(]
0
c
()]
0
()]
0
(&
)
()]
2
(]
>
=
©
(&
(0))
()]
=
c
Y=
0
©
c
&
)
0
)

Published online: March 30, 2020

Original Research

EEG effective connectivity

o
N
i

)

VIR Prass

networks for an attentive task

requiring vigilance based on dynamic partial directed

coherence

Songyun Xie' and Yabing Li**

LNPU-TUP Joint Laboratory for Neural Informatics, Northwestern Polytechnical University, Xi‘an, Shaanxi Province,

710129, P R. China

2School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi Province,

710121, P.R. China
*Correspondence: liyabing@xupt.edu.cn (Yabing Li)

DOI:10.31083/i.jin.2020.01.1234

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/).

An effective network perspective focused on measuring
directional interactions of electroencephalographic in dif-
ferent cortical regions during a sustained attentive task
requiring vigilance. A novel measure referred to as dy-
namic partial directed coherence was used to map the
cognitive state of vigilance based on graph theory. In the
right parieto-occipital area, the area is significantly higher
than in other regions of interest (the areas are 0.601 and
0.632 for out-degree and in-degree, respectively). A simi-
lar analysis in the right fronto-central area revealed signif-
icant differences in the different cognitive states. Across
the six regions of interest, significant differences of in-
degree and out-degree based alpha band are observed in
the right fronto-central and the right parieto-occipital (P <
0.05). The performance was compared with those from
a support vector machine using different network-based
phase-locking values, partial directed coherence, and dy-
namic partial directed coherence. Results show that dy-
namic partial directed coherence can provide more infor-
mation about direction (compared with phase-locking val-
ves) and accuracy (when compared with partial directed
coherence). The graph theoretical analysis shows that the
effective network based dynamic partial directed coher-
ence has a small-world property for synchronizing neu-
ral activity between brain regions. Moreover, the alpha
band is well correlated with the cognitive state compared
to other frequency bands.

Keywords

Effective network; fronto-central; right parieto-occipital; cortex; elec-
troencephalographic; partial directed coherence; graph theory; cogni-
tive models; attention; vigilance

1. Introduction

Recent work analyzed the brain network based on graph the-
ory (Gorban and Zinovyev, 2010). and how it can exert its sensory
and cognitive functions (Omidvarnia et al., 2014). Neuroimag-
ing has been an experimental tool for network neuroscience for
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more than two decades. Dimitriadis et al. (2012) used the con-
cept of commute times (CTs) to investigate the interplay of net-
work and showed that CTs could be used to track the dynamics of
the brain's functional organization. da Fontoura Costa and Sporns
(2006) segregated brain regions to model the complex network and
demonstrated that it had a strong correlation between network fea-
tures based on graph theory (in and out-degree) and dynamic fea-
tures of cortical activation. Gonuguntla et al. (2016) analyzed the
network pattern related to cognitive function based on the phase-
locking value (PLV) and electroencephalographic (EEG) data for
motor imagery; the results indicated that the proposed method
could achieve better classification performance compared to band-
power-based approaches for single-trial analysis. Omidvarnia et
al. (2011) quantified the connectivity between cortical brain re-
gions and demonstrated that time-varying partial directed coher-
ence (PDC) of cortical connectivity could lead to a better under-
standing of cognitive function.

The brain network connections are modeled as nodes and edges
(Rubinov and Olaf., 2010). The degree, as one of the basic and vi-
tal measures, can reflect the importance of nodes in the network.
The characteristic of path length is known as the average shortest
path length between all of the pairs of nodes in the network, and
it can be used to represent a measure of effective integration. The
clustering coefficient is a measure of local network connectivity
that shows 'small-world' property for synchronizing neural activ-
ity between different brain regions (Ferri et al., 2007; Stam et al.,
2007).

