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Automatic identification and categorization of Alzheimer’s
patients and the ability to distinguish between different lev-
els of this disease would be very helpful to the research
community studying this disease since non-automatic ap-
proaches are both very time-consuming and highly depen-
dent upon the experience of experts. Here, it is proposed
that instantaneous cerebral phase and envelope informa-
tion from functional magnetic resonance imaging data
is of use to discriminate between Alzheimer’s patients,
mild cognitively impaired subjects and healthy individu-
als. Following a region-of-interest analysis of functional
magnetic resonance imaging data, different features in-
cluding power, entropy, and coherency features are de-
rived from the instantaneous phase and envelope signal
sequences. Various sets of features are calculated and fed
to a sequential forward floating feature selection algorithm
to identify the most discriminative and informative feature
sets. A Student’s t-test was employed to select the most rel-
evant features from the sets. Finally, a K-nearest neighbor
classifier is used to distinguish between classes in a three-
class categorization problem. The reported performance
in overall accuracy using functional magnetic resonance
imaging data of 111 combined participants is 80.1% with
80.0% sensitivity for the distinction of both Alzheimer’s
and healthy categories. This is comparable to the state-
of-the-art approaches recently proposed for this task. The
significance of obtained results was statistically confirmed
by the evaluation of standard classification performance
indicators. Results illustrate that the analytic phase and en-
velope feature indices derived from the region of interest
signals described here are significant discriminators suited
to distinguish between Alzheimer patients and healthy sub-
jects.
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1. Introduction
Alzheimer’s disease (AD) is a chronic neurodegenerative dis-

ease that causes a person’s mental abilities such as memory and
cognitive skills to gradually decline over the years. This occurs
due to a loss of healthy neurons involved in cognitive skills re-
sulting from atrophy of the brain. People are generally divided
into three classes about AD, namely healthy subjects, mild cogni-
tive impairment (MCI) subjects, and Alzheimer patients. MCI is
a middle stage and someone in this stage is at an increased risk of
developing AD or another dementia1.

Functional magnetic resonance imaging (fMRI) is a neu-
roimaging procedure using magnetic resonance imaging (MRI)
technology that measures brain activity by detecting changes asso-
ciated with an oxygenated blood level-dependent (BOLD) signal.
There are two main approaches in the study of fMRI: task-related
fMRI and resting-state fMRI where patients lie in the scanner with
open eyes. fMRI scans should be considered as a function of time,
i.e. they should be treated as a time series (where each time point
representing one scan). This is because the BOLD signal tends
to be correlated across successive scans. Therefore it cannot be
treated as independent samples. The primary reason for this cor-
relation is the fast acquisition time (TR) of the fMRI relative to the
duration of the BOLD response.

Studies show that neurodegenerative diseases such as Parkin-
sonism, multiple sclerosis, and AD can be seen to have a most sig-
nificant effect on the default mode network (DMN) of the brain.
By applying stimuli, energy consumption of the brain increases by
approximately 5%, and thereby, the resting-state fMRI (rs-fMRI)
has increasingly been used as a noninvasive method of neuroimag-
ing. AD identification methods are divided into two main groups:

1 2015 Alzheimer’s disease facts and figures. Alzheimer’s Association
(USA) www.alz.org. Alzheimer′s & Dementia 11, 332-384.
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model-based methods and model-free methods. In the former, the
functional connectivity between anatomical or functional regions
is calculated. For instance Koch et al. (2012) and Challis et al.
(2015) applied a seed-based method in which time-series correla-
tions between specific regions were calculated. Although it is an
easy method to apply, finding the primary region is an issue for
this method (Van Den Heuvel and Pol, 2010).

