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One of the challenges in brain-computer interface sys-
tems is obtaining motor imagery recognition from brain
activities. Brain-signal decoding robustness and system
performance improvement during the motor imagery pro-
cess are two of the essential issues in brain-computer in-
terface research. In conventional approaches, ineffective
decoding of features and high complexity of algorithms
often lead to unsatisfactory performance. A novel method
for the recognition of motor imagery tasks is developed
based on employing a modified S+transforms for spectro-
temporal representation to characterize the behavior of
electrocorticogram activities. A classifier is trained by us-
ing a support vector machine, and an optimized wrap-
per approach is applied to guide selection to implement
the representation selection obtained. A channel selection
algorithm optimizes the wrapper approach by adding a
cross-validation step, which effectively improves the clas-
sification performance. The modified S+ransform can
accurately capture event-related desynchronization/event-
related synchronization phenomena and can effectively
locate sensorimotor rhythm information. The optimized
wrapper approach used in this scheme can effectively
reduce the feature dimension and improve algorithm ef-
ficiency. The method is evaluated on a public electro-
corticogram dataset with a recognition accuracy of 98%
and an information transfer rate of 0.8586 bit/trial. To
verify the effect of the channel selection, both electrocor-
ticogram and electroencephalogram data are experimen-
tally analyzed. Furthermore, the computational efficiency
of this scheme demonstrates its potential for online brain-
computer interface systems in future cognitive tasks.

J. Integr. Neurosci. 2020 vol. 19(2), 259-272
©2020 Xu et al. Published by IMR Press.
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1. Introduction

Brain-computer interface (BCI) is an artificial communication
system between a human brain and the external world. It translates
brain activities into instructions for external devices (Nguyen et al.,
2018; Xu et al., 2016). Motor imagery (MI) is the mental perfor-
mance of movement without muscle activities (Islam et al., 2018;
Ryu et al., 2016). MI-based BCI systems (MI-BClIs) translate mo-
tor intentions of a subject into commands by classifying different
tasks obtained from brain signals (Guan et al., 2019; Jafarifarmand
et al., 2018). Individuals can then express ideas or manipulate de-
vices not through language or action but via an MI-BCI. Such in-
terfaces have been widely employed for investigations in healthy
human subjects, as well as in those suffering from muscle weak-
ness due to severe nervous system disorders. Brain signals used for
BCI control reflect the overall electrophysiological properties of
the primary motor cortex, namely corticocortical evoked potentials
(Hamedi et al., 2016). A sensorimotor rhythm (including p and
rhythms) recorded over a sensorimotor cortex are modulated by
MI. Task-related modulations in the sensorimotor rhythms mani-
fest as event-related desynchronization/event-related synchroniza-
tion (ERD/ERS) phenomena (Pfurtscheller and Da Silva, 1999;
Zygierewicz et al., 2005).

A vital issue for MI-BCls is to effectively acquire discrimi-
nant information in the sensorimotor rhythms. Brain function ac-
tivities are dynamic, irregular, transient, and nonstationary, par-
ticularly those related to cognitive and behavioral events (Faust
et al., 2015; Mu et al., 2018; Thilaga et al., 2016). Temporal-
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Figure 1. A general flowchart for an MI-BCI. It generally consists of three steps: signal acquisition, signal processing, and signal application.

The subject provided written informed consent for the publication of his image.

frequency features provide powerful representations for analyz-
ing non-stationary signals. To date, many such features have
been proposed to identify task-related modulation in the senso-
rimotor rhythms including, short-time Fourier transform (STFT),
independent component analysis, wavelet transform (WT), com-
mon spatial pattern (CSP), Hilbert-Huang transform (HHT) and
S-transform (ST). ST is a time-frequency representation method
with frequency-independent resolution (Stockwell et al., 1996).

