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Abundant evidence suggests that gambling-related cogni-
tive distortions play a crucial role in disruptive gambling
behavior. However, to date, there have been few efforts
to address the neuroanatomical basis of inter-individual
differences in trait gambling-related cognitive distortions.
We applied voxel-based morphometry to explore the neu-
roanatomical correlates of trait gambling-related cogni-
tive distortions by correlating regional gray matter volume
with behavioral scores tested by the gambling attitudes
and beliefs survey. The results show that individuals with
a higher degree of gambling-related cognitive distortion
present greater gray matter volume in the frontal orbital
cortex, insula cortex, temporal fusiform cortex and precen-
tral gyrus/superior frontal gyrus in the right hemisphere. In
contrast, these individuals present reduced gray matter vol-
ume in the left putamen, left lateral occipital cortex, right
lateral occipital cortex, and right cuneal cortex. These
results suggest that trait gambling-related cognitive distor-
tions are influenced by brain regions involved in subjective
reward value, interoception, and risk prediction, and ex-
plain how gambling-related cognitive distortions lead to
persistent involvement in gambling.
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1. Introduction
Gambling-related cognitive distortions refer to the biased pro-

cessing of chance, probability, and skill in gambling behavior
(Ladouceur, 2004; Raylu and Oei, 2002, 2004; Steenbergh et al.,
2002; Toneatto, 1999). Examples of cognitive distortions include
an illusion of control (the belief that one can influence the out-
come of a chance-determined event) (Langer, 1975), and gambler's
fallacy, (the belief that future outcomes can be predicted based
on past outcomes) (Sundali and Croson, 2006). Thus, individu-
als with high gambling-related cognitive distortions believe that
gambling outcomes can be controlled by luck, personal skill, and
past gambling experiences (Breen and Zuckerman, 1999; Raylu

and Oei, 2004; Toneatto, 1999). Interestingly, cognitive distor-
tions are observed not only in problem gamblers but also in non-
problem gamblers (Ciccarelli et al., 2016; Grant and Bowling,
2015; Joukhador et al., 2004). The term 'problem gamblers' refers
to people who have developed disordered gambling behaviors
which often cause harm to themselves, their family, and potentially
their community (Blaszczynski and Nower, 2002). Non-problem
gamblers are individuals who have not been harmed by gambling
(Blaszczynski and Nower, 2002). Previous research has argued
that gambling-related cognitive distortions are associated with dis-
ruptive gambling practices (Oei et al., 2008; Raylu and Oei, 2002,
2004; Steenbergh et al., 2002). Moreover, players with higher
levels of irrational gambling cognition tend to engage in riskier
gambling practices (Miller and Currie, 2008). Besides, interven-
tion studies have revealed a reduction in pathological gambling af-
ter treatment of gambling-related cognitive distortions (Oei et al.,
2010; Toneatto and Ladoceur, 2003; Toneatto and Millar, 2004).

Existing studies exploring the neural correlates of gambling-
related cognitive distortions have focusedmainly on state cognitive
distortions (Clark et al., 2009, 2014). Using an established labo-
ratory gambling task, researchers found that a near-miss event--
"a special kind of failure to reach a goal, one that comes close to
being successful" --evoked anterior insula bilaterally and the ven-
tral striatum (Breiter et al., 2001; Chase and Clark, 2010; Clark et
al., 2009; Habib and Dixon, 2013; Joutsa et al., 2012; Reuter et al.,
2005; Shao et al., 2013). Intriguingly, damage to the insula abol-
ished the near-miss effect (Clark et al., 2014). Additional studies
have also found that the effect of state cognitive distortions on re-
sponses in a card-guessing task correlates with stronger activation
of the lateral prefrontal cortex and greater volume of gray matter
(GM) in the striatum and orbitofrontal cortex (OFC) (Gui et al.,
2012; Huang et al., 2018).

