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Neurological diseases in the central nervous system are
mostly characterized by the failure of endogenous repair
to restore tissue damage and salvage lost function. Cur-
rently, studies have shown that neural stem cell transplan-
tation provides a good therapeutic effect on neurological
diseases. For this reason, neural stem cell transplanta-
tion has been explored as a cell replacement therapy.
Although transplanted cells can replace cells lost during
or post central nervous system injury, many studies have
shown that this mechanism is insufficient as most of these
newly formed cells fail to integrate and eventually die. Al-
though it was initially thought that neural stem cell could
only replace lost cells, recent experiments have shown that
transplanted neural stem cell can also play bystander roles
such as neuroprotection and immune regulation, promote
tissue repair by preventing tissue damage, interfere with
pathogenic processes, or by rescuing endogenous nerve
cells. However, compelling evidence has raised concerns
about this bystander effect, which can be caused by sev-
eral biologically active molecules (collectively known as
the secretome) produced by neural stem cells. These re-
sults also raise the possibility of the neural stem cell secre-
tome as a potential candidate for neural stem cell trans-
plantation therapies based on the bystander effect. A bet-
ter understanding of the molecules and mechanisms of this
effect is of critical importance for neural stem cell-based
therapies. This review aims to discuss the function and
application of neural stem cell secretome in the treatment
of neurodegenerative disorders.
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1. Introduction
Neural stem cells (NSC) are heterogeneous cells with mitotic

activity, self-renewal, and multipotency, which drive neurogen-
esis and gliogenesis throughout the life of most mammals, in-
cluding humans. When a neural injury occurs, NSCs have been
shown to retain the capacity to migrate to damaged areas, pro-
mote functional and structural tissue repair and generate both neu-
rons and glia with complex gene expression patterns and differ-

ences in space and time (Adams and Morshead, 2018; Göritz and
Frisén, 2012). Recent technical advances allow NSCs to be ob-
tained from three sources (Tang et al., 2017), including direct ex-
traction from primary tissues (Belenguer et al., 2016), differenti-
ation from pluripotent stem cells (Banda and Grabel, 2016) and
transdifferentiation from somatic cells (Shahbazi et al., 2017).

The various characteristics of NSC transplantation offers great
promise for the treatment of a wide variety of diseases, such as
neurological disease (including spinal cord injury (Suzuki et al.,
2017; Zhu et al., 2018), traumatic br ain injury (Duan et al., 2016;
Koutsoudaki et al., 2016), epilepsy (Lippert et al., 2017; Shetty,
2014), cerebral palsy (Tan et al., 2014; Zheng et al., 2012) and
cerebrovascular diseases, including stroke (Lee et al., 2010). Is-
chemic and hemorrhagic stroke (Mozaffarian et al., 2016), is a
leading worldwide cause of disability and death (Yu et al., 2018).
A recent study has shown that transplanted NSCs could improve
neurological deficits and reduced the severity of ischemic stroke
by restoring endogenous striated spinous neurons, as well as by
inhibiting inflammation and glial scar formation (Bacigaluppi et
al., 2009). The results of other experiments have shown that rats
show good functional performance in neurological tests 2-8 weeks
after NSCs transplantation, which further demonstrates that ex-
ogenous NSCs could be used for functional recovery after hem-
orrhagic stroke (Lee et al., 2010). On this evidence, NSC trans-
plantation is undoubtedly a promising therapy for the treatment of
cardiovascular and neurological diseases.

2. The therapeutic mechanism of neural stem
cell transplantation
Current methods for NSC transplantation in animal experi-

ments and clinical applications include intravenous or intrathe-
cal injections (Wang et al., 2017), intracerebral injection (Sullivan
and Armstrong, 2017), and stereotactic (Li et al., 2013) and intra-
ventricular injection (Griffin et al., 2015). As Chu et al. (2004)
have shown, intravenously transplanted human NSCs can migrate
to and differentiate within lesion sites to improve neural function,
NSC transplantation has also been shown by the rotary table, limb
position and turning ability tests to improve sensorimotor perfor-
mance. Another study has shown that stereotactic transplanted
NSCs can differentiate into neuronal (50%) and astroglial (15%)
cells, which may then provide the replacement of cells where they
are lost following injury (Kelly et al., 2004).
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Although the therapeutic mechanisms of cell replacement for
transplanted NSCs have led to a large number of studies, until now,
they have increasing suggested that direct replacement of miss-
ing cells may not be the main mechanism of NSC transplantation
(Bernstock et al., 2017; Marsh and Blurton-Jones, 2017). Several
studies have shown this mechanism to be largely inadequate be-
cause most of the newly formed cells fail to integrate and even-
tually die (Arvidsson et al., 2002; Thored et al., 2010). Much
research has shown that the beneficial role of NSCs may be at-
tributed to other biological characteristics. For example, trans-
planted neural progenitor cells (NPCs) can play a bystander effect
of neural protection and immune regulation in addition to the role
of cell replacement, thus promoting tissue repair by prevention of
tissue damage, interfering with pathogenic processes, or saving
endogenous nerve cells (De Feo et al., 2012). Additionally, dif-
ferent studies have confirmed other bystander effects induced by
NSCs, such as ameliorating damage to neurophysical structures,
immunoregulation (Kim et al., 2018) , neuroprotection (Cui et al.,
2015; Pang et al., 2017), neurotrophication (Bernstock et al., 2017;
Marsh and Blurton-Jones, 2017) and angiogenesis (Boese et al.,
2018), as well as by having an endogenous impact in disease mod-
els (Jablonska et al., 2016) .

