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Alzheimer's disease is pathologically characterized by
the presence of senile plaques and neurofibrillary tan-
gles in the central nervous system. Amyloid β -protein is
toxic to neurons and induces phosphorylation of Tau pro-
tein, which accumulates in paired helical filaments and
leads to the formation of neurofibrillary tangles. This study
is focused on the Wnt/β -catenin pathway influence on
Tau phosphorylation and the distribution of microtubules
and neurofilaments in adrenal pheochromocytoma cells.
It was found that neurofilament heavy polypeptide and
microtubule-associated protein-2 aggregated after treat-
ment with Aβ 1−42. Treatment with Wnt5a reduced this
aggregation, while Dickkopf-1 treatment promoted mi-
crotubule and neurofilament aggregation. Furthermore,
Tau phosphorylation at Ser396, Ser422, and Ser199
was significantly reduced after Wnt5a treatment, whereas
Dickkopf-1 increased the level of phosphorylation. These
results suggest that the Wnt/β -catenin pathway influences
the distribution of microtubules and neurofilaments, possi-
bly by modulating the phosphorylation of Tau protein in
adrenal pheochromocytoma cells.
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1. Introduction
Alzheimer's disease (AD) is a familiar and irreversible neu-

rodegenerative disease characterized by personality changes,
memory loss which can lead to dementia (Puzzo et al., 2015).
The main histopathological AD-associated changes include senile
plaques taked shape the deposition of extracellular Amyloid β -
protein (Aβ ) which induces phosphorylation of Tau protein that
leads to intracellular filament entanglement (Liu et al., 2014). The
misfolding and hyper-phosphorylation of Tau protein are together
with the neural loss and severe cognitive impairment observed in
the pathogenesis of AD (Gomez-Isla et al., 1997). It is estimated
that by 2050, the global prevalence rate of AD will be four times
that of 2006, such that one out of 85 people will suffer from AD
(Zhang et al., 2018). Despite numerous clinical trials and exper-
imental studies, the underlying mechanisms of AD are still not
clear.

The Wnt/beta-catenin signaling pathway, which (plays a piv-
otal role) in various bio-processes consisting of adult tissue home-
ostasis and embryonic form development, is the most studied
and hence best understood, developmental pathway (Zhang et
al., 2018). Wnt signaling can be splited into two categories:
the quintessential Wnt/β -catenin signaling pathway and the non-
canonical pathways, which include the planar cell polarity and
Wnt/β -calcium signaling pathways (Choi et al., 2012). The
Wnt/β -calcium signaling pathway also haves an important role
in the central nervous system (CNS) (Budnik and Salinas, 2011;
Shimogori et al., 2004) and it is haved a hand in the pathology
of several neurological confusions and cancers (De Ferrari and
Moon, 2006; Logan and Nusse, 2004). It is reported that dislo-
cation of the Wnt/β -calcium signaling pathway is associated with
AD (Hooper et al., 2008), however, whether there is a relationship
between this signaling pathway and the phosphorylation of Tau
protein is unclear. Here, the act of the Wnt/β -catenin pathway on
the cell toxicity of Aβ of the adrenal pheochromocytoma (PC12)
cell line was studied, and it was found that theWnt/β -catenin path-
way regulates the Aβ 1−42 induced hyper-phosphorylation of Tau
protein. These findings support the hypothesis that the Wnt/β -
catenin pathway on the cell toxicity of Aβ of the adrenal pheochro-
mocytoma (PC12) cell line was studied, and it was found that the
Wnt/β -catenin signaling pathway regulates the Aβ 1−42 induced
hyper-phosphorylation of Tau protein. These findings sustain the
hypothesis that theWnt/β -catenin signaling pathway is had a hand
in the pathological processes underlying AD and provides a lurk-
ing therapeutic target for AD treatment.

2. Materials and methods
2.1 Drugs and reagents

Aβ 1−42 (Cat# SCP0038) and Dickkopf-1 (DKK1, Cat#
SRP3258) were purchased from Sigma-Aldrich. Rabbit anti-
microtubule associated protein-2 (anti-MAP-2, Cat# 4542) and
mouse anti-neurofilament heavy polypeptide (anti-NF-H, Cat#
2836) were obtained from cell signaling technology. Wnt5a
(Cat#ab204627), rabbit anti-Tau (phospho S422), rabbit anti-Tau
(phospho S396), rabbit anti-Tau (phospho S199, Cat #ab79415,
Cat #ab109390 and Cat# ab81268, respectively) and rabbit anti-
GAPDH (Cat# ab181602) were purchased from Abcam. Pierce™
BCA Protein Assay Kit (Cat# 23227) was bought from Ther-
moFisher. All other reagents were obtained from Sigma-Aldrich.

http://doi.org/10.31083/j.jin.2019.03.168


Figure 1. Toxicity of Aβ 1−42on PC12 cells. Images were taken after
three days sub-culture using an inverted microscope. Cells in the Aβ
group grew more slowly when compared to the control group.