Vigilance or sustained attention is one of the most signifi-
cant cognitive functions in long-term monitoring for monotonous
attention-demanding (Akin et al., 2008). Due to the lack of reli-
able techniques, it is challenging to map brain regions associated
with vigilance. The purpose of this paper is to investigate whether
it is possible to identify brain regions responsible for vigilance us-
ing electroencephalography (EEG) signals. The method combines
graph theory with PDC to analyze the functional connectivity net-
work and monitor changes in vigilance state associated with spe-
cial bands.


http://doi.org/10.31083/j.jin.2020.01.1234

2. Materials and methods
2.1 Participants

A total of thirteen healthy subjects were collected in this ex-
periment (average age of 23.23 &£ 1.30 years old; 8 males and 5
females). All of the subjects are right-handed and have a standard
or corrected-to-normal vision, with no sleep problem or alcohol
abuse. Also, subjects with neurological and psychological disor-
ders were excluded from this study (Funke et al., 2010).

Before the experiment, the experimental material was intro-
duced to the subjects. The subject was then asked to practice the
task in the experimental procedures for 10 mins. The NASA Task
Load Index (NASA-TLX), which is one of the most effective and
widely used indices, was used to measure the mental workload.
It has a 0-100 scale and six subscales (mental demand, physical
demand, temporal demand, performance, effort, and frustration)
(Hart and Staveland, 1988). To measure the effects of workload on
vigilance or sustained attention, the NASA-TLX of subjects was
collected before and after the experiment, respectively (Finomore
et al., 2013).

2.2 Experiment

An air traffic controller task was used as a vigilance task. Con-
centric circles divided into four quadrants were displayed on the
computer. Four planes of random directions were placed into four
quadrants, as shown in Fig. 1A. In a safety situation (non-target),
the aircraft were all oriented in the same direction: in the collision
situation (target), planes were in opposite directions.

For the vigilance task, participants were asked to monitor the
computer screen and respond to the target stimulus. The stimulus
was presented for 1 s, with an inter-stimulus interval (ISI) between
1 s and 9 s randomly, as shown in Fig. 1B. The stimulus was up-
dated 100 times for each session, and one epoch means one up-
dated time for the stimulus (the duration of time is 4 s: 2s before
and after stimulus occurred). The ratio between target and non-
target stimuli was 1:4 throughout the task, which means that the
probability of encountering a target stimulus was 20%. The hit
rate, which can be used to monitor the vigilance state of a subject,
indicated the likelihood of a subject responds 'yes' in a collision
situation and defined as:

right
g response (1)

hit rate = —— "
rate Stimulus,um

where Stimuluspym, is the total number of stimulus in each ses-
sion and right is the right response to a stimulus. The

response

vigilance level was mapped into three levels according to the hit

rate. The hit rate of 0-0.5 was assigned to" negative," "neutral"

was equal to 0.5-0.7, and 0.7-1 was" positive."

2.3 Data acquisition and pre-processing

The EEG data were recorded using a GES 300 System (EGI
product. Sensor array: 64-channel adult-sized head cap). The
EEG acquisition software was Net Station (Computer: Power PC
GS5; amplifier: Net Amps 300). The EEG signals were acquired
by the 10-20 system, which is an international system to ensure
standardized reproducibility. Moreover, the raw EEG signal was
sampled at 250Hz and band-pass filtered between 1Hz and 40Hz.
The bad trials, which contained noticeable artifacts (eye blink, eye
movement, and electromyography (EMG)), were excluded.
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After removing the artifacts, each epoch was filtered in the
delta [ < 4Hz], theta [4-8Hz], alpha [8-13Hz], and beta [13-30Hz]
bands. The EEG signals were averaged in 6 ROIs for the next step
(Charbonnier et al., 2016), as shown in Fig. 2.

2.4 Methods

EEG effective connectivity networks represent the direct or in-
direct causal influences from one region to another, defined by
a collection of nodes and edges. Nodes in the effective network
represent different brain regions, while edges represent the con-
nections between pairs of nodes

Partial and directed relationships can be quantified using the
PDC measurement, which determines directional influence in
multivariate systems. For example, assuming that ROI1 influ-
ences by ROI2 and ROI2 influences ROI3, we can express using
ROI2«+ ROI1, ROI3<« ROI2. Here, the arrows show the direc-
tion of the information flow. In this example, ROI1 has a direct
influence on ROI2, while there is an indirect (partial) influence
between ROI1 and ROI3.