Li et al. (2009) and Wei and Tu (2008) extracted CSP features
and combined them with traditional classifiers to identify differ-
ent MI tasks. Although the computational complexity is low, the
accuracy of the algorithm is not ideal. Chong et al. (2010) built
a BCI system based on band power (BP) features and combined
with some classifiers. Still, the computational complexity of the
algorithm was relatively high. Chang and Yang (2018) used the
ST feature and a Bayes linear discriminant analysis (BLDA) clas-
sifier to design a BCI classification model, which achieved sat-
isfactory classification results. However, the number of selected
feature subsets was high, and its efficiency was not excellent. The
ST, which provides a temporal-frequency representation with the
frequency-dependent resolution, is an extension of WT (Chang
and Yang, 2018; Xu et al., 2014; Zhang et al., 2016). A modi-
fied S-transform (MST) algorithm is a multi-resolution temporal-
frequency representation method. It is ideal for the analysis of
brain activities as it can dynamically adjust the width of a window
to obtain better energy concentration in the temporal-frequency
domain (Assous and Boashash, 2012; Zheng et al., 2019).

Many pattern classification methods have been widely em-
ployed at the classification stage to assess the performance of
MI-BClIs, amongst others, k-nearest neighbor (KNN), Fisher lin-
ear discriminant analysis (FLDA), naive Bayes classifier, gradient
boosting (GB), BLDA and support vector machine (SVM). The
SVM is one of the most commonly used classifiers in feature de-
tection (Acharya et al., 2015; Li et al., 2008). It maps the input
vector to a high-dimensional feature space through an appropriate
nonlinear mapping (Chang et al., 2010). It has many advantages
for the classification of both small and nonlinear samples.

It is worth noting that channel selection is receiving increas-
ing research attention due to its role in reducing the data dimen-
sion of multi-channel brain signals, thus improving the accuracy
of BCI systems. Channel selection and feature selection are simi-
lar in principle (Wang et al., 2017), allowing feature selection al-
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gorithms to be applied to a channel selection procedure. Feature
selection is commonly comprised of filter, wrapper, and embed-
ded approaches (Chang and Yang, 2018; Maldonado et al., 2014).

Although many MI-BCIs have been developed, few provide
fast and effective systems. Dong et al. (2017) built a BCI sys-
tem by developing a hierarchical SVM method combined with the
wavelet packet transform. This system has realized the classifi-
cation of four types of MI tasks, but it is challenging to meet the
requirements of the real-time BCI system due to low accuracy.

Jafarifarmand et al. (2018) proposed a new framework based
on an artifact rejected CSP and neuro-fuzzy classifier. Although
this BCI system has high classification accuracy, it does not have
an advantage inefficiency. To design an efficient and feasible MI-
BCI, how to obtain useful features, match appropriate classifiers,
and effectively reduce feature dimensions are still open problems.
The proposed framework employs MST for spectro-temporal rep-
resentation, an SVM classifier with a radial basis function (RBF)
kernel to identify different MI-based tasks, and introduces an op-
timized wrapper approach for channel selection.

2. Materials and methods

MI-BCls comprises three main steps: signal acquisition, signal
decoding, and signal application (Nicolas-Alonso et al., 2015; Xu
et al., 2014). Fig. 1 gives a general flowchart for an MI-BCI. In
the signal acquisition stage, brain activities are recorded by both
invasive (i.e., electrocorticography, ECoG) and noninvasive (i.e.,
electroencephalogram, EEG) techniques (Xu et al., 2014; Zhang
and Wei, 2019). EEG recorded over the scalp has been broadly
applied due to its noninvasiveness. ECoG has a higher signal-to-
noise ratio, broader bandwidth, and better spatial resolution than
EEG signals (Chong et al., 2010; Xu et al., 2014). The signal de-
coding stage, primarily including preprocessing, feature extrac-
tion, and classification, is the main component of a BCI system.