2.2 Cell culture
PC12 Cells were purchased from Chinese Academy of Med-

ical Sciences. Cells were grained at a density of 1 × 105/ml
in Dulbecco's Modified Eagle Medium provided with 10%
heat-inactivated fetal bovine serum (FBS) and 1% penicillin-
streptomycin and cultured at 37 ◦C with 5% CO2. To observe the
affect of the Wnt/β -catenin pathway on the cell toxicity of Aβ of
the PC12 cell line, cells were gave 40 µM Aβ 1−42 for 24 hours;
then with Wnt5a (30 ng/ml) or DKK1 (100 ng/ml) two hours be-
fore immunochemistry and Western blotting experiments.

2.3 Immunostaining
PC12 cells were seeded onto slides and cultured for two days.

After drug treatment, the slides were rinsed three times with
phosphate-buffered saline (PBS) and fixed in 4% paraformalde-
hyde for 20 minutes at room temperature. The cells were then
washed with PBS and blocked with 10% FBS, 0.01% Triton for
one hour. Cells were then incubated with antibodies against NF-H
or MAP-2 (1 : 1000) overnight at 4 ◦C. After three washes with
PBS, cells were incubated with Alexa fluor 594-conjugated goat
anti-rabbit or anti-mouse antibody, (1 : 3000, Invitrogen, USA)
for one hour, in the dark, at room temperature. Slides were then
washed three times in PBS and incubated with DAPI (1 : 1000) at
37 ◦C in the dark for 20 minutes to stain the cell nuclei. NF-H and
MAP-2 were observed by a laser scanning microscope.

2.4 Western blotting
The protein abundance was detected by Western blotting.

Briefly, treated and untreated PC12 cells were harvested and
washed three times with PBS and then lysed in ice-cold RIPA
buffer containing a phosphatase and protease inhibitor cocktail.
Cell lysates were centrifuged at 12,000 rpm at 4 ◦C for 15 minutes,
and the supernatants were collected and stored until analysis. The
protein concentration was measured using a BCA protein quantifi-
cation kit. Total proteins in the cell lysates (10 µg/condition) were
separated by 10% SDS-PAGE and transferred to polyvinyl difluo-
ride membranes (Millipore, USA) using standard procedures. The
5% (w/v) BSAwas used to seal the membrane at room temperature
for 2 hours in Tris buffer brine containing 0.1% Tween-20 (TBS-
T), Then, the antibody was incubated overnight with the antibody
dilution solution at 4 ◦C. After washing with tbst, the membranes
were incubated with secondary horseradish peroxide binding an-
tibodies (1 : 5000; cwbio, China) for 1 hour at room tempera-

ture. Detection of protein bands by ECL reagent and analysis by
FluroChemT M SP software.

2.5 Statistical analysis
The SPSS 22.0 software was used for statistical analysis. The

data are expressed as the mean value of the average (± standard
error) (S.E.M.). The differences among groups were evaluated by
one-way ANOVA, and then the post-event LSD test with the same
hypothetical variance was performed. Only P < 0.05 was consid-
ered to have statistical significance.

Figure 2. Influence of the Wnt/β -catenin signaling pathway on NF-H
location in PC12 cells. Images show staining with DAPI (blue, left),
NF-H (red, middle) and the co-localization of both in control (right),
Aβ , Aβ + Wnt5a or Aβ + DKK1 treatment groups.

3. Results
3.1 Toxicity of Aβ 1−42 on PC12 cells

To determine the cell toxicity of Aβ of the PC12 cell line and
interrogate its biological features, PC12 cells were sub-cultured
and treated with 40 µM Aβ 1−42 for 24 hours. Cell morphology
and growth characteristics were observed using an inverted mi-
croscope (Fig. 1). Cells grew in a spindle shape and were evenly
dispersed in the control group. After Aβ 1−42 treatment, cells kept
the spindle shape but grew more slowly.

3.2 Wnt/β -catenin signaling pathway affects NF-H MAP-2
locations on PC12 cells
Immunochemistry was employed to examine the effect of the

Wnt/β -catenin signaling pathway on the location of neurofila-
ments and microtubules on PC12 cells. As shown in Fig. 2 and
Fig. 3 , treatment with Aβ 1−42 affected the cytoskeleton stabil-
ity, resulting in microtubules and neurofilaments aggregating and
condensing. Wnt5a is the activator of theWnt/β -catenin signaling
pathway, and after treatment with it, NF-H and MAP-2 aggrega-
tion were reduced (Fig. 2). DKK1 is the Wnt/β -catenin signaling
pathway inhibitor, and when used to treat NF-H and MAP-2, it
promoted their aggregation (Fig. 3).
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Figure 3. Influence of the Wnt/β -catenin signaling pathway on NF-H
location in PC12 cells. Images show staining with DAPI (blue, left),
MAP-2 (red, middle) and the co-localization of both in control (right),
Aβ , Aβ + Wnt5a or Aβ + DKK1 treatment groups.