We employed PDC and its modified method to construct the
brain network. PDC is defined as:

PDC = Lo (2)

where 6 is the total number of regions or channels in the EEG
signals. In this network, m;;0f the network tabulates the strength
of effective connectivity between regions i and j. A PDC of zeros
indicts that the connectivity of two regions is independent, while
a PDC of one means that the connectivity of two regions is stable.

In the PDC matrix 7;; in Eqn. 2 is defined as follows:

mi; (f) = Al (3)
a’ (f)ai (f)
Toop ) L= g (r) e P i =
4u () = { — SoPorder g (1) e 2™ T otherwise
(4)

where a; is the ith column of Aij. m;;, which can be obtained
from Eqn. 3 and Eqn. 4, is the instantaneous effective relationship
in measure-specific between a pair of regions. The frequency f
varies within the range of O to 1/2 of the Nyquist rate. The higher
the value of 7;;, the greater the strength in the connectivity from
region i to j.

As well the processed EEG signal with the ROIs index:

z1(n) poer | 011 (r) ae(r)
z6(n) r=t ae1(r) aee(T)
5
z1(n —r) wi(n) ®
+
z6(n —1) we (1)

where the real-valued parameter a;;(r) reflects the linear rela-
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Figure 1. The experimental paradigm. (A) Examples of flying events, the first indicates the plane in the collision situation; the second suggests

the plane in a safe position. (B) Schematic design of the experimental conditions.

ROI1 Fronto-Central median: Fz, Cz, Fcl, Fc2

ROI2 Fronto-Central left: F7, F3, Fc5, C3

ROI3 Fronto-Central right: F4, F8, Fc6, C4

ROI4 Paneto-Occipital median: Pz, Poz, Oz

ROIS Parieto-Occipital left: CpS, P3,P7, O1

ROI6 Panieto-Occipital night: Cp6.P4.P8.02

Figure 2. ROIs for 64-channel adultsized head cap. ROI1 consists of the channels of Fz, Cz, Fc1, and Fc2; ROI2 consists of the channels of
F7, F3, Fc5, and C3; ROI3 consists of the channels of F4, F8, Fcé, and C4; ROI4 consists of the channels of Pz, Poz, and Oz; ROI5 consists
of the channels of Cp5, P3, P7, and O1; ROIé consists of Cp6, P4, P8, and O2.

tionship between regions i and j at the delay r, w is a normally
distributed White noise. Considering the simplicity factors, the
optimum order p_order of an MVAR model is estimated using
Schwartz-Bayesian Criterion (SBC) (Neumaier and Schneider,
2001).

The energy of a specific frequency band in which the PDC of
EEG signals show significant variations between the different cog-
nitive states is called the reactive band. The variations in the reac-
tive band of EEG in vigilance analysis always select alpha, beta,
theta, and delta waves. In this paper, the reactive band was used
to analyze the vigilance states-based PDC network of measure-
specific for all of the regions in the band of interest. The dPDC
represents the difference between cognitive and reference states,
and can be defined as:

dPDCSpecific = PDCcognitive - PDC'reference (6)

where PDC.ognitive represents the average PDC in the band of
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interest (for example delta, theta, alpha, and beta band) during the
cognitive period duration, and PDC,¢ference is the average PDC
during the reference period duration (the first 1.25s before stimulus
occurred during the experiment).

According to Eqn. 6, dPDCspecificis computed for all of the
region pairs of subject's cognitive states in a specific band. The
analysis of dPDCspeciic and frequency band provide chances to
identify the cognitive-related reactive band. One of the main lim-
itations in the analysis of spatial EEG is the effect of volume con-
duction, which can be minimized using dPDC.