The overall system was installed on a machine with a 3.7 GHz
Intel Core i7 processor, and the experiment was run in a MAT-
LAB 2017 environment. The MST-based BCI scheme includes
four major blocks: preprocessing, feature extraction, classifica-
tion, and channel selection. A schematic diagram is given in
Fig. 2 (Lal et al., 2004). It is preprocessing aims to downsample.
Feature extraction extracts spectral characteristics associated with
MI tasks by using the MST algorithm in the temporal-frequency
plane. Classification identifies different MI tasks. The purpose of

Xu et al.
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Figure 2. Schematic diagram of the MST-based BCl system. This scheme uses an SVM to classify ECoG features extracted by the MST, and
the optimized wrapper approach is applied to channel selection to implement representation selection. ECoG data was recorded by placing

64 electrodes on the location of the cerebral cortex from the motor area of an epilepsy patient. This ECoG dataset becomes an international

public dataset with the consent of the subjects.

channel selection is to reduce the computational complexity of the
algorithm.

MST is employed to extract the power spectral density (PSD)
features from preprocessed ECoG epochs. Channel selection is
then performed by using an optimized wrapper approach to obtain
the appropriate channels for MI recognition. Finally, the SVM
identifies different MI tasks. The performance of the MI-BCI is
defined by its classification accuracy and algorithmic complexity.

2.1 Experimental data

Experimental data derived from the BCI Competition III
dataset I is one of the most representative public ECoG datasets.
It contains ECoGs of a subject suffering from focal epilepsy. Dur-
ing the recording of ECoG signals, the subject performs imag-
ined movements of either the left little finger or the tongue ac-
cording to a prompt. ECoG epochs are recorded from an 8 X
8 ECoG platinum electrode grid located on the right motor cor-
tex. Recording duration starts 0.5 seconds after the end of a vi-
sual cue to avoid visually evoked potentials (Xu et al., 2014). The
cues for left little finger and tongue are random and equally prob-
able. A timing scheme of an experiment for ECoG is given in
Fig. 3 (Lal et al., 2004). The sampling rate of all recordings is
1000 Hz. To classify the two imagined movements, 278 trials
were recorded on the first day as a training dataset, and another
100 trial recorded a week later to provide the test dataset. The
training and test dataset are in the format of trials x channels X
samples. Dataset I is analyzed to evaluate the algorithm to be
tested. It is challenging for classification when the training and
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test data are recorded approximately one week apart. The subject
might be in a different state with regard to motivation and fatigue,
etc. Moreover, recording equipment may vary slightly in elec-
trode position and impedance. Dateset I can be downloaded from
http://www.bbci.de/competition/iii/desc_I.html.

Here, the focus is on analyzing and processing of ECoG sig-
nals. However, to verify the effectiveness of the proposed scheme,
we also tested on the EEG dataset from the BCI competition IIT
dataset IVa. There were 280 MI trials contained in this dataset,
which were divided into 224 training trials and 56 test trials. Dur-
ing the BCI experiment, following visual cues, subjects imagined
the movement of their right hand or foot for 3.5 seconds. Data
were collected from 118 channels via EEG acquisition equipment
(sampling frequency 100 Hz). '

2.2 Pre-processing

The preprocessing procedure primarily down samples raw
ECoG signals from 1000 Hz to 100 Hz. Downsampling reduces
the dimension of data and improves algorithm efficiency.

2.3 Feature extraction

Feature extraction is a critical step for decoding ECoG signals.
Extracting valid feature information is essential for improving al-
gorithm performance. Autoregressive model (AR) coefficients,
BP, local binary pattern (LBP), and MST are effective feature ex-
traction tools.

1 Dateset IVa can be downloaded from http://www.bbci.de/competit
ion/iii/desc_IVa.html.
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AR analysis, which describes the intrinsic spectral components
of model coefficients, is a method for processing temporal signals.
The p-order AR model of one-dimensional time series z(¢) can be
calculated as:

z(n)=— Z m;z(n — i) + e(n) (1)

where z(n) is the nth sample of an ECoG epoch z(t), m; is the
AR coefficient, e(n) represents the error term, and p is the model
order.