However, few efforts have been directed to investigate the as-
sociation between brain function and trait gambling-related cog-
nitive distortions (Clark et al., 2009; Dymond et al., 2014; Lara et
al., 2018). One functional MRI (fMRI) study indicated that ac-
tivation of the anterior insula was associated with non-problem
gamblers' trait gambling-related cognitive distortions (Clark et
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al., 2009). Using magnetoencephalography (MEG) Dymond et
al. (2014) showed that trait gambling-related cognitive distortions
were related to theta power changes in the right OFC and the an-
terior insula in both problem gambler and non-problem gambler
subjects. It is worth mentioning that only one study to date has
examined the neuroanatomical correlates of trait gambling-related
cognitive distortions in a sample of 25 adults (Lara et al., 2018). It
only explored the relationship between interpretative bias (the ad
hoc attribution of gambling successes to ability and losses to bad
luck) and GM volume in the dorsal anterior cingulate (ACC). In
addition to interpretative bias, there is a class of errors that can be
identified as trait gambling-related cognitive distortions, includ-
ing the illusion of control, superstitious beliefs, overconfidence,
and gambler's fallacy. Therefore, it is necessary to examine the
relationship between trait gambling-related cognitive distortions
and brain structure.

Voxel-basedmorphometry (VBM)was used to explore the neu-
roanatomical correlates of trait gambling-related cognitive distor-
tions by studying the correlation between GM volume and individ-
ual differences in cognitive distortions among participants. The
gambling attitudes and beliefs survey (GABS) was used to mea-
sure trait gambling-related cognitive distortions (Breen and Zuck-
erman, 1999). GABS has been designed to "capture a wide range
of cognitive biases, irrational beliefs, and positively valued atti-
tudes to gambling", and has been validated by many studies as a
measure of trait gambling-related cognitive distortions (see, e.g.
Goodie and Fortune, 2013; Strong et al., 2004). We hypothesize
a correlation between individual behavioral differences and GM
volume within multiple brain regions which is in accordance with
previous fMRI and MEG studies, including the striatum, insula,
OFC, and ACC (Clark et al., 2009; Dymond et al., 2014; Lara et
al., 2018).

2. Material and methods
2.1 Participants

All data were obtained from the OpenfMRI database (https:
//openfmri.org/), accession number: ds000009. Twenty-four par-
ticipants (10 females, 14 males; mean age: 20.8 years; right-
handed) were included in the data analysis. Each participant's
behavioral scores from GABS (see below) and T1-weighted MRI
images were collected. No participants reported mental and neu-
rological disorders.

2.2 Assessment of gambling-related cognitive distortions
Gambling-related cognitive distortions were assessed using

GABS, which contains 35 queries such as, "If I have not won any
of my bets for a while, I am probably due for a big win", and "No
matter what the game is, there are betting strategies that will help
you win" (Breen and Zuckerman, 1999). Participants were asked to
use a four-point Likert scale (from 'strongly agree' to 'strongly dis-
agree') to indicate the extent to which they agree with each query.
Total scores falling in the range between 35 and 140 are considered
to be valid. A higher score indicates the perception of gambling as
a positive, exciting experience in which luck and strategy are im-
portant. Thus, the higher the score, the greater the cognitive bias
toward gambling, and the more likely the participant is to gamble
frequently. Previous studies have proved the high reliability, con-
vergent validity and discriminative success of GABS (Breen et al.,

2001; Grant and Bowling, 2015; Strong et al., 2004; Tanner and
Mazmanian, 2016).

2.3 MRI data acquisition

Structural MRI scans were carried out on a Siemens 3T Trio
scanner located at the Ahmanson-Lovelace Brain Mapping Center
at the University of California, Los Angeles. A magnetization-
prepared rapid-acquisition gradient echo (TR = 1900 ms, TE =
2.26 ms, matrix 256× 256, eld of view 250) was applied to obtain
3D T1-weighted whole-brain structural images. As well 176 con-
tiguous sagittal slices were produced, with 1 mm slice thickness,
for whole-brain coverage.