The weak edges of brain networks tend to obscure the topology
of strong connections, so these edges are often discarded using an
appropriate weight threshold. Once the weight between edges is
below the weight threshold level, all of the connections must be
removed or discarded before analysis. Numerous methods have
been proposed to set the threshold for the network; nevertheless,
there is no general procedure available to set a proper threshold we
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set to ensure the networks have the same density:

Num = prob - 36
Series = sort(dPDC) (7)
threshold = SeriesNum

where 'prob’ is the connectivity probability of network, which
means the rate between connectivity edges and the whole edges
for the network' '36' represents the number of pairs between re-
gions, and the value of dPDC is the weights between nodes of the
network. An effective network can be built by using the thresh-
old (above the threshold keeps the original value, and below the
threshold is set to zero).

2.5 Graph theory characters of effective network

To analyze and characterize a network between different re-
gions, we employed dPDC measurement. In this section, we cal-
culated the characteristics of dPDC using graph theory for the con-
nectivity graph.

The degree (Rubinov and Olaf., 2010) for each node reflects
the importance in the network, which is equal to the number of
nodes that connected to that node. Note that network based dPDC
is a directed network, and it can be divided into in-degree and
out-degree. The in-degree represents the number of inflows from
neighbors, while out-degree represents the number of outflows, as
defined as:

¢ )
kY = E matriz;;
JEN

kU=

JjE

(8)

matriz;;

where N is the set of all nodes in the network, and matriz;; is the
parameter of a network between regions i and j, and k¢“* and ki"
is the out-degree and in-degree for the i-th node, respectively.

The clustering coefficient (C) (Fagiolo, 2007), which is known
as the fraction of triangles around an individual node, can also be
defined as the rate between the node's neighbor and the others. It
describes the interconnected density groups of nodes and is de-
fined as follows:

Si
Z (k;’“t + k;") (kf“” + kin — 1) -2 Z].GN matriz;;matrix;; ©)

iEN

where S; can be obtained from:
1 . .
Si== Z (matriz:; + matriz;;)
J,hEN (10)

(matriz, + matrizy;) (matricy; + matriz;y)

The shortest path length (L) reflects the ease with information
communication of brain regions. The shorter the L is, the stronger
the communication ability of brain regions has. So, this character
can be more natural to interpret efficiency on connected networks.
It can be defined as:

dij = E _ MatriTyy (11)
matrizyy €gi—s j

where g;—,; the directed shortest path between i and j,
matrixy, € gi—;means that the connectivity between u and v
belongs to the part of g;_, ;.
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2.6 Statistical analysis

To evaluate our experiment, we used linear correlation analysis
and t-test as the evaluation criteria. Linear correlation analysis
was performed to analyze the relationship between NASA-TLX
score and hit rate. For the frequency-specific reactive band, a t-
test was used to establish a significant difference between positive
and negative vigilance state. The level of significance was set at P
< 0.05.

3. Results
3.1 The relationship between hit rate and NASA-TLX

scores

In Fig. 3, we illustrate the hit rate (the accuracy of correct re-
sponse for stimulus) and NASA-TLX scores in thirteen healthy
subjects. Overall, there was a reverse tendency between NASA-
TLX scores and different vigilance states of subjects. NASA-
TLX score indicated the overall workload on 6 scales (physical
demands, temporal demands, performance, effort, frustration) in
subjects. S11 achieved the highest score of NASA-TLX (around
67 scores) and the lowest score of hit rate (about 60%). The results
demonstrated that subjects' workload had significant effects on hit
rate, with a slope of about -1.26, which represented the extent of
the linearity relationship. It is noticed that the hit rate was nega-
tively correlated with the NASA-TLX scores (P < 0.05) with an
r-value of -0.875.

— Hit rate = -1.26 * NASA-TLX-Score + 146.31

=-0.875, p <0.05
- ) ' ' \ |
B e s il B et e it R ke Rl el i peaT et
T : ; |
] 1 1 1
L e e
1 1 1
1 1 1
? ] 1 1
e got----- : R R —
g ] ] 1 1
© . " )
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Figure 3. Linear correlation of the estimated parameters with NASA-
TLX score and hit rate. NASA-TLX score means the overall workload
on six scales (physical demands, temporal demands, performance,
effort, frustration); the hit rate represents a correct response to a stim-
ulus. From the figure, the hit rate is negatively correlated with work-
load using linear regression (r = -0.875). The negative value of slope
represents adverse, and the absolute value of slope represents the ex-
tent of the impact between workload and hit rate (slope = -1.26).