The calculation of BP can be summarized as: first, set a fre-
quency range with relatively concentrated energy, then calculate
the power of a single time-domain signal in each frequency band.

LBP used to describe local texture features, is an operator with
rotational invariance. The histogram distribution produced by the
LBP operator is a feature with superior performance (Xu et al.,
2016). It can be expressed as:

P—1

riu s(9i —ge) ifU(LBPpr) <2

Lepy = | 280909 ( ) -
P+1 otherwise
U (LBPp,r) = |s(gi—1 — gc) — 5 (go — gc)|

5 (3)

+ > [5(9: — 9¢) — 8(gi-1 — ge)l

p=0
1 >0

= P 4
s() { 0 z2<0 @)

where riu(2) represents the invariant rotation mode, g. is the gray
value of the central pixel, g; is the gray value of the neighborhood
pixel (i = 0,1, ..., P — 1), R is the radius of the neighborhood
setting, P is the number of neighboring pixels, s(x) is the sign
function, and U represents the number of spatial transformations.

The PSD representations, which contain specific feature at-
tributes, are redefined by using MST in the temporal-frequency
plane to identify different MI tasks. The MST algorithm is based
on STFT and WT.

Traditional signal analysis based on STFT exports temporal-
frequency information from ECoG epochs. The STFT of the

ECoG epochs xz(t) is defined as:

oo

STFT(r, f) = / [z(t)g(t — 7)) ar  (5)

where g(t — 7) is the window function. STFT is a good sig-
nal processing technique for the analysis of non-stationary signals
(Chikkerur et al., 2005). The disadvantage is that the STFT win-
dow size is fixed in the time and frequency domains. Furthermore,
it does not possess concurrent high-frequency and time resolution
(Del Pozo-Banos et al., 2015; Xu et al., 2019).

WT can be regarded as an extension of STFT (Taghizadeh-
Sarabi et al., 2015), which provides a window that is variable in
the time and frequency domains. The WT of the ECoG epochs
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x(t) is defined as:

WT(r,n) = % /:: 2(t)p" (t ;T) i (6)

where n is the scaling factor and 7 is the time-shifting factor,

" (“TT) represents wavelet generating function, which has two
parameters n and 7. However, WT has the shortcoming of both
poor time resolution at low frequency and poor frequency resolu-

tion at high frequency.

ST has properties of the STFT and WT since it adopts both a
Fourier kernel and a variable window function (Dash et al., 2003;
Stockwell et al., 1996). The advantage of ST is that it not only re-
tains the phase information of a signal but also provides a variable
resolution analogous to WT (Senapati and Routray, 2011; Stock-
well et al., 1996). The ST of the ECoG epochs z(t) is defined
as:

oo

St = [ eyt -t e @)

— 00
where 7 is the time-shifting factor, g(7 — ¢, f) stands for window
function and is a Gaussian function with variable scale, which can
be defined as

1 7(724)2
T—tf)= ——e 292D 8
or—tf) = 0
where o2 (f) is a function of frequency f, as in
1
o2(f) = 7 9)

Non-zero frequency f adjusts the window width, thus controls the
resolution (Senapati and Routray, 2011; Vijean et al., 2011; Xu et
al., 2014).

MST, which extends ST (Assous and Boashash, 2012; Chang
and Yang, 2018; Zhang et al., 2016), is a powerful temporal-
frequency analysis tool for non-stationary and non-linear signals.
MST introduces the parameters p and g into the ST Gaussian win-
dow function to flexibly adjust the resolution:

p

o) = 11 (10)
where p and g are scale factors that determine the width and height
of the Gaussian window. In the time domain, the window is wider
at lower frequencies and provides excellent frequency resolution.
At higher frequencies, the window is narrower and provides better
time resolution (Xu et al., 2014). To extract the most valid feature
information, optimal scale factors are found by regulating the win-
dow size. These factors provide better energy concentration in the
temporal-frequency space.

