (Gao et al., 2014). Xanthoceraside (C43) is
a member of the triterpenoid saponins, which improves the cog-
nitive ability of STZ-induced brain injury in rats. The underlying
mechanism is an increased expression of PP1 and PP2A, increased
phosphorylation of PI3K (p85) and Akt (Ser473) and decreased
phosphorylation of GSK3p (tyr216), leading to a reduced level of
tau phosphorylation (Liu et al., 2014).

Xie et al. (2016) demonstrated that biatractylolide (C30) could
strongly inhibit AChE activity with an IC50 value of 6.5458
UM. The underlying molecular mechanisms are not only bind-
ing to AChE but also reduced AChE expression by inhibition of
GSK3 activity. Biatractylolide also has a neuroprotective effect
on glutamate-induced injury in PC12 and SH-SYSY cells through
a mechanism of the PI3K-Akt-GSK3-dependent pathways (Zhu
et al., 2017).

4.2.3 Alkaloids

Berberine (C9) both increases the survival rate and reduces the
cytotoxicity of HEK293 cells induced by the protein phosphatase
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inhibitor calyculin A and down-regulates the phosphorylation of
Tau by restoring the activity of PP2A and decreasing the level of
GSK3f (Yu et al., 2011). Dehydroevodiamine (C44) activates a
PP2A Tyr307 site and inhibits phosphorylation of tau in rat brain
(Fang et al., 2007). Isorhynchophylline (C45) restores Af-induced
cognitive impairment, inhibits neuronal apoptosis, and reduces
phosphorylation of tau by inhibiting GSK3f activity and activat-
ing the PI3K/Akt signaling pathway (Xian et al., 2014).

Manzamine A (C46) is a strong cell GSK inhibitor that non-
competitively inhibits GSK3 and CDK-5 in the phosphorylation
of tau protein It thus provides a new type of backbone for the syn-
thesis of GSK3f inhibitors (Peng et al., 2003). Hymenaldisine
(C47) is a marine alkaloid containing bromopyrrole and sulfhydryl
groups in agelasidae, axinellidae and halichondri-idae. Meijer et
al. (2000) identified that hymenaldisine is a GSK3 competitive
ATP inhibitor and a CDK-5/p35 inhibitor.
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Figure 1. AB-amyloid protein channel hypothesis and natural products action site. (a) AB produced by hydrolysis of BAPP first acts on the
cell membrane, the net charge on the surface of the membrane plays a key role in this step. The distribution of phospholipids on the cell
membrane is not uniform. Neutral lipids are usually distributed on the outer membrane surface, and negatively charged phospholipids are
usually distributed on the inner surface. (b) Once the AB aggregated by Zn?* and Cu?* is inserted into the membrane, the normal membrane
structure is disturbed, and the structure of ion channels related to the membrane changes slightly. This affects the function of the original
membrane ion channels. (c) The inserted AB can further aggregate in the membrane, gradually forming channels. The formation of ion
channels on the membrane is quite lethal to nerve cells. The formation of channels enhances the permeability of the cell membrane, triggers
the abnormal flow of ions inside and outside the membrane, destroys the regional distribution of ions, and ultimately leads to cell dysfunction.
(d) lon channel blockers such as Galantamine could specifically target ion channels (K*, Na* and Ca?*) or inhibit their formation, thus help

maintain normal central nervous system function.

5. Regulators based on other potential targets
5.1 lon channels, synaptic regeneration and cholesterol

(1997) found that alkaloids in marine-derived larvae regulated ion
channels. Galantamine (C48), an alkaloid derived from Aconitum

synthesis in AD pathogenesis

Studies have increasingly demonstrated that ion channels,
synaptic regeneration, and cholesterol synthesis play an important
role in AD pathology. Among them, ion channels act as a key
component in maintaining normal CNS function. Synaptic regen-
eration is an important mechanism of synapse formation between
neurons and is an important contributor to learning, memory and
cognitive function. Dietary cholesterol can accelerate the produc-
tion of Af and the appearance of pathological AD symptoms.

5.2 Ion channel regulator

Ion channels have a key role in maintaining normal CNS func-
tion. The channel hypothesis supports that ion channels con-
structed by A on the nerve cell membrane allow abnormal flows
of intracellular and extracellular ions, destroy the dynamic balance

of ions and leads to nerve cell death (Thapa et al., 2017). Kem et al.
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heterophyllum, specifically targets ion channels (K*, Nat, Ca?*)
in rat hippocampus neurons (Song et al., 2008) (see Fig. 1).

5.3 Enhancer acting on synaptic regeneration

Synaptic regeneration has an immense influence on learning,
memory, and cognitive work (Sun and Alkon, 2019). The type I
histone deacetylase (HDAC) inhibitors, such as hydroxamic acid
(C49), promote synapse production (Xu et al., 2011). Xu et al.
(2015) obtained10 new diterpenoids from the ethyl acetate extract
of Casearia graveolens Dalzell root and found that Casealen B
(C50) had a strong nerve growth factor-mediated synapse forma-
tion activity.

5.4 Cholesterol synthesis inhibitor

Dietary cholesterol accelerates the production of Af and the
appearance of pathological symptoms of AD. Statins inhibit hy-
droxymethylglutaryl coenzyme A reductase and decrease choles-
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terol biosynthesis. It has been reported that the lipid-lowering
drug lovastatin (C51) isolated from Monascus could be used for
the treatment of AD (Won et al., 2008).

6. Conclusions

Natural products have been used in many regions of the world
for thousands of years to treat cancer, cardiovascular and neu-
rodegenerative diseases (Howes et al., 2017; Jernigan et al., 2017;
Tewari et al., 2019). Increasing research demonstrates that natural
products have great neurogenic potential and represent promising
therapeutic agents for AD treatment (Hashiguchi et al., 2015). Not
surprisingly, there are many natural products that bring about sig-
nificant results in the control of AD and have important outcomes
in AD therapy (Shakeri et al., 2016).

With an increased understanding of pathogenesis, the treatment
strategy for AD has gradually changed from single target to multi-
target and multi-function drugs. Drugs derived from natural prod-
ucts have a valuable characteristic of multi-targeting and limited
adverse reactions. The long-term practice has shown that natural
drugs have certain advantages in the treatment of AD and multiple
targeting have significant potential in the development of anti-AD
drugs. Natural products provide a powerful armamentarium for
human intervention in AD (Ballatore et al., 2007).
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