2.4 Voxel-based morphometry (VBM) analysis

VBMwas used to determine GM volume for every voxel at the
whole-brain level (Ashburner and Friston, 2000). MRI data were
processed using SPM8 (Statistical ParametricMapping,Wellcome
Department of Imaging Neuroscience, London, UK). First, a pri-
mary evaluation of image quality was conducted by manual visual
examination. Second, the origin of the brain was set to the anterior
commissure for better registration. Third, a unified segmentation
approach was employed to classify images into GM, white mat-
ter, cerebrospinal fluid, and everything else (e.g., skull and scalp)
(Ashburner and Friston, 2005). Fourth, diffeomorphic anatomical
registration through exponential lie algebra (DARTEL) was used
for registration (Ashburner, 2007). A study-specific template was
created based on average tissue probability maps from all partici-
pants, following which all participants' GM images were normal-
ized to this template in MNI152 space. Fifth, GM voxel values
were modulated by multiplying the Jacobian determinants to con-
serve regional differences in the GM volume. The modulated GM
images were then smoothed with a Gaussian kernel of 8-mm full
width at half maximum (FWHM). Lastly, the threshold for abso-
lute masking was set to 0.2, to mask the modulated images to ex-
clude noise. GM images modulated through this masking process
were sent for downstream statistical analyses.

2.5 Statistical analyses

A general linear model (GLM) was implemented for statisti-
cal analysis. To analyze the correlation between neuroanatomical
structure and individual differences in gambling-related cognitive
distortions, self-reported GABS scores were used as variables of
interest, while theGMvolume in each voxel was considered the de-
pendent variable, with age and gender as confounding covariates.
Monte Carlo simulation with a corrected significance threshold of
ρ < 0.05 was used to correct for multiple comparisons of the re-
sults. Specifically, a combination of the voxel-wise threshold, ρ <

0.01, and a cluster size of > 129 voxels was used to determine the
threshold. As smaller clusters within small subcortical structures
could be missed, we examined statistical maps before applying the
cluster size threshold but did not find any other clusters. Finally, to
see how the combined GM volume of multiple regions predicted
GABS scores, we used support vector regression and leave-one-
out cross-validation test. To measure the performance of the pre-
diction, a correlation between predicted and actual GABS scores
was applied.
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Figure 1. Specific brain regions displayed a positive correlation be-
tween GM volume and GABS score (corrected ρ < 0.05). These
regions are labeled as follows: TFC.R: the right temporal fusiform cor-
tex, posterior division; INS.R: the right insular cortex; OFC.R: the right
frontal orbital cortex; PreCG.R: the right precentral gyrus/superior
frontal gyrus; CUN.R: the right cuneal cortex; LOC.L: the left lateral
occipital cortex, superior division; LOC.R: the right lateral occipital
cortex, superior division; PUT.L: the left putamen.

3. Results
GABS scores of each participant were taken as an index of their

trait gambling-related cognitive distortions -- the higher the score,
the greater the cognitive bias toward gambling, and the greater
likelihood of gambling frequently. The normality of data was
determined by kurtosis (0.93) and skewness (0.04) of the GABS
scores. The GABS scores ranged from 63 to 105 (mean = 83.22;
SD = 9.03), suggesting a high degree of individual differences.
No significant differences were detected in GABS scores between
male and female participants (t (22) = -1.56, ρ = 0.13, BF10 = 0.84).

Next, we explored the potential relationship between brain
structures and observed individual differences in GABS scores.
We determined the correlation between participants' GABS scores
and the GM volume of each voxel at the whole-brain scale, with
age and gender as confounding covariates. The results, corrected
for multiple comparisons, are shown in Fig. 1. Importantly, GABS
scores correlated positively with GMvolume of specific clusters in
the right OFC (OFC.R; 610 voxels; Peak MNI coordinate: 42, 24,
-8; Z = 4.39; ), right insula cortex (INS.R; 268 voxels; Peak MNI
coordinate: 34, -8, 12; Z = 3.71), right temporal fusiform cortex,
posterior division (TFC.R; PeakMNI coordinate: 36, -34, -22; Z =
4.43), and right precentral gyrus/superior frontal gyrus (PreCG.R;
PeakMNI coordinate:28, -8, 60; Z = 3.95). Thus, individuals with
a high degree of gambling-related cognitive distortions displayed
higher GM volume in these regions of the right hemisphere.