The PSD function, which represents the distribution of signal
power, is a fundamental measure in spectrum analysis (Xu et al.,
2014; Zheng et al., 2019). In the algorithm described here, the
PSD represents the power variation of specific frequency bands.
The PSD function based on the MST is redefined as:

P = E[(MST)(MST)] (11)

Xu et al.
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Figure 4. Feature extraction from each channel. The PSD value can be calculated for each frequency from the MST. For each trial, 35

MST-based feature vectors are extracted from each channel. Each trial extracts 64 x 35 features.

The PSD features of the MST are the mathematical expectation
between the time-series MST and its conjugate, where F(-) repre-
sents mathematical expectation.

In this algorithm, the spectro-temporal representations from
ECoQG signals are extracted within the frequency range of 1-35Hz,
where p and 8 rhythms reveal ERD/ERS phenomena over the sen-
sorimotor cortex. The number of extracted features is determined
according to the frequency range. For each frequency, the PSD
value can be calculated from the MST. For each trial, 35 MST-
based feature vectors are extracted from each channel. Each trial
extracts 64 x 35 features. The MST-based PSD feature matrix is
given in Fig. 4.

2.4 Classification
2.4.1 SVM classifier

Spectro-temporal representations are fed into an SVM with an
RBF kernel to recognize different MI tasks. The SVM constructs
an optimal hyperplane by using the most significant margin to deal
with the two-class problem (Bousseta et al., 2016; Liuetal., 2012).
The classification function is expressed as:

f(x) = sign [Z a;yik (s, x) — b:| (12)

where x is the input vector, y; gives the category corresponding
to the input x;, b is the classification threshold, sign denotes the
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sign function s(x), and k(z;, x) is a kernel function.

The optimization goal is expressed as:

1 . ~
Jw w+c;§i (13)

where w is for weight and ¢ i &; is the total error. c is a penalty
factor. o

The kernel function type, the penalty factor ¢, and the kernel
parameter g are essential elements of the training model. The pa-
rameter ¢ denotes the ability of the classifier to punish misclas-
sification, and the parameter g denotes a gamma distribution of
the transformed data (Dong et al., 2017). The parameters that di-
rectly affect the generalization ability of the classifier balance the
relationship between minimizing the training error and maximiz-
ing the margin between classes (Bousseta et al., 2016). The most
suitable hyperplane is found by adjusting the parameters ¢ and g,
which plays an essential role in the classification effect of the clas-
sifier (Liu et al., 2012; Ozbeyaz et al., 2011). Here, satisfactory
results are obtained by using an RBF kernel function defined by:

k (@i, 2) = exp (=g |lzi — ) .9 >0 (14)

where the g is the kernel parameter.
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2.4.2  Performance evaluation

The capabilities of the MI-BClIs can be evaluated according to
the classification accuracy and the information transfer rate (ITR).
The classification accuracy of the proposed method can be ex-
pressed as:

number of correct trials

The number of trials x 100% (15)

Accuracy(%) =

Additionally, the ITR is also an essential indicator for the measure-
ment of BCI performance (Wang et al., 2012; Zhu et al., 2019).
The amount of information transmitted in one trial is calculated
as:

B(bit/trial) = log, N+Plog, P4(1—P)log,[(1-P)/(N—1)] (16)

where IV denotes MI types, and P is the classification accuracy
for each task.

2.5 Channel selection

The channel selection strategy is provided by an optimized
wrapper method that combines wrappers and cross-validation.
The spectro-temporal representations of all 64 channels are con-
catenated to form high dimensional vectors. There is a lot of re-
dundant and task-independent information when using all chan-
nels for feature extraction. Therefore, the channel selection pro-
cess can be employed to determine the optimal channel combi-
nation without compromising classification performance. Chan-
nel selection decreases feature dimension, reduces algorithm com-
plexity, and improves classification performance.

2.5.1 Cross-validation

Cross-validation has proved to be an effective channel selec-
tion method for BCI systems (Wang et al., 2012; Xu et al., 2014,
2016). The cross-validation accuracy of each channel can be ob-
tained by calculating 10 times 10-fold cross-validation for each
channel of the training dataset.