Model-free methods were employed in an attempt to estimate
the time series of voxels based on a reduced basis set. Among
these methods, principal component analysis (PCA) and indepen-
dent component analysis (ICA) are the most popular. In PCA, the
goal is to find correlated regions of voxels, (Zhang et al., 2015),
while in ICA the goal is to find any independent sources. Since
in PCA an optimal result occurs when data exhibit a normal prob-
ability density function, which is not typically the case for fMRI,
the best use of PCA is limited to filtering the noise in fMRI data
(Ashby, 2011). Alternatively, the most important challenge in ap-
plying these two methods is to find the proper number of compo-
nents (Binnewijzend et al., 2012), for example ICA blindly iden-
tifies spatially independent components, and at the end, hundreds
of components might be found while only a couple are related to
the study. Graph analysis is another model-free method for the
analysis of fMRI data. Here, nodes are defined by anatomical or
functional atlases and the weight of the edges is calculated by con-
sidering different criteria. A critical challenge here is defining the
nodes and calculating the edge weights, as different algorithms
can lead to calculation of different results (Bahrami and Hossein-
Zadeh, 2015; Wang et al., 2010).

Another analyticmethod involves clustering, duringwhich data
are divided into subgroups having the least inter-group similarity
and the most intra-group similarity. Various types of clustering
have been applied to fMRI data; for example, Chen et al. (2012)
applied a hierarchical clustering method to define the difference in
functional connectivity between MCI subjects and controls. They
showed that the distribution of clusters and their functionally dis-
connected regions resembled the altered memory network regions
identified by fMRI studies. Clustering is easy to apply but is time-
consuming for large databases such as those of fMRI. Definition
of the number of centers, determining a suitable distance criterion
and performing an optimization strategy is critical in this method.

In a recent effort to leverage fMRI data in the investigation
of AD and understand its underlying neuro-dynamics, Zhu and
Wang (2018) proposed a supervised structure learning method to
explore the latent structures of resting-state fMRI data from dif-
ferent groups. They reported a ‘TREE’ structure identified as a
potential path for the progression of the disease. In other studies
of AD such as (Golbabaei et al., 2016a,b; Khazaee et al., 2014; Lee
and Ye, 2012) different machine learning and dictionary learning
approaches are introduced and discussed. However, these studies
used different network construction methods, are time-consuming
and often require training on large datasets. In particular, they
have significant differences in network construction methods (i.e.,
weighted versus binary and different density thresholds). It has
been discussed previously by Reijneveld et al. (2007), Fornito et al.
(2010) and Boostani et al. (2017) that these differences are highly
likely to affect the results. Recently, Wang et al. (2018) proposed
an approach for discriminating between AD subjects andMCI par-

ticipants undersize limited fMRI data. The proposed method em-
ploys region of interest (ROI) analysis to derive correlation coef-
ficients between various ROI’s and then uses a regularized linear
discriminant analysis (LDA) and AdaBoost to classify AD ver-
sus MCI subjects. This study was benchmarked against the pro-
cedure proposed and is discussed below. Generally, the approach
described here leverages feature vectors and classification proce-
dures that are more readily available and achieves comparably sig-
nificant results (Sameni and Seraj, 2017; Karimzadeh et al., 2015).

To simultaneously perform an efficient and simple analysis of
fMRI data, ROI analysis has recently been widely used (Poldrack,
2007). It is a common approach employed to analyze the fMRI
data in which signals from specified ROI’s are extracted. ROI’s
can be extracted either in terms of structural or functional features.
Structural ROI’s aremostly defined based onmacro-anatomy, such
as gyrus anatomy; whereas functional ROI’s are generally based
on the analysis of data from the same individual. One common
approach is to use a separate localizing scan to identify voxels that
show a particular response in a given anatomical region. These
voxels are then probed to examine their response to some other
manipulation. When using single-subject atlases such as the auto-
mated anatomical labeling atlas or Talairach atlas to extract ROI’s,
one should be cautious about the inability of spatial normalization
to perfectly match brains across individuals. Accordingly, the best
practice is to use ROI’s based on probabilistic atlases of macro-
scopic anatomy or other probabilistic atlases (see Section 2 for de-
tails). In ROI analysis, by considering fMRI data as a time series,
the summation of all voxels in specified anatomical or functional
regions enables statistical analysis in signal processing terms.