3.3 Wnt/β -catenin signaling pathway influences p-Tau
abundance in PC12 cells

To examine whether the Wnt/β -catenin signaling pathway
modulates the phosphorylation of Tau protein, PC12 cells were
pretreated with Aβ 1−42, Aβ 1−42 + Wnt5a, and Aβ 1−42 + DKK1
respectively. After 24 hours of treatment with Wnt5a, the expres-
sion of Tau protein phosphorylated at Ser396, Ser422, and Ser199
were significantly reduced, whereas an increase was seen after
treatment with DKK1 (Fig. 4).

Figure 4. Influence of the Wnt/β -catenin signaling pathway on p-
Tau abundance in PC12 cells. A. Western blot showing expression
of p-396, p-422 and p-199 Tau protein. B. Quantification of p-396,
p-422 and p-199 Tau protein expression by Western-blotting (n = 3).
Data are presented as mean ± SEM. *P < 0.05 vs. Control; ***P
< 0.001 vs. Control. #P < 0.05 vs. Aβ ; ##P < 0.01 vs. Aβ ; ###P
< 0.001 vs. Aβ .

4. Discussion
In this study, immunochemical results have shown that micro-

tubules and neurofilaments tend to aggregate in PC12 cells. This
aggregation was reduced by Wnt5a and increased by DKK1 treat-
ment. Protein levels of p-Tau in the cell lysate were reduced by
Wnt5a and increased by DKK1 treatment. Results show that the
Wnt/β -catenin pathway influences the cellular hallmarks of AD.

Aβ is neurotoxic to the CNS, and the level of neurotoxicity is
determined by the rates and levels of Aβ self-association (Feng
and Zhang, 2004). Aβ 1−42 was used for creating the toxicity in
the adrenal pheochromocytoma (PC12) cell line (Pike et al., 1993;
Yankner et al., 1990) by the high level of self-association (Feng
and Zhang, 2004; Jarrett et al., 1993; Snyder et al., 1994). It has
been reported that Aβ accumulation is a distinct morphological
hallmark of AD, and it is the most-used AD drug target (Borlikova
et al., 2013). Moreover, p-Tau aggregation may induce sequential
brain lesions, and Aβ is proposed to be the activator (Maxwell et
al., 2018).

Notch1 overexpression has been shown in AD cortex, and al-
tered Notch signaling is related to enhanced Aβ expression and
neurodegeneration in AD (Berezovska et al., 1999; Galeano et al.,
2018). Moreover, Nortch signaling and Wnt signaling are closely
related (Kaemmerer et al., 2019; Ye et al., 2019). Previous studies
have also reported that activation of Wnt signaling function may
reverse the Aβ -dependent neurotoxicity (De Ferrari et al., 2003).
Hyperphosphorylated Tau accumulates in paired helical filaments
(PHF) and leads to the formation of neurofibrillary tangles as well
as neuronal degeneration inAD (Alonso et al., 1996). Several stud-
ies point to a possible role for Wnt in AD (Cisternas et al., 2019;
Hu et al., 2019; Huang et al., 2018).

PHF shares epitopes with MAP-2 and other neurofilament as-
sociated proteins (Kosik et al., 1986). Furthermore, previous stud-
ies report that Wnt3a could regulate the growth and directionality
of microtubules, resulting in microtubule remodeling (Purro et al.,
2008). In this study, it has been shown that aggregation of mi-
crotubules and neurofilaments in PC12 cells can be observed fol-
lowing the use of MAP-2 and NF-H antibodies to separately label
MAP-2 and NF-H proteins. Wnt5a treatment reduced NF-H and
MAP-2 aggregation, while DKK1 treatment increased their aggre-
gation. Microtubule-associated protein Tau is abnormally phos-
phorylated in AD (Grundke-Iqbal et al., 1986) and the dephos-
phorylation of p-Tau prevents formation of neurofibrillary tangles
(Alonso et al., 1996). It was further found the phosphorylation of
Tau at Ser396, Ser422 and Ser199 were significantly higher in the
Aβ group than for normal controls. These results are consistent
with those from previous studies and are indicative of a role for
the Wnt signaling pathway in AD.

5. Conclusion
This study shows that the Wnt/β -catenin pathway can modu-

late the intracellular distribution of microtubules and neurofila-
ments, as well as the levels of phosphorylated Tau protein in PC12
cells. This demonstrates that the pathway is a promising target for
AD research. The model system employed to show this result will
likely be useful in future studies of the role of the Wnt/β -catenin
pathway in AD.
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