2.5.2 Wrapper approach

The wrapper approach, which takes classification performance
as an evaluation criterion for the selected subset, is a common fea-
ture selection method (Chang and Yang, 2018; Kohavi and John,
1997). The approach aims to obtain the feature subset that is the
most beneficial to the performance of a particular learning algo-
rithm (Hossain et al., 2013; Hsu et al., 2011). The primary idea
of the wrapper approach is to first determine the classifier and
then select the best feature subset based on the classification effect
(Sebban and Nock, 2002). Random forest (RF), SVM, and KNN
are the classifiers usually chosen for the wrapper approach (Ko-
havi and John, 1997). The wrapper approach has two main steps:
a search strategy and a classification algorithm. A search strategy
employs various methods of feature subset selection. Common
search strategies are forward selection and backward elimination
(Huang et al., 2013). The classification algorithm tests the classi-
fication performance of a subset and judges whether the quality of
the subset is better than the full channel set.
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2.5.3  Optimized wrapper method

Channel selection aims to maximize the classification effi-
ciency and accuracy for a dataset (Hsu et al., 2011; Kohavi and
John, 1997). Both wrapper and cross-validation may reduce the
number of channels. However, cross-validation ignores the cor-
relation between certain channels, and the wrapper procedure has
the disadvantage of being time-consuming due to the requirement
of repeated training. To reduce these disadvantages and obtain
the most appropriate channel combination, the optimized wrap-
per approach is proposed to select channels. The method adopts
a combination of SVM and backward elimination search strategy
based on cross-validation accuracies. The entire channel selection
process can be summarized as follows:

Step 1. The training dataset is divided into a sub-training
dataset and a sub-validation dataset. The classification accuracy
m of all channel sub-validation dataset is calculated and set as a
threshold.

Step 2. All channels are arranged into a set "H" according to
the order of cross-validation accuracy from low to high.

Step 3. Set Y = H Kk = 1,Y =
[ Xk, Xit1, Xkt2,- -+, Xi4n] , kK + n is the number of
channels. After removing a channel "X}", the classification

accuracy is calculated. If the accuracy is not reduced, delete the
channel "X" andsetY = Y — X, k = k + 1. Otherwise,
retain the channel and set "k = k£ + 1."

Step 4. Repeat step 3 until all channels are scanned step by
step.

Step 5. Set "H = Y," and repeat steps 3 to 4 until no channel
is redundant.

Step 6. According to the selected channel subset, calculate the
classification accuracy of the test data.

Cross-validation allows the selection of good channels. The
order of subsets in terms of cross-validation accuracies can effec-
tively reduce the number of training runs. Refilter the selected
subset after scanning all channels and selecting a subset of chan-
nels. The refiltered subset helps further the reduction of the feature
dimension.

Fig. 5 gives the flowchart of the optimized wrapper and wrap-
per methods. Fig. 5A gives the optimization course of the
wrapper-based channel selection method. Fig. 5B illustrates the
wrapper method.

3. Results

MI classification performance can be evaluated in terms of
recognition accuracy, ITR results, and the algorithm complexity
analysis. Experimental results are analyzed in detail as follows.

Table 1 lists the classification accuracies of SVM, including
different kernel functions. The spectro-temporal representations,
including MST, ST, AR, BP, and LBP operators, are given for
comparison. The classification accuracy of 98% based on the
MST algorithm is the highest. Accuracy is reduced to 92% when
MST-based features are replaced by ST-based features. MST
achieves more satisfactory results than AR, BP, and LBP. Addi-
tionally, it can be deduced that the RBF kernel function has the
best classification performance with or without channel selection.
It should be noted that channel selection is necessary to improve
classification performance.