In this study, the instantaneous phase (IP) and instantaneous
envelope (amplitude or IE) of ROI signals are used to present effi-
cient, comprehensive and discriminative feature sets for the identi-
fication of AD subjects. For this purpose, the IP and IE of ROI sig-
nals are analytically estimated from the temporal voxel sequences
obtained from each brain area of interest. For instantaneous pa-
rameters, i.e. IP and IE data sets are estimated by use of a re-
cently proposed method referred to as transfer function perturba-
tion (TFP) (Seraj and Sameni, 2017). TFP improves the quality
of estimated instantaneous parameters by employing a statistical
Monte Carlo based approach that removes the side-effects of pre-
vious phase estimation method (Sameni and Seraj, 2017; Morteza-
pouraghdam et al., 2018). After calculating the IP and IE for brain
areas in ROI signals, three types of feature are estimated, power,
entropy and coherency. These are the main categories of feature
set estimated for both IP and IE. Subsequently, a sequential for-
ward floating feature selection (SFFFS) algorithm is used to assist
the choice of the most discriminative and informative sets of fea-
tures among the sets (Pudil et al., 1994). A Student’s t-test is used
to select the most relevant features. Finally, a K-nearest neighbor
(K-NN) classifier is employed to discriminate between the three
classes of (1) AD subjects, (2) MCI participants and (3) healthy
individuals.

2. Methodology
2.1 Dataset

High resolution T1-weighted MRI and rs-fRMI images were
obtained from the AD neuroimaging initiative database (Jack et
al., 2008) Data from 111 subjects were obtained, of which 43 data
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Figure 1. Employed procedure for ROI signal extraction from raw fMRI data. First, multiple are designed to remove different noises
associated with fMRI data including head movement noise, low and high-level noises, gray matter noise and more. Eventually, the time series
of 112 anatomical regions are obtained for each subject based on the Harvard-Oxford Atlas.

sets belonged to healthy individuals, 36 toMCI participants and 32
to AD subjects. Table 1 presents the subject cohort and shows the
detailed information of each group. For each subject, 140 gradi-
ent echo planar imaging volumes were acquired with a 3T Phillips
Scanner. The parameters of the scanner were TR = 3 s, TE = 30
ms, matrix size = 64-by-64 , slice thickness = 3 mm and slice num-
ber = 48.

Table 1. Subject cohort

Healthy MCI Alzheimer

Number of participants 43 36 32

Male/Female 17/26 14/22 15/17

Mean Age 75.30 72.75 72.34

Standard deviation Age 6.37 6.35 7.12

Mean Education (years) 16.27 15.25 15.75

Standard deviation Education (years) 2.1 2.54 2.75

2.2 Preprocessing: extracting ROI signals
All processing was performedwith FSL (fMRIB's Software Li-

brary, UK), DPARSF (V4.1 160415) toolbox(Developed by Zhang
et al., 2015) at the Laboratory of Cognitive Neuroscience and
Learning, Beijing Normal University, China) and the MATLAB
programming environment. Here, each step in the preprocessing
procedure is described in detail and is also given in Fig. 1.

The preprocessing steps included:

i. Apply head movement correction.
ii. Apply slice timing correction.
iii. Apply a 3DGaussian kernel spatial filter with 4mm3 FWHM
(an option in the aforementioned software) to increase accuracy
of functional image registration to standard space to achieve a
better signal to noise ratio (SNR).
iv. Apply high pass filter with 100Hz cut-off frequency to remove
low level noise
v. Register functional images to T1-weighted images and then

register them toMNI152 space using transformations calculated
from corresponding anatomical images.
vi. Apply a band pass filter (0.01 Hz – 0.1 Hz) to remove any
resting state BOLD signal associated with neural activity lo-
cated in the given frequency band.
vii. Filter output data in the previous step by regressing out
movement vectors Friston et al. (1996).

viii. Remove unwanted signals such as physiological noise which
can be filtered by principle component analysis (Behzadi et al.,
2007).
ix. Filter gray matter noise due to scanner heat.
x. Obtain the time series for 112 anatomical regions for each
subject based on the Harvard-Oxford Atlas in the “Extract ROI
time courses” tab of the REST software.