Although NSC transplantation is undoubtedly a promising
therapy for neurological disease, their limited persistence/survival
in the harsh microenvironment of ischemic regions rich in reac-
tive oxygen species means that the clinical transformation of this
method remains elusive (Bernstock et al., 2017). However, the
NSC secretome may not only help circumvent this difficult prob-
lem but also provide a consistent "on-demand" solution. There is,
therefore, a promising therapeutic prospect held out by the NSC
secretome in both replacement and auxiliary cell transplantation.

3. NSC secretomes
In addition to the abilities of self-renewal and differentia-

tion into all neural cell lineages, NSCs secrete through the au-
tocrine/paracrine pathway, a large number of bioactive compounds
that play important therapeutic roles. Studies have shown that
in pathological conditions, NSCs can regulate the microenviron-
ment through a paracrine mechanism. This plays an important
role in maintaining the characteristics of stem cells and direc-
tional differentiation. NSCs can also perform intercellular re-
sponses through paracrine signaling (Bollini et al., 2013; Drago
et al., 2013). It is bioactive compounds, such as chemokines, cy-
tokines, early inflammatory cytokines, growth factors, nutritional
factors, stem cell regulatory factors, extracellular vesicle and other
similar molecules that are generally referred as the NSC secretome
(Fig. 1), which is considered important in regulating several crit-
ical biological processes, such as cell survival, proliferation and
differentiation, immune regulation, anti-apoptosis and stimulation
of adjacent cells in tissues (Cossetti et al., 2012; Skalnikova et al.,
2011). Up until the present, studies have shown that neurotrophic
factors derived from NSCs play important roles in cell cycle reg-
ulation (Einstein and Ben-Hur, 2008), cell survival (Marsh and
Blurton-Jones, 2017), development and adult differentiation (Hy-
man et al., 1991; Numakawa et al., 2017).

Drago et al. (2013) have shown that significant repair of dam-
aged brains can be achieved by injecting biological agents secreted

by stem cells, rather than by directly inserting stem cells for cell
replacement.

Further, brain-derived neurotrophic factor (BDNF) has been
shown to have some success in ameliorating symptoms in several
studies of preclinical models of Huntington's disease (Gharami
et al., 2007; Giralt et al., 2009) . Trials are underway to treat
Alzheimer's disease with nerve growth factor (NGF) (Allen et al.,
2013) which is administered either as injected proteins (Tian et al.,
2012), released locally by implanted NGF-secreting cells (Tuszyn-
ski et al., 2005) or by introducing an adeno-associated virus-based
gene delivery vector that encodes for human NGF (Bishop et al.,
2008). Additionally, ste m cell-secreted factors have been used in
several clinical studies (Drago et al., 2013), and the clinical trial
of autologous mesenchymal stem cell secreting factor for the treat-
ment of amyotrophic lateral sclerosis has been completed (Clini-
calTrials.gov Identifier: NCT01051882), as has intraventricular in-
fusion (Nutt et al., 2003) or putaminal infusion (Lang et al., 2006)
of glial cell-derived nutrient factor (GDNF) which has recently
been shown to be an effective treatment for Parkinson's disease
and is currently undergoing clinical trials (Allen et al., 2013).

In addition to endogenous NSCs, transplanted NSCs can also
secrete a series of factors such as chemokines, cytokines, growth
factors, and stem cell regulators, which exert immune regula-
tion and nutritional support after reaching a lesion site (Kokaia
et al., 2012). Following a study of an amyotrophic lateral scle-
rosis disease model which found that transplanted NSCs secrete
neurotrophic factors that promote the survival and regeneration of
motor neurons, Kim et al. (2018) found that the secretome of trans-
planted NSCs also plays a role in immunoregulation and neuropro-
tection (Kim et al., 2018; Xu et al., 2006).