Additionally, GABS scores were found to be negatively cor-
related with GM volume in a statistically significant manner in
multiple regions, including the left putamen (PUT.L; 174 voxels;
Peak MNI coordinate:-24, -2, 0; Z = 3.17), bilateral lateral occipi-
tal cortex, superior division (LOC.L: 241 voxels; -24, -78, 36; Z =

5.17; LOC.R: 308 voxels; 30, -84, 34; Z = 4.03) and right cuneal
cortex (CUN.R; 481 voxels; 2, -80, 34; Z = 4.18). These regions
tended to have reduced GM volume in individuals with high levels
of gambling-related cognitive distortions.

Finally, we determined whether the combined GM volume of 8
regions could predict GABS scores, using support vector regres-
sion and leave-one-out cross-validation tests. Remarkably, a sig-
nificant correlationwas found between predicted and actual GABS
scores (r = 0.76, ρ < 0.0001 Fig. 2 ), indicating that variability in
gambling-related cognitive distortions can largely be predicted us-
ing the brain structural images.

4. Discussion
The relationship between neuroanatomical structure differ-

ences and trait gambling-related cognitive distortions in individ-
uals was explored. VBM analysis was performed to correlate
the GM volume of each voxel from whole-brain MRI scans with
GABS scores of 24 participants. Our results revealed that indi-
viduals with higher GABS scores (i.e., higher susceptibility to
gambling-related cognitive distortions) showed greater GM vol-
ume in right OFC and right insula, but reduced GM volume in left
putamen.

Our finding that reduced GM volume in the left putamen cor-
relates with greater GABS scores is in accordance with recent
findings that problem gamblers display GM volume reductions
in left putamen compared with healthy controls (Fuentes et al.,
2015). fMRI studies have also shown an association between the
activity of the left putamen and gambling behavior (Fauthbüh-
ler et al., 2014; Habib and Dixon, 2013; Reuter et al., 2005). A
number of studies have revealed that the putamen participates in
the evaluation of action options, guiding the selection of higher-
value actions (Balleine et al., 2007; Balleine and O’Doherty, 2010;
Corbit and Janak, 2010; Haber et al., 2006; Haber and Knutson,
2010; Lau and Glimcher, 2008; Muranishi et al., 2011; Samejima
et al., 2005). Thus, the left putamen may be associated with trait
gambling-related cognitive distortions through its involvement in
the value assessment of gambling. It is possible that individuals
with greater gambling-related cognitive distortions tend to overes-
timate the value of gambling (e.g., overestimating the likelihood of
winning or the positive effects of gambling), leading to continuous
involvement in gambling.

As well, our results showed that GABS scores correlate with
greater GM volume in the right insula. Activation and theta power
changes in the anterior insula have also been implicated previously
in trait gambling distortions (Clark et al., 2009; Dymond et al.,
2014). The insula is known for its interoceptive functions; it can
integrate interceptive states into conscious feelings. Many fMRI
studies have demonstrated the involvement of insula in craving and
drug urges (Brody et al., 2002; Delgado et al., 2000; Mcbride et
al., 2006; Naqvi and Bechara, 2009; Paulus et al., 2003). In ad-
dition to brain function abnormalities, GM volume alterations in
the insula have also been detected in addicts as compared with
healthy controls (Lin et al., 2015; Weng et al., 2013). Intriguingly,
neuropsychological research has shown that smokers with dam-
age in the insula were more likely to quit smoking as a result of
losing their urges for cigarettes (Naqvi et al., 2007). Similarly,
individuals with damage in the insula abolished their gambling-
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Figure 2. Prediction of GABS scores based on the GM volume of eight regions. (A) Locations of eight regions showing correlation with GABS
score. TFC.R: the right temporal fusiform cortex, posterior division; INS.R: the right insular cortex; FOC.R: the right frontal orbital cortex;
PreCG.R: the right precentral gyrus/superior frontal gyrus; CUN.R: the right cuneal cortex; LOC.R: the left lateral occipital cortex, superior
division; LOC.R: the right lateral occipital cortex, superior division; PUT.L: the left putamen. (B) A scatter plot showing the correlation between
actual GABS scores and predicted GABS scores.