Harvard-Oxford atlas is a probabilistic atlas covering 48 cor-
tical and 21 sub-cortical areas. It is derived from structural data
and segmentations provided by the Harvard Center for Morpho-
metric Analysis2. In this atlas, T1-weighted images of 21 healthy
male and 16 healthy female participants (ages 18-50) are individ-
ually segmented using semi-automated tools. These images are
affine-registered to MNI152 space and the transforms are then ap-
plied to the individual labels. Finally, they are combined across
participants to form population probability maps for each label
(Karimzadeh et al., 2017).

The summation of the time series from these regions is re-
formed into a vector (112-by-1) for each subject. These individual
vectors are then assembled for each group to give a final 112-by-16
matrix to which the feature extraction method is applied.

2.3 Instantaneous parameters estimation
Narrowband frequency filtering followed by analytic or com-

plex representation is the conventional approach for IP, frequency
and IE estimation. However, this is highly prone to affect analysis
and yield ambiguous values, especially given low SNRs of back-
ground activity (Seraj and Sameni, 2017; Sameni and Seraj, 2017).

2 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
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The background activity here refers to the undesired components
of the frequency-specific instantaneous measures. To obtain an
accurate and unambiguous estimation of IP and IE, a recently de-
veloped method was employed (Seraj and Sameni, 2017; Sameni
and Seraj, 2017). The method, referred to as TFP, is a statisti-
cal Monte Carlo based estimation scheme in which infinitesimal
perturbations or dithers are added to either the filter or the input
signal to generate estimation ensembles (Seraj and Sameni, 2017).
In TFP the applied perturbations or dithers are such that they are
physiologically irrelevant and the filter’s specification does not
change significantly according to the estimation standards (Sameni
and Seraj, 2017). The filtering process in TFP is performed as a
forward-backward zero-phase approach to avoid any phase distor-
tion. Final IP and IE estimates are obtained from ensemble av-
eraging over all dithered and perturbed ensembles. The rationale
behind the TFP is beyond the scope of the current study but a de-
tailed description can be found in (Sameni and Seraj, 2017; Seraj
and Sameni, 2017). To date, TFP has been successfully used in
a variety of applications such as BCI (Seraj and Sameni, 2017;
Seraj and Karimzadeh, 2017), brain connectivity and synchroniza-
tion (Sameni and Seraj, 2017; Seraj, 2017) and sleep stage classi-
fication (Karimzadeh et al., 2018).

In this study, for both IP/IE estimation and also deriving rel-
evant IP and IE features, we utilized the cerebral signal instanta-
neous parameters estimation MATLAB toolbox, provided by the
authors of (Sameni and Seraj, 2017; Seraj and Sameni, 2017; Seraj,
2017) which is introduced in (Seraj, 2016a) and (Seraj and Ma-
halingam, 2019) and is available online at (Sameni, 2014). Accord-
ingly, the analytic representation for sequences relating to each
brain area in ROI signals extracted from fMRI data is calculated
as:

Zi(t) = xi(t)+ jH {xi(t)} (1)

where xi(t) is the sequence in i-th brain area of extracted ROI sig-
nal and H{.} represents the Hilbert transform. Using the repre-
sented analytic form, IPi IE i for each brain area (i) is estimated
as:

IPi(t) = arg{Zi(t)}= arctan
(

H {xi(t)}
xi(t)

)
(2)

IE i(t) = |Zi(t)|=
√

xi(t)2 +H {xi(t)}2 (3)

Due to the usage of the arctan(.) function, a calculated phase sig-
nal might wrap at points where the values cross±π . Accordingly,
a post-processing unwrapping step is required after estimating IP.
Fig. 2 shows the estimated IP and IE for each brain area over time-
points calculated for the ROI signal extracted from fMRI data of a
subject in the dataset employed.

2.4 Feature estimation: introducing feature indexes
The estimated IP and IEmeasures for ROI signals derived from

the fMRI data obtained from each subject, i.e. AD, MCI and
healthy subjects, are used to extract feature sets. Three different
categories of feature such as (1) power, (2) entropy and (3) co-
herency were calculated for IP and IE to cover almost all aspects
of physiological data by using features from both local-scale (relat-
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Figure 2. Estimated IP and IE for each brain area over time-points
calculated for the ROI signal extracted from fMRI data of an
Alzheimer's patient.

ing to one specific brain area) and large-scale (between two widely
separated brain areas).