4. The function of NSC secretome
neuroprotection

4.1 Protect neurons
Despite the initial perception that NSC transplantation only

served to replace lost cells, recent experimental studies have shown
that transplanted NSCs also exert additional bystander effects such
as the neuroprotection that promote tissue repair (Aharonowiz et
al., 2008). To verify this characteristic of NSCs, Liang et al. (2014)
removed the neural stem cell from a normal culture medium to
acquire neural stem cell-conditioned medium to exclude the ef-
fect of cell substitution. Results showed that continuous adminis-
tration of conditioned medium in rats with spinal cord injury in-
creases bridging between the corticospinal tract and intermediate
neurons reduces neuron apoptosis, and promotes the recovery of
motor function. Other findings show that the conditioned medium
of NSCs may provide a better neuroprotective effect than the nor-
mal medium. This was attributed to neurotrophic factors such as
NGF, GDNF, and a vascular endothelial growth factor (VEGF)
secreted by NSCs (Lee et al., 2017). Additionally, another studies
have found that in primary and secondary neurodegenerative dis-
orders such as Huntington's disease (Ryu et al., 2004), spinal cord
injury (Ziv et al., 2006) and stroke (Chu et al., 2004), the main
mechanism of NSCs in prevention of neuronal programmed cell
death is also mediated by NGF and BDNF , ciliary neurotrophic
factor (CNTF) and GDNF, which are secreted by transplanted
NSCs/NPCs.
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Figure 1. Bystander effect generated by NSC secretome. NSC transplantation for the treatment of neurodegenerative disorders, including
spinal cord injury, traumatic brain injury, epilepsy, cerebral palsy, and stroke, among others. The main mechanism for NSC transplantation
may not only be by direct replacement of missing cells but also through the bystander effect, which includes neuroprotection, neuroplasticity,
immunoregulation by NSC secretomes (paracrine factor, microvesicles, and exosomes).

4.2 Protect oligodendrocytes
It has been shown that CNTF secreted by NPCs can partici-

pate in the survival and differentiation of oligodendrocyte progen-
itor cells (OPCs) (Marriott et al., 2010). Further, in a demyelinat-
ing disease model, transplanted NSCs induce s the proliferation
of OPCs and promotes myelin regeneration by secreting platelet-
derived growth factor (PDGF)-AA and basic fibroblast growth fac-
tor (FGF-2) (Einstein et al., 2009). The protective effects of these
two factors on OPCs have been widely demonstrated: a growing
number of research groups have de monstrated that FGF-2 (Chen
et al., 2015; Raff et al., 1983) and PDGF (Bertold et al., 1999; Wat-
zlawik et al., 2013) promote the survival and proliferation of OPCs
in vitro and (Barres et al., 1992; Bertold et al., 1999).

4.3 Other effects
The neuroprotective effects of transplanted undifferentiated

human fetal NSCs in ischemic stroke are attributed not only to
the secretion of nutrient factors (i.e., VEGF) but also to the re-
expression of developmental molecules, i.e., Slit-a family of se-
creted extracellular matrix proteins (Andres et al., 2011).

In addition to factors, the secretome also contains many ex-
tracellular vesicles, including exosomes and microvesicles. It is
well known that exosomes are carriers of intercellular commu-
nication, transporting and transferring microRNA between cells
(Camussi et al., 2010; Lotvall and Valadi, 2007). Currently, re-

searchers have identified miRNA in exosomes of NSCs using
second-generation sequencing technology and found 113 miRNA
types , many of which are relevant for neural regeneration, neu-
roprotection and neural plasticity (Stevanato et al., 2016). Until
now, various miRNA has been found to have repair and treatment
effects on central nervous system (CNS) injuries, such as stroke,
traumatic brain injury, and spinal cord injury (Faravelli and Corti,
2017; Sun et al., 2018). Some studies have shown that cortical neu-
rogenesis is increased by targeting exosomal miR-124 after stroke
(Yang et al., 2017).

Further, another study has shown downregulated miR-134 by
electroacupuncture enhances expression of LIM domain kinase
and increases synaptic-dendritic plasticity following ischemic
stroke in a rat model (Schratt et al., 2006). Since their discovery
and development, new therapeutic approaches to stroke are being
based on NSC-derived exosomal miRNAs (Zhang et al., 2018).
Furthermore, other researchers have determined proteins of the hu-
man NSCs exosome by tandem mass spectrometry and identified
103 proteins , including HSP70 and the transferrin receptor (Kang
et al., 2008). Among them, HSP70 is considered a protective agent
by its inhibition of oxidative stress that affects a variety of neuro-
logical diseases, including craniocerebral injury, chemical-toxic
nerve injury, and Alzheimer's disease (Cossetti et al., 2014).