Xu et al.
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According to Eqn. 10, the best representations of ECoG epochs
are provided by adjusting the scale factors. Fig. 6 shows the classi-
fication results with different descriptions. The statistical evalua-
tion measures are computed with different scale factors in Fig. 6A.
Notably, the scale factors p and q have a significant impact on the
performance of the algorithm. The BCI system performance is sta-
ble and accurate when q it is 0.8, 0.9, or 1 and p ranges from 0.45
to 0.55. The algorithm is implemented using RBF-based SVM
classifiers. Because of its adjustable scaling factors, the MST
algorithm has greater robustness than alternative common time-
frequency analyses. A comparison of true and predicted labels is
given in Fig. 6B. Two types of the label are separated by category
boundaries. Only two test trials (17, 62) of the 100 test trials were
mispredicted.

Fig. 7 plots the classification performance comparison of dif-
ferent classifiers based on MST features. Fig. 7A gives the classi-
fication accuracies of the MST features combined with SVM, GB,
BLDA, KNN, and RF classifiers, respectively. It can be inferred
that the SVM classifier achieves the highest accuracy. Fig. 7B
shows the average ITR of each trial. It can be inferred that SVM
obtains excellent results for both accuracy and ITR.

4. Discussion

The use of MST to decode representations from ECoG and feed
the features into the SVM classifier to recognize two-class MI pat-
terns has been described here. Additionally, a wrapper approach
has been used to select high-quality channels, with only 20% of
channels in the original dataset required to be selected. This ap-
proach is key to obtaining excellent accuracy and improvements
in algorithm speed.
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4.1 Data analysis

Different MI tasks are usually recognized by distinguishing
(ERD/ERS) phenomena that represent imagined movements. The
ECoG signals were recorded from the right motor cortex. This mo-
tor area coincides with the functional area of the hand and tongue.
However, it is uncertain which channels correspond to the func-
tional area of the hand and tongue, respectively. Therefore, the
optimized wrapper approach is used as a channel selection tool
to reduce the complexity of the algorithm. Fig. 8 shows the en-
ergy distribution of ECoG signals and the generation of ERD/ERS
phenomena with different MI tasks. Fig. 8A gives the average
amplitudes of the raw ECoG with all channels. Fig. 8B denotes
the energy distribution of all channels in the frequency domain.
The PSD distributions of both left little finger and tongue im-
agery movement are significantly different in the frequency do-
main. Fig. 8C And 8D depict the ERD/ERS phenomena of ECoG
epochs with channel 34 and channel 47, respectively. The calcula-
tion of ERD/ERS can be expressed as the percentage of the energy
change of the given frequency band concerning the reference in-
terval (Wang et al., 2012; Wei and Tu, 2008; Zhu et al., 2019).

ERD/ERS = x 100% (17)
Within each channel, E represents the signal energy of a specific
frequency band range, and R represents the energy of the refer-
ence interval. Here, the first 30 time points of ECoG data are used
as the reference interval, and the frequency band range is 1-35 Hz.
The blue and the orange curves indicate the left little finger and the
tongue movements, respectively. Fig. 8§ illustrates that the PSD-
based MST algorithm effectively identifies different MI tasks in
the frequency range of 1-35 Hz. The temporal-frequency char-

265



—*—qg=1
—6—qg=0.7
—*—q=0.8
——q=0.9
q=1.1
< 100] q=1.5
< 06F - e *
g 920
g 88 ;
< 84f i ¥
80 -
76 I
72
68

60 , . L L L A L . , )
045 046 047 048 049 05 0.51 0.52 0.53 0.54 0.55
Parameter p

O The true labels of class 1
O The true labels of class 2
+ Our predicted labels of class 1
+ Our predicted labels of class 2

Class 2

Figure 6. Classification results with different descriptions. (A) Statistical evaluation measures computed with different scale factors. (B)

Comparison between true and predicted labels. Only 2 test trials of the 100 test trials were mispredicted.

A

Classfication accuracy
100% 8% 0

92%
77%
80% 70%
60%
40%
20%
0%

MSVM EMGB