2.4.1 Power feature sets
The energy of the calculated IPs and IEs over time-points for

each brain area (i) is used as a measure of power, indicating a
local-scale feature set. This set is used to capture the intensity of
brain activity in different areas. Accordingly, the differing activi-
ties recorded in each cerebral region are putatively discriminative
for AD, MCI and healthy subject data. The energy of ROI sig-
nals for each brain area (i) over a period of T time-points can be
calculated as:

IPPowi =
T

∑
t=1

|IPi(t)|2 (4)

IEPowi =
T

∑
t=1

|IE i(t)|2 (5)

These energy values are stored in vectors of size Nwhich define
the number of brain areas. For each subject, two vectors of length
112 (N = 112) are computed as IP and IE power feature sets.

2.4.2 Entropy feature sets
Entropy indices are directly related to the amount of informa-

tion embedded in a signal. To capture irregularity and significance
of variation of the brain activity within different regions, Shannon
entropy can be used as a local-scale feature. Although variance
and entropy indices both reveal the information regarding varia-
tions and temporal irregularity of the patterns in a signal, the vari-
ance is sensitive to the amplitude of values (Sabeti et al., 2009).
Accordingly, using the estimated IP and IE values as illustrated in
Fig. 3, the Shannon entropy can be calculated for separate brain
areas as:

IPEnt i =−∑
k

pk logb pk (6)

IEEnt i =−∑
k

lk logb lk (7)

where k is the range of all discrete amplitude values of the signals.
Also,pk and lk are the probability of the IPi(t) and IEi(t) signals
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having the k-th magnitude, respectively. In case that the number
of samples in different discretized magnitudes are sufficient, his-
togram analysis is a proper technique to calculate the probabilities
and the entropy.

Similarly to the initially obtained power feature sets, the cal-
culated entropies are stored in vectors giving the number of brain
areas (N = 112). For each subject in each of the three classes two
vectors (IP and IE) were computed to obtain a second group of
sets.

2.4.3 Coherency feature sets
Two different, but inherently similar coherency indices, phase

locking value (PLV) and magnitude squared coherence (MSC), are
proposed here as suited to investigate the correlation and depen-
dence between the large-scale feature sets of separate brain re-
gions. PLV and MSC feature sets are calculated for the IP and
IE sequences extracted from ROI signals, respectively.

PLV is one of the most common measures used in phase anal-
ysis. H to describe the phase consistency of two signals (Lachaux
et al., 1999). After estimation of the IP difference between two
signals, the local stability of this difference can be quantified by
PLV. This stability of IP differences between brain regions (i) and
(j) is quantified as:

PLVi j =

∣∣∣∣∣ 1
T

T

∑
t=1

e j[IP j(t)−IPi(t)]

∣∣∣∣∣ (8)

where T is the length of signals and the summation is taken over
time-points (t).

MSC is employed to investigate the between-region coherency
for estimated IE. The usual method for measuring MSC is based
on calculating the power spectral densities (PSD) of two sig-
nals (Carter et al., 1973). If it is assumed that IEiand IE j are two
randomly chosen IE signals from each of two widely separated
brain areas (i) and ( j), the MSC can be computed as (Seraj, 2016b;
Carter et al., 1973):

MSCi j =
|PSDi j|2

PSDiiPSD j j
=

E{IE iIE∗
j}

E{|IE i|2}E{|IE j|2|}
(9)

whereE{.} is themathematical expectation andPSDi j is the cross-
spectrum between instantaneous envelope sequences estimated
from ROI signals extracted for the i-th and j-th brain areas (Seraj,
2016b). PLV and MSC are both widely used cerebral synchrony
indices and their values vary between zero and unity. A PLV or
MSC value equivalent to unity indicates high signal coherence and
synchronicity and vice versa (Seraj, 2016b; Carter et al., 1973).