Volume 19, Number 1, 2020 181



5. The function of NSC secretome:
Neuroplasticity

5.1 Nerve regeneration
NSCs transplantation has been shown to increase the expres-

sion of VEGF, platelet reactive protein 1/2, and cysteine-rich
acidic proteins in the brain of stroke patients. These are key factors
in promoting dendritic growth, axonal plasticity, and axonal trans-
port (Andres et al., 2011). In an experimental model of spinocere-
bellar ataxia type 1, transplanted NSCs have been shown to in-
duce electrochemical coupling with damaged neurons through the
formation of gap junctions, thereby preventing local cell damage
(Jäderstad et al., 2010).

5.2 Angiogenesis
Since stroke may damage the brain vascular system, angiogen-

esis may help restore neural function. Relevant studies have shown
that CTX0E03 cells, a humanNSC line, express angiogenic factors
in vitro, and may promote angiogenesis through paracrine factors
and direct physical interactions. Additionally, in vivo results show
a significant increase in microvessels in the rodent brain where
cells were implanted. Accordingly, NSC-based therapy may pro-
vide significant benefits to stroke patients by upregulation of an-
giogenesis in ischemic lesions (Caroline et al., 2013; Stroemer et
al., 2009). Moreover, a further study demonstrated for the first
time that NSC-secreted VEGF is required to enhance the angio-
genesis signaling pathway in vivo (Horie et al., 2015). The authors
suggest that NSCs affect not only endothelial cells but also other
key components of the vascular system in a VEGF-dependent
manner, such as by enhancing the expression of β-dystroglycan,
an extracellular matrix adhesion protein rich in perivascular as-
trocyte endings and expressed in peripheral and endothelial cells
(Milner et al., 2008; Zaccaria et al., 2001).

6. The function of NSC secretome:
Immunoregulation
One study has confirmed that NSCs transplantation exhibits an

immunoregulatory role in spinal cord injury. This is mediated by
decreased production ofM1-type macrophages after injury and in-
creased production of M2-type macrophages, which phagocytize
disintegration products and secrete anti-inflammatory factors, thus
inhibit the inflammatory response (Cusimano et al., 2012).

Additionally, another study shows that NPC transplantation
not only inhibits T-cell proliferation (Einstein et al., 2003) but
also promotes apoptosis of infiltrating T cells (Pluchino et al.,
2005). This may be achieved by two mechanisms: one is the
induction of expression of death receptor ligands, such as FasL,
Trail, and Apo3L; the other is by promoting the production of solu-
ble molecules associated with mitochondrial-mediated apoptosis,
such as GDNF, interferon-γ, and leukemia inhibitory factor (De
Feo et al., 2012).

Interestingly, although VEGF is generally thought to be
pro-inflammatory, increasing literature has confirmed the anti-
inflammatory properties of VEGF secreted by NSCs. Some stud-
ies have found that VEGF not only inhibits the development of
antigen-presenting dendritic cells and T cells but also suppresses
their activation (Gabrilovich et al., 1996; Ohm et al., 2003). VEGF
may also influence macrophage proliferation in a dose-dependent
manner since Manoonkitiwongsa et al. (2006) found that low-dose

VEGF treatment of ischemic brain injury reduces macrophage
number, while high-dose VEGF increases macrophage density. Of
note, other experiments confirmed that VEGF is key for the im-
munosuppressive effects of NSCs and may be involved in altering
the integrity of the blood-brain barrier (Horie et al., 2015).

7. Conclusion
In conclusion, NSC secretomes contain various factors and ex-

tracellular vesicles that play a role in neuroprotection, neuroplas-
ticity, and immunoregulation of the nervous system. Although the
paracrine mechanism of NSCs is presently not well understood,
current research shows that the NSC secretome has considerable
therapeutic significance and prospects. Compared with the direct
use of NSCs, the secretome may have many unique advantages,
such as easy access by ultrafiltration centrifugation or other simi-
lar methods, longer storage time, simpler transportation mode, and
body lesions can be simulated to stimulate the production of more
specific paracrine products. Overall, more understanding about
the role of NSC secretomes and their clinical benefits in neurolog-
ical disease could contribute to the discovery and development of
new therapeutic approaches.
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