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Pattern recognition algorithms decode emotional brain
states by using functional connectivity measures which are
extracted from EEG signals as input to the statistical clas-
sifiers. An open-access EEG dataset for emotional state
analysis is used to classify two dominant emotional mod-
els, based on valence and arousal. To calculate the func-
tional connectivity between all available pairs of EEG elec-
trodes four different measures, including Pearson's corre-
lation coefficient, phase-locking value, mutual information,
and magnitude square coherence estimation, were used.
Three kinds of classifiers were applied to categorize single
trials into two emotional states in each emotional model
(high/low arousal, high/low valence). This procedure re-
sulted in decoding performance of 68.30% and 60.33%
for valence and arousal respectively in test trials which
were significantly higher than chance ( ≈ 50%, t-test,
and significance level of 0.05). The results obtained using
a phase-locking value approach were significantly better
than previous findings on the same data set. These re-
sults illustrate that functional connectivity between distinct
neural populations can be considered as a neural coding
mechanism for intrinsic emotional states.
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1. Introduction
Emotion is defined as a pleasant or unpleasant experience re-

lated to a special pattern of physiological activity in the brain. In
an attempt to develop tools and algorithms for emotional state de-
coding, it is possible to report the intrinsic emotional state of the
brain based on electrophysiological signals without requiring any
other resources as an input (Jenke et al., 2014). Why is it important
to design such a system? The reason is that some kinds of defects
in emotion recognition have been reported in some diseases. For
example, some schizophrenic patients suffer from various prob-
lems in emotion interactions (see Barkhof et al., 2015). There are
different ways to analyze the emotional states such as the electro-
cardiogram (ECG), skin conductance (SC), respiration, as well as

electroencephalograph (EEG), electrocorticography (ECoG), and
functional magnetic resonance imaging (fMRI) and either facial
expressions or speech (see Wang et al., 2014).

Electroencephalograph is a noninvasive and portable method
of recording brain activity with a high temporal resolution which
is a suitable tool that provides an overall and simultaneous view of
brain activity. Due to the numerous advantages of EEG, especially
in humans, relative to other methods of brain study, EEG signals
from a multimodal dataset, which has been provided by Koelstra
et al. (2012) are used here to evaluate the efficacies of proposed
methods of analysis. There are different strategies for stimulat-
ing emotions such as presentation of images as visual stimulus
(Zhang and Lee, 2010), playing music as audio stimulus (Naji et
al., 2015; Yang and Chen, 2011), spraying perfumes as odor stim-
ulus (Lorig and Schwartz, 1988), etc. The multimedia or music
video stimulations are the most effective way for emotion stimu-
lation. Therefore, this approach has been considered as the most
popular method in emotion classification. It is widely accepted
that DEAP (a Dataset for Emotion Analysis using Physiological
signals) dataset, which has used such multimedia stimulation, has
all of required factors for emotion recognition (see Bahari and
Janghorbani, 2013; Chung and Yoon, 2012; Naser and Saha, 2013;
Torres-Valencia et al., 2014; Zhuang et al., 2014).

The main results on DEAP dataset (Koelstra et al., 2012) in
previous works demonstrated that EEG information about arousal
and valence could be extracted with a maximum accuracy of 62%
and 57.60% respectively via spectral power for each electrode and
spectral power asymmetry between pairs of EEG electrode and
with naïve Bayesian classifier which used leave one out (LOO)
cross-validation, respectively.

Another algorithm for recognition of emotional states on
DEAP dataset was implemented by Naser and Saha (2013). They
proposed a system that estimated emotional states using the SVM
classifier based on the dual-tree complex wavelet packet transform
(DT-CWPT) features and singular value decomposition feature se-
lection. They reported an average accuracy of 66.20%, 64.30% for
arousal and valence.

Bahari and Janghorbani (2013) showed that the emotion recog-
nition rate using a support vector machine (SVM) reached an ac-
curacy of 64.56% and 58.05% for arousal and valence. Torres-
Valencia et al. (2014) reported an average accuracy of 55.00%,
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58.75% by using SVM as a classifier to characterize EEG signals
into two emotional states using hidden Markov models (HMM).
This was an overview of the results of all previous works on the
DEAP dataset with the purpose of emotional state classification.
Most of the previous studies have only focused on extracting clas-
sifier inputs from single electrodes.