The coherency of both PLV and MSC is inspected for all pos-
sible pairs of the 112 brain areas. This gives a 112-by-112 feature
matrix for IPi(t) and IEi(t), respectively. Fig. 3 illustrates sam-
ple PLV and MSC matrices calculated for IP and IE sequences of
individual participants. This third large-scale category of features
contains the coherency and synchrony of the activity of different
cerebral areas in fMRI data.

2.5 Feature selection and classification
In this step, first a sequential forward floating feature selection

(SFFFS) algorithm is applied to identify the most informative and
discriminative sets of features among all six feature sets (one set for
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Figure 3. Sample pairwise PLV and MSC matrices calculated for IP
and IE sequences, respectively. From left to right, illustrated matrices
belong to Alzheimer's, MCI and Healthy participants from utilized
dataset. The IPs and IEs are extracted from ROI signals for all (i.e.
N = 112) brain areas.

each of IP and IE in each of three categories). The feature vector
for each class is formed by concatenation of the features calculated
from the corresponding IP and IE signals. In this step, each feature
set is used solely in a classification process within similar settings
and the sets showing the weakest accuracy are left out.

A Student’s t-test is applied to the chosen features and the re-
maining sets of the former step to select the most relevant and
discriminative features within feature-sets. The Student’s t-test is
based on the assumption that each class consists of normally dis-
tributed features with equal but unknown variances. It tests the
null hypothesis that they have equal means (Duda et al., 1973).
Accordingly, only features with P-values less than P = 0.05, in-
dicating the confidence level at which the null hypothesis may be
rejected, are included in the classification stage.

The remaining features are gathered and concatenated for each
of the three classes and the corresponding labels are assigned. The
AD subjects, MCI and healthy participants are labeled as 1, 2 and
3 respectively. All selected feature sets were combined and a K-
NN classifier performed a final discrimination between the three
classes. Various values of K were tested (K = 1, 5, 10 and 15). K
= 5 showed the best performance and was chosen for all levels of
classification (i.e. feature selection with SFFFS). The data of 30
subjects (i.e. 10 of each class) were chosen at random for testing
while the remaining 81 were used to train the classifier. Accord-
ingly, the classifier was trained with an entire combined set of fea-
tures with a single label and returned a single value, i.e. 1, 2 or
3.

3. Results
The results of classifying AD, MCI and healthy subjects by

the combination of all chosen features were evaluated by calculat-
ing four standard classification performance indicators, accuracy
(AC), precision (PR), specificity (SP) and sensitivity (SE). Ini-
tially, the result of feature selection through significance tests is
reviewed. Significance tests were performed for all three possible
cases, i.e. AD vs. MCI, AD vs. healthy and MCI vs. healthy and
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Table 2. Confusion matrix of the proposed automatic Alzheimer's detection method

Truth Data Precision

Alzheimer's MCI Healthy

C
la
ss
if
ie
r

Alzheimer's 8 3 1 66.7%

MCI 2 5 1 62.5%

Healthy 0 2 8 80.0%

Recall (Sensitivity) 80.0% 50.0% 80.0% Overall Accuracy = 80.1%

Figure 4. Percentage of statistically significant features selected by
Student's t-test to be involved in classification stage. As shown, on
average only around 75% of the extracted features have been
selected as significant and were used in the classification stage.

results are given in Fig. 4. The confidence level for the rejection
of the null hypothesis was 5% (P-value < 0.05). As can be seen,
approximately 80% to 90% of calculated features were confirmed
to be statistically significant.

The selected features were then classified by use of a 5-NN
classifier as described previously. Classification correctly labeled
21 of the 30 test subjects. This resulted in an average accuracy of
all classes of 80.1%. The confusion matrix of this evaluation is
given in Table 2.

The accuracy, precision, specificity and sensitivity of the pro-
posed features given in Table 2 are illustrated in Fig. 5 both for each
class and in total. AC, PR, SP and SE are calculated respectively
as:

AC =
T P+T N

T P+T N +FP+FN
(10)

PR =
T P

T P+FP
(11)

SP =
T N

T N +FP
(12)

SE =
T P

T P+FN
(13)

The overall accuracy, precision, specificity and sensitivity are then
computed as the average AC, PR, SP and SE of all classes, respec-
tively.