3.2 The parameters estimation for modeling the network
To select the optimal order (P order) of SBC for the MVAR
model (see §2 Methods), we analyzed the relationship between or-
der and SBC measures for different cognitive states. The results
were shown in Fig. 4, and the order at 5, which minimized the SBC

Xie and Li



Table 1. Significance test for 'in-degree' with the positive vigilance group and the negative vigilance group at four frequencies in six
ROIs (T is the t value for student’s t test and P is the level of statistical significance).

In-degree Alpha Beta Theta Delta
T P T P T P T P
ROI1 -2.826 0.007 -0.518 0.607 -1.856 0.07 -0.53 0.599
ROI2 0.338 0.736 1.09%6  0.279 0.338 0.737 0.213 0.832
ROI3 2.124 0.039 -1.856 0.07 -1.737 0.089 -2.145 0.038
ROI4 1.45 0.154 -1.737  0.089 1.45 0.154 1.604 0.116
ROI5 -0.784 0.437 -1.198  0.238  -0.784 0.437 -0.229 0.819
ROI6 2.886 0.006 0.813 0421 2.886 0.006 1.262 0.214
measures, was selected for further analysis. After the parameters Density
of the order were determined, the PDC brain network was obtained 08450
by using the parameters of the MVAR model. 08269
1
. - 0.7087
2 -
1 \—o— negative vigilance [~ 0-5208
3.04ceeenn L 1==>=- posifive vigilande______ A~ 8
j | 1 | A & - 0.4725
L 1 °
[ b=
! I 0.3544
w 2.8 .
[ e - 02363
s
& 0
GE) - 0.1181
Eh
o . . . —"-0.000
@ 0.0 0.5 1.0

N
'S
!

22

order

Figure 4. The relationship between order and SBC measures. B-
Spline non-linear curve was used. The order ranger was from 110 13,
and the order at 5 (the minimum of the SBC measures) was selected.

For a low value of the threshold, the network was connected
with edges between almost all of the nodes leading to the network
density (close to 1). With the threshold values were increased,
more and more edges were lost, and the clustering coefficient was
decreased. The network density was selected using a traversal al-
gorithm (threshold values ranging from 5% to 95% with an in-
crement of 5%) until maximized distance differences between the
cognitive states, as shown in 0. It is noted that the higher the den-
sity is, the further is the distance with the threshold (the parameter
of probability in Eqn. 7) given by 0.4.

3.3 Selection of the frequency-specific reactive band
Independent sample t-tests of 'in-degree' and 'out-degree' be-
tween positive and negative vigilance states for each network-
based frequency band and ROI presented in Table 1 and Table 2.
For in-degree, independent sample t-tests showed there were
significant difference for dPDC based alpha band between positive
and negative vigilance states in special ROIs (ROI1 (t = -2.826, P
=0.007), ROI3 (t = 2.124, P = 0.039) and ROI6 (t = 2.886, P =
0.006)). Moreover, the statistical analysis had given a significant
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Connectivity Rate

Figure 5. The 2D kernel density plot is a smoothed color density
representation of the scatter plot based on kernel density estimation.
It shows the relationship between connectivity rate and distance. The
network density is calculated with connectivity rate ranges from 5%
to 95%, with an increment of 5%. To determine the optimal threshold,
the maximum of the density is selected as indicated (the threshold for
connectivity rate is 0.4).

difference in ROI6 (t = 2.886, P = 0.006) for dPDC based theta
band and ROI3 (t = -2.145, P = 0.038) for delta band while t-test
showed no significant differences for the dPDC for others.

For out-degree, statistical analysis showed there was a signifi-
cant difference for dPDC based alpha band between positive and
negative vigilance states in special ROIs (ROI1 (t = -2.383, P =
0.022), ROI3 (t = 2.752, P = 0.009) and ROI6 (t = -2.519, P =
0.016)) were significant. Moreover, the statistical analysis also
showed there was a significant difference in special ROIs (ROI1,
ROI3, and ROI6) for dPDC based theta band, ROI1, and ROI3 for
the delta band and in ROI3 for the beta band while t-test showed
no significant differences for the dPDC for others.

To visualize the performance for different ROIs, the receiver
operating characteristics (ROC) graphs of 'in-degree' and 'out-
degree' characters based alpha band in distinguishing positive vig-
ilance state from negative vigilance were shown in Fig. 6 and Ta-
ble 3. In the right parieto-occipital (ROI6), the area under the
curve was significantly higher than that in the other ROIs (the ar-
eas were 0.601 and 0.632 for 'out-degree' and 'in-degree,’ respec-
tively). A similar analysis in the right fronto-central (ROI3) re-
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Table 2. Significance test for 'out-degree' with the positive vigilance group and the negative vigilance group at four frequencies in six
ROIs (T is the t value for student’s t test and P is the level of statistical significance).

Out-degree Aalpha Beta Theta Delta
T P T P T P T P
ROI1 -2.383 0.022 -1.746 0.088 -2.383 0.022 -3.022 0.004
ROI2 -0.199 0.842 -0.904 0.371 -0.199 0.843 0 1
ROI3 2.752 0.009 3.101 0.003 2.752 0.008 3.149 0.003
ROI4 0.984 0.331 -1.475 0.148 0.984 0.331 0.481 0.633
ROI5 0.404 0.688 1.936 0.059 0.404 0.688 0.304 0.762
ROI6 -2.519 0.016  -1.898 0.064 -2.519 0.016 -1.836 0.073
ROC for different ROIs ROC for different ROIs
L8 aess ROIL =xss ROII
= = 'ROI2 = = 'ROI2
== ROI3 == ROI3
' = =ROM = =ROH4
——ROI5 == ROI5
0.8 === ROI6 === ROI6
Ref — Ref
=" z
0.4+
0.2+

T
0.6

0.8 1.0

1 - Specificity

(A)

T
0.6

0.8 1.0

1 - Specificity

(B)

Figure 6. Receiver operating characteristic curve, the plot of the sensitivity vs. (1-specificity) for distinguishing vigilance state in different ROls.

Table 3. AUC with different ROIs for 'in-degree’ and 'out-degree'.
In ROI ROI3, and ROI6, the AUC is significantly higher than
that in the other ROIs for 'in-degree' and 'out-degree'.

AUC ROIl ROI2Z ROI3 ROI4 ROI5 ROI6
in-degree  0.565 0.518 0.626 0.527 0.531  0.601
out-degree  0.575 0.511 0.575 0.541 0.546 0.632

vealed significant differences in positive and negative vigilance
states. Among the six ROIs, the considerable gap between 'in-
degree' and 'out-degree' based alpha band was observed in ROI3
and ROI6 (p-value below 0.05).

To select the optimal frequency-specific of EEG signals, as dis-
cussed above. The alpha frequency band has significant variations
in dPDC compared to the other bands. Hence, the next step ana-
lyzed based on this step.

3.4 Evaluation of the 'small-world' property for APDC

Typically, the 'small-world' property exhibits a Chreqr >
Crandom for the mean clustering coefficient; and the path length,
Lyear = Lyandom (Watts and Strogatz, 1998). The analysis of
clustering coefficient C and path length L of the random and dPDC

brain networks was shown in Fig. 7. The results revealed that the
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clustering coefficients for both groups were higher than those of
the random network (the ratios were Ap = 4.355 and An
4.385, respectively). Moreover, the path length was close
(higher than) that of random network (the ratios were Ap

1.183 and Ay = 1.191, respectively). The 'small-world' con-
figuration of dPDC brain networks shown that the efficiency of
information transmission. The clustering coefficients for positive
(0.448) and negative (0.451) groups were higher than those of the
random network (0.103). And the path length for positive (0.291)
and negative (0.294) groups were close to (higher than) that of a
random network (0.247). The small-world configuration of dPDC
brain networks shown showed that the efficiency of information
transmission.

3.5 Classification of different cognitive functions

For single-trial analysis, EEG epochs with a 1 s window and
0.4 s overlap are employed for the dPDC calculation. To analyze
the effectiveness of the dPDC-based classification, we compared
the performance of the PDC-based network, dPDC-based network,
and that of the PLV-based network. Results from the subjects using
10-fold cross-validation were shown in Fig. 8. Overall subjects,
the mean classification accuracies obtained are: [PDC] 76.49%
[PLV]76.58% [dPDC] 77.69%. On an average, 1.20% and 1.11%
classification accuracy improvement for the dPDC-based network

Xie and Li
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Figure 7. Mean clustering coefficient (blue circle) and path length
(red diamond) for the different vigilance state. Error bars correspond
to the standard error of the mean. The clustering coefficient and path
length for the random networks are used for comparison. The clus-
tering coefficients for positive (0.448) and negative (0.451) groups
are higher than those of the random network (0.103). And the path
length for positive (0.291) and negative (0.294) groups are close to
(higher than) that of a random network (0.247).

can be obtained than PDC-based network and PLV-based network,
respectively. The dPDC-based network increased the classifica-
tion accuracy in 8 out of 13 subjects than others and had a similar
performance in 3 out of 13 subjects. Hence, we concluded that the
dPDC provided more useful information, and the specific-band ef-
fectively improved the classification accuracy compared with the
PDC-based network. The PLV-based network provided the net-
work with undirected, while the dPDC-based network provided
the directed network.

b PDC o dPDC % PLV[ | |
10F | Gt L dcomcosl L+ 4 L b
osHITHTEE iTrle & 0 Tl LT T e
z T | A A s i
o Ol o : S L \
o3 i i i i i i i i i i i i i
ol e R R S A e S A
. S O O NS A

A N A A S A A
T A A
0.2 bttt t—t——t—t——t——t—rt

1 2 3 4 5 6 7 8 9 10 11 12 13 mean
subjects

Figure 8. Average classification performance for all 13 subjects
and methods. Note that 90% of samples are selected as a training
dataset, and the rest of the samples are used for testing. The perfor-
mance with that of a different network (dPDC-based, PDC-based, and
PLV-based network) are analyzed to test and verify the effectiveness
of network features.
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4. Discussion

The results showed that the proposed method could effectively
be used to identify the effective connectivity patterns correspond-
ing to vigilance. In particular, the alpha frequency band and theta
frequency band reflect cognition, memory, and age performance
(Klimesch, 1999). Following the results presented in Table 1 and
Table 2, and it is also the primary reason for the existence of the
subject-specific reactive band.

The hit rate was negatively correlated with the overall work-
load, as measured by the NASA-TLX scores, as shown in Fig. 3.
The results showed that the subjects, which had a heavier workload
measured by NASA-TLX, had a lower hit rate. Hence, it indicates
that the method based on behavior data may be useful to analyze
the effectiveness of the experiment.

The network-based dPDC can be used to identify the regions
of the brain scalp involved in vigilance since it is rather sensitive
to changes in interactions between different regions, as shown in
Table 1 and Table 2. The results showed that the differences in
the positive and negative vigilance network parameter-based alpha
band were significant in ROI1, ROI3, and ROIG6 for in-degree and
out-degree. Also, the areas under the ROC in ROI1, ROI3, and
ROI6, both in-degree and out-degree, were even more extensive
than in other brain regions (Fig. 6 and Table 3). The results indi-
cate that the parameters of the network-based alpha band from the
fronto-central median, fronto-central right, and parieto-occipital
right regions could forecast one's mental vigilance state.

The C for different vigilance states are higher than those of the
random network, and the L is close to (higher than) that of a ran-
dom network. These experimental results show that the effective-
ness network has a 'small-world' property, as shown in Fig. 7. It
demonstrated that the proposed networks contained 'small-world'
Compared with PDC-based analysis and PLV-based
analysis, the proposed method obtained a slightly better classifica-
tion result (cf., Fig. 8). This property shows the feasibility of the
usage of dPDC to characterize the complexity of brain networks

features.

during cognition processing. And the proposed method might be
one of the optimal network organization for cognitive processing.
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