related cognitive distortions (Clark et al., 2014). Given that partic-
ipants reporting higher GABS scores experience more excitement
in gambling, it is possible that an increase in GM volume supports
the interoceptive functions of insula.

In uncertain environments, the insula is suggested to participate
in risk prediction based on the prior outcome. In previous studies,
individuals with insula damage displayed difficulty in discrimi-
nating risk gains from risk losses and failed to modify their risk
behavior based on prior outcome (Clark et al., 2008; Weller et al.,
2009). Risk prediction about the uncertainty of environments is
relevant to gambler's fallacy (the belief that future outcomes can
be predicted based on past outcomes) (Gui et al., 2012). Thus, our
study suggests that individuals with higher GABS scores may be
more susceptible to gambler's fallacy, as an increase in insula GM
volume may impact its role in risk prediction.

Finally, our study showed a positive correlation between GM
volume ofOFC andGABS scores, in accordancewith a priorMEG
study demonstrating that theta power changes in the right OFC are
associated with trait gambling-related cognitive distortions (Dy-
mond et al., 2014). A VBM study similarly found the increased
volume in the right prefrontal cortex in pathological gamblers as
compared to controls (Koehler et al., 2015). Previous studies have
also provided evidence that OFC-mediated subjective value attri-
bution and was an essential component in adaptive decision mak-
ing (Breiter et al., 2001; Elliott et al., 2003; Knutson et al., 2000;
Tremblay and Schultz, 1999; Valentin et al., 2007). Moreover, neu-
roimaging studies have demonstrated that problem gamblers show
exaggerated activation in OFC because they assigned a greater re-
ward value to gambling outcomes (van Holst et al., 2012). It has
been suggested that problem gambling stems partially from im-
paired competency of the OFC when confronted with negative
consequences (Van et al., 2009). Additionally, investigation of
drug addiction has implicated lateral OFC in deficient attribution

of feedback values (Dom et al., 2005; Goldstein et al., 2007). To-
gether, our results link GM volume in the OFC to trait gambling-
related cognitive distortions which cause individuals to overesti-
mate the reward value of gambling, confirming the role of OFC in
encoding subjective reward value and predicting subsequent deci-
sions and actions.

In conclusion, trait gambling-related cognitive distortionsmea-
sured by GABS were associated with increased GM volume in
the right OFC, right insula, and left putamen, components of the
brain reward system. The right OFC and left putamen to rep-
resent subjective value evaluation mechanisms and guide subse-
quent decisions and actions, while the insula represents risk pre-
dictions according to the prior outcome and is known for its inte-
roceptive functions. Therefore, our results suggest that individuals
with greater gambling-related cognitive distortions asmeasured by
GABS, tended to overestimate the reward value of gambling (in-
cluding overestimating the likelihood of winning or the positive
effects of gambling) and underestimate its risks. This may explain
why gambling-related cognitive distortions may cause gamblers to
continue their involvement.

However, given the sample size is relatively small, the results
should be considered with caution and must be replicated with a
larger sample size (Button et al., 2013) or with multi-site collabo-
ration approaches (Kong et al., 2018). Moreover, as our prediction
analysis was based on significant regions from the same dataset,
this data interdependence may cause overestimation of prediction
performance, though cross-validation tests were applied. Also, our
study was based on correlative analyses which do not allow for
inferences about causal relationships. Finally, our study did not
distinguish between different brain structures underlying various
gambling-related cognitive distortions (i.e., the illusion of control
and gambler's fallacy) and further investigation is needed to eluci-
date these details.
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