As depicted in Fig. 5, the classes belonging to the AD sub-
jects and healthy participants show the highest accuracy, whereas,

the MCI case is gives lower values. Table 2 reports that eight of
nine misclassifications were somehow related to the MCI cate-
gory. Moreover, three of the MCI cases were mistaken as AD
subjects which is taken to show the close similarity of these two
classes. Consequently, although eight of ten AD subjects were
identified correctly, SP and PR were not relatively high for that
class (when comparedwith the healthy category). The proposed IP
and IE features generally appear to give significant results. How-
ever, further investigation is required to improve the classification
rate of MCI subjects.

4. Discussion
Detection of AD at an early stage is significantly important for

the application of appropriate treatments. Thus, new trends in this
domain are moving toward the use of more efficient algorithms
to distinguish healthy subjects from AD patients. Here, an algo-
rithm is introduced that by use of fMRI data could efficiently clas-
sify subjects as either healthy individuals or those with different
stages of AD. A more recent and related report to this one is that
of Wang et al. (2018). They proposed an approach based on previ-
ous observations that shows some parts of default mode network at
resting state fMRI lose their functional connectivity in AD. These
ROI’s were extracted from fMRI data and their correlation coef-
ficients computed. In that case, linear discriminant analysis was
employed to distinguish between AD, MCI and healthy subjects
and an AdaBoost classifier was applied to distinguish AD patients
from healthy subjects, Although, their results showed good perfor-
mance by their analytic approach even in the case of limited sam-
ples for AD classification, misclassification of MCI subjects was
still high. Moreover, their algorithm both used a complex classi-
fier for one dimensional data which may not be appropriate in the
given circumstances and was highly dependent on the ROI selec-
tion step.

In the study reported here, an alternative approach was de-
veloped. It is based on extracting new features and selecting
the most discriminative from among AD, MCI and healthy sub-
jects. The proposed algorithm does not require a complex clas-
sifier and any simple classification tool such as K-NN can be ef-
ficiently employed. Additionally, for the first time, new features
are introduced, including IP and IE sequences of ROI signals, ex-
tracted from fMRI data, where the selected ROIs are based on the
Harvard-Oxford probabilistic brain atlas. The most informative
sets of these features are identified by SFFFS. Observation showed
that this new set of features efficiently both represents the char-
acteristics of fMRI data and discriminates different stages of AD.
Although, as shown in Fig. 5, separatingMCI patients has the least
accuracy, the algorithmmostly mistakes them for AD subjects and
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Figure 5. Obtained accuracy (AC), precision (PR), specificity (SP) and sensitivity (SE) for each of three class and the overall case. The
proposed methodology shows relatively significant sensitivity to the distinction of the Alzheimer's and Normal cases while demonstrating high
specificity for the MCI cases.

not healthy subjects, which is clinically more acceptable. This
is inevitable to some extent due to variations between the brains
of subjects such as aggregation of protein fragment beta-amyloid
outside of neurons and abnormally accumulated protein tau (tau
tangles) inside neurons, both of which are similar in MCI and AD
subjects when compared with healthy individuals1. Generally, the
results obtained by application of the proposed algorithm to fMRI
data shows good performance and could be a promising approach
for clinical applications.

Although performance of the chosen features and their specific
contributions to overall performance might appear to be black-
boxed, a simple feature analysis test through which features are
added and analyzed step-by-step (i.e. add a feature set while re-
moving the rest or freezing one set of features while varying an-
other) reveals to some extent those features that are the most dis-
criminative for the application of interest. Here, all the feature
categories introduced were based on IP and IE notions of fMRI
data. It is left to the reader to decide which features to test and use
according to data availability and the given application. MAT-
LAB implementations are available for the fundamental methods
of IP and IE extraction, MSC score and PLV analysis to help with
testing and analysis and facilitate the reproducibility of this study,
in (Seraj and Mahalingam, 2019) and (Seraj, 2016a).
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