Khosrowabadi et al. (2014) proposed a system that estimated
coherence between each pair of electrodes using neural networks
to categorize emotional states based on EEG signals. They re-
ported an average accuracy range of 62.50% to 68.57% for each of
the two emotional states by the ERNN dataset. Except this study
which has used coherence in frequency domain as input feature
to an emotion recognition system, no other study has focused on
functional connectivity between EEG electrodes for this aim. Here
four types of functional connectivity-based features in frequency
and time domain were considered. At the best condition, a decod-
ing performance of 68.30% and 60.33% for valence and arousal re-
spectively using phase-locking value (PLV) as the classifier input
was obtained which was significantly better than previous findings
on the same data set.

One of the most important problems in designing statistical al-
gorithms for emotion classification is extracting efficient features
from electrophysiological signals so that it can discriminate ob-
servations from different emotional states. Undoubtedly, there are
different types of emotions, but Davidson (1979) divided emo-
tional models into two dimensions (to use multiple dimensions to
categorize emotions). Davidson (1979) model allow two classes
for each dimension (high/low arousal, high/low valence) where
valence is considered on the horizontal axis and arousal in the
vertical axis (see Davidson, 1979). The focus of this study is on
functional connectivity between EEG signals from different elec-
trodes as the recognition model input. We asked whether higher
decoding accuracy could be achieved for emotion classification
via functional connectivity features relative to previous findings
on the same dataset. If so then the idea is to know which func-
tional connectivity measure is the best and which frequency band
is more informative for emotion categorization.

2. Material and methods
2.1 Datasets

DEAP dataset obtained by Koelstra et al. (2012) contains data
from 32 subjects (16 females and 16 males), the mean age of
the healthy subjects was 26.9,  ranging from 19-37 (https://www.
eecs.qmul.ac.uk/mmv/datasets/deap/). Before the dataset collec-
tion, 120 music videos had been placed on (https://www.last.fm)
with affective tags and then 40 music videos in arousal, valence,
like/dislike, dominance, and familiarity levels selected as stimu-
lants via poll. The EEG signals of the DEAP dataset were used
here to apply functional connectivity methods as the principal pro-
cedure. It should be noted that they have recorded 32 electrodes
of EEG signals by 32 active AgCl electrodes using the Biosemi
system (Koelstra et al., 2012) at a sampling rate of 512 Hz by
the international 10-20 system. Participants rated self-assessment
manikins (SAM) from 1 to 9 for valence, arousal, dominance, and
liking (1 to 5) after watching each music video.

In the field of emotion analysis, valence, and arousal are the
main domain of interest as the most important factors of emotion

assessment (see Kensinger, 2004; Sourina and Liu, 2011). Hence,
the other emotional conditions (like/dislike, dominance) were ig-
nored. Accordingly, in the DEAP dataset, the label of affective
task can be divided into two dimensions and four parts as high va-
lence (HV)/arousal (HA) level (> 5) and low valence (LV)/arousal
(LA) level (< 5).

2.2 Feature extraction
The concept of connectivity in the brain can be divided into 3

categories: anatomical connectivity, functional connectivity, and
effective connectivity. Anatomical connectivity refers to a set of
synaptic connections. To depict this connectivity, using Diffusion
Tensor Imaging (DTI) to estimate the number of water molecules
within neuronal fibers. Functional connectivity is defined as the
statistical dependence between the activity patterns of neurons in
two distinct brain networks (Anzellotti and Coutanche, 2018). Ef-
fective connectivity is a measure based on the causality princi-
ple that helps us to detect which nervous system drives other ones
along with the mathematical complexity, although this connectiv-
ity gives more comprehensive information (see Bastos and Schof-
felen, 2016). Here the focus is on functional connectivity to detect
the emotional condition of the brain based on time and frequency
domain in EEG signals. These methods have been described in the
following subsections.

2.2.1 Pearson's correlation connectivity
Pearson's correlation is one of the oldest and most well-known

measurements to estimate linear correlation in the time domain
between two signals of x(t) and y(t) at zero lag (Bravais, 1844;
Galton, 1886; Pearson, 1895). The range of linear correlation is
−1 ≤ Rxy ≤ 1, which -1 indicates a complete inverse linear corre-
lation between the signals, 0 means no linear interdependence and
1 is evidence of a complete direct linear correlation between two
time-series (cf., Niso et al., 2013). Pearson's correlation is calcu-
lated as the following equation:

Rxy =
1
N ∑N

k=1 x(k)y(k) (1)

where x(k) and y(k) are time series which here represent the
recorded EEG signals from two distinct electrodes, and N is the
total number of samples in time.

2.2.2 Mutual information connectivity
The mutual dependence of two variables (information about

one variable that is accessible by having the other variable) is cal-
culated by mutual information (Cover and Thomas, 1991; Shannon
and Weaver, 1998). Relative to methods such as Pearson correla-
tion in which just linear dependence between real values is evalu-
ated, mutual information can detect (if any) high order correlations
even between non-real variables. Mutual information is defined as
the following equation (Niso et al., 2013) :

MIxy = ∑i p(x,y) log
p(x,y)

p(x)p(y)
(2)

where x and y are time series (EEG signals) of two EEG elec-
trodes, p(x) and p(y) are individual probability distributions re-
late to EEG time series and p(x,y) quantifies the cross probability
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of these two variables. According to Eqn. 2, mutual information
based on information theory is a measure that quantifies the infor-
mation of a discrete random variable, y, and combination of (x,y).

Mutual information quantifies shared information between two
signals based on probability distributions. Probability distribu-
tions are calculated by considering 100 bins for a total range of the
data magnitude and then computing the probability of the occur-
rence of signal samples in each bin. Range of mutual information
is 0 ≤ MIxy ≤ ∞. 0 indicates that x and yare independent and any
value above 0 shows that x and y have some value of dependency
( see Bastos and Schoffelen, 2016).

2.2.3 Magnitude square coherence estimation
Magnitude squared coherence is referred to as correlation in

the frequency domain based on the power spectrum between two
signals x(t) and y(t) (Bendat and Piersol, 2011). Range of magni-
tude square coherence is 0≤ cohxy ≤ 1, in which 0 means no linear
dependence between x(t) and y(t) at the frequency domain while
1 indicates correspondence between x(t) and y(t) at frequency (f ).
Magnitude squared coherence is calculated as follows (Niso et al.,
2013):

cohxy( f ) =

∣∣sxy( f )
∣∣2

sxx( f )syy( f )
(3)

where Sxx ( f ) and Syy ( f ) are individual power spectral densities
of time series of x and y (EEG signals from two electrodes)
that Sxx ( f ) = |x̂( f )|2 (x̂( f ) is Fourier transform of x(t)) and
Sxy ( f ) is cross power spectral density (Fourier transform of cross-
correlation between x, y).

2.2.4 Phase locking value connectivity
Phase locking value is a tool for measuring synchronization

between sources of activity. It estimates the relative phase dis-
tributed over the unit circle. This quantity is calculated by (Tass et
al., 1998):

PLV =
∣∣∣⟨ei∆ /0rel(t)

⟩∣∣∣= ∣∣∣∣ 1
N ∑N

n=1 ei∆ /0rel(tn)
∣∣∣∣ (4)

where ∆ϕrel (t) is instantaneous phase difference at time t between
two EEG time series of x and y and ⟨.⟩ indicates time average.
Range of phase-locking value is 0 ≤ PLV ≤ 1. 0 means that
likely, the relative distribution of phase-difference between two
electrodes is uniformly distributed, while 1 is achieved if and only
if the condition of strict phase locking is obeyed: phase difference
is constant, and thus, complete phase synchronization is being de-
tected (see Niso et al., 2013).

To find the relationship between the functional connectivity of
brain signals and intrinsic emotional states, at first, noise-free EEG
signals (already preprocessed data (Koelstra et al., 2012)) were fil-
tered in four frequency bands, namely: Theta (3-7 Hz), Alpha (8-
13 Hz), Beta (14-30), Gamma (30-47) using Butterworth bandpass
filters of order 4. The range of 1-47 Hz was also evaluated as a
wide-band condition. Preprocessing had been performed by down-
sampling the recorded 512 Hz EEG signal to 256 Hz (Koelstra et
al., 2012).Then we extracted functional connectivity features from
all frequency bands and all possible pairs of 32 electrodes for each

subject. As a result, we have a 32 × 32 matrix (with 1024 com-
ponents) with the value of connectivity for each electrode pair and
each subject. Fig. 1 illustrates a sample matrix of functional con-
nectivity measured using the PLV method. The colors in Fig. 1
show the values of PLV. As the functional connectivity measures
are symmetric, we have used only the values of upper triangle of
this matrix to remove repetitive features. So, we have totally 496
features for each subject (after removing diagonal elements).

Figure 1. A sample matrix of connectivity between all 32 × 32 elec-
trode pairs, which is measured based on the PLV method. In this
figure, colors illustrate the magnitude of functional connectivity. The
connectivity (PLV) in this example, matrix ranges between 0 and 1,
where dark blue is zero, and dark red indicates the value of 1.

3. Classification

The classification using four kinds of functional connectivity
measures, namely, Pearson's correlation coefficient (Corr), Phase
locking value (PLV), Mutual information (MI) and Magnitude
square coherence estimation (MSCE). Three types of classifiers,
namely naïve Bayesian, KNN, and linear SVM, were considered
here. Each classifier was evaluated using leave-one-out cross-
validation on the DEAP database to identify subject's emotional
level in valence and arousal dimensions. The procedure was re-
peated 100 times by randomly subsampling from all trials of two
considered classes such that there was the same number of trials in
each class. After calculating the main classification performances,
to evaluate the significance of the obtained values, the distribution
of those performances was compared with a chance distribution.
Chance performance was calculated by randomly shuffling the la-
bels. As the performances follow a normal distribution, then the
t-test as a statistical test was used to check whether the main per-
formance distribution is significantly distinct from the chance one
(significance levels of 0.05 and 0.01). To be sure about the error
of true accuracy relative to the estimated one, which was calcu-
lated by statistical classifiers, 95% confidence interval of true er-
ror was evaluated too by approximating a normal distribution of
error around the true error rate, for the used sample size of DEAP
dataset.
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4. Results
Classification accuracies and error rates of emotion recogni-

tion on valence and arousal for phase-locking value, magnitude
squared coherence, Mutual information, and Pearson's correlation
connectivity features in different frequency bands have been calcu-
lated. These values are obtained by averaging error rates of all 32
subjects and then calculating the range of 95% confidence inter-
val of true error based on those estimated error rates. For all con-
ditions, the error rate was lower when features from a wide-band
group of feature space were used. So, in Fig. 2, a comparable view
of accuracies is illustrated for different connectivity measures and
different classifiers for wide-band space of features.

We evaluated the statistical significance of the results by stu-
dent's t-test. Errors (accuracies) with ρ < 0.05 (or ρ < 0.01)
were considered to be significantly higher than chance level. This
significance level was considered in comparison with earlier re-
sults, that considered threshold for t-test analysis in (Zhuang et
al., 2014)) was (ρ < 0.05), in (Torres-Valencia et al., 2014) was
(ρ < 0.01) and in Bahari and Janghorbani (2013) was (ρ < 0.01).

Overall, the results show the accuracy of 68.30% (true error
with a 95% confidence interval of 28.9-34.5%) for valence and
60.33% (true error with a 95% confidence interval of 36.7-42.6%)
for arousal for wide-band with linear SVM classifier as the best
decoding accuracies. In this condition, PLV has higher accuracy
than the other features for both valence and arousal states. To be
sure, the proportion of true classified single trials for both high and
low conditions in each emotional state was checked in the relevant
confusion matrix. For example, in one of the best conditions of
classification for valence state, 67.9% of high valence and 68.6%
of low valence single trials were classified correctly. This indicates
that there is no bias to one condition in classification procedure and
decoding accuracies are reliable.

For valence, after PLV, MI (wide-band), Corr (beta band),
COH (wide-band) have the best accuracies, respectively. On
the other hand, COH (wide-band), Corr (wide-band), MI (theta
band) demonstrated higher decoding performances respectively
for arousal. With naïve Bayesian classifier, decoding accuracy of
68.03% (true error with a 95% confidence interval of 29.1-34.8%)
for valence and 59.94% (true error with a 95% confidence interval
of 37.1- 43.1%) for arousal were obtained by using wide-band and
beta band features respectively. PLV provided the highest accura-
cies in compared to the other features for both conditions. After
PLV, COH (wide-band), MI (wide-band), Corr (wide-band) for va-
lence and Corr (gamma band), MI (theta band), COH (wide-band)
for arousal led to higher accuracies, respectively.

By using KNN classifier, accuracies of 65.41% (true error with
a 95% confidence interval of 31.7-37.5%) for valence at the beta
band and 56.56% (true error with a 95% confidence interval of
40.4-46.4%) at alpha band for arousal were achieved for PLV as
the best input features. After PLV, COH (wide-band), MI (wide-
band), Corr (beta band) for valence, and MI (alpha band) Corr
(alpha band), COH (gamma band), for arousal have the best accu-
racies respectively.

5. Discussion
Emotion recognition (to decode emotional states based on the

activity of different brain regions) can help to assess the neural

Figure 2. Decoding accuracies for valence and arousal using dif-
ferent connectivity measures and classifiers when wide-band filtered
signals were used for calculation of feature space, colors show de-
coding accuracy for different input features to the classifiers (which
are calculated based on various connectivity measures), dark blue is
decoding accuracy for phase-locking value as feature space, cyan
for magnitude square coherence, yellow for mutual information and
brown for Pearson correlation.

basis of emotional computations in brain circuits, in particular,
the role of between region functional connectivity in the brain for
emotion processing. Our results indicated better decoding accura-
cies compared with Koelstra et al. (2012) which is the main refer-
ence for the current dataset. For the valence emotional state, our
approach obtained an accuracy of 66.47% compared to Koelstra et
al. (2012) which obtained 57.60% with similar method of classifi-
cation (LOO cross-validation, naïve Bayesian classifier) using dif-
ferent input features. Our results indicate a more accurate outcome
compared to Bahari and Janghorbani (2013) for valence emotional
state (e.g., 65.41% compared to 58.05%) with similar methods
(LOO cross-validation, KNN classifier) except in feature extrac-
tion. In other words, most of the previous results are unanimous
on the fact that this method of feature extraction improves decod-
ing accuracy of emotional classification (cf., Bahari and Janghor-
bani, 2013; Chung and Yoon, 2012; Naser and Saha, 2013; Torres-
Valencia et al., 2014; Zhuang et al., 2014).

The proposed methods resulted in higher decoding accuracies
than accuracies in Torres-Valencia et al. (2014) for both valence
and arousal emotional states based on hidden Markov models to
classify physiological signals on valence/arousal space, by using
only EEG signals. They obtained an accuracy of 55% for arousal
and 58.75% for valence. Both of these accuracies were improved
by using functional connectivity as input to statistical classifiers.
Our results also indicate the possibility of decoding valence emo-
tional information with higher accuracy relative to all other pre-
vious works on this dataset using functional connectivity. So,
our results demonstrate these kinds of features have a relation to
the emotional states of the subjects, meaning that based on pair-
electrode-connectivity, one can extract emotional information of
EEG signals in single trials.

Consequently, we conclude that functional connectivity plays
a major role in emotion processing, such that each emotional state
is represented in the brain by a certain pattern of connectivity be-
tween different regions. We demonstrated this by machine learn-
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ing methods which can identify the amount of information con-
tent about some items in its input signals. Different patterns of
connectivity for different states of emotion maybe become evident
in the strength of connection in a certain network or the situation
of engaged networks. This ambiguity about the nature of emo-
tion coding in the pattern of connectivity is recommended to be
cleared in future studies, although we found that emotional states
are decoded from brain signals with the highest accuracy using
PLV. This indicates that phase locking between distinct regions
is a highly efficient mechanism of information coding in addi-
tion to being a mechanism of information transfer between distinct
regions. This is true about the other algorithms of connectivity
measurement, although algorithms that measure linear interaction
demonstrated less power for information decoding. Many other
methods are introduced yet to quantify the amount of connectiv-
ity between electrophysiological signals, which are developed to
resolve some limitations and deficiencies of traditional methods.
Here we evaluated the efficiency of some widely used and less un-
reliable measurements to introduce a general effect of emotional
decoding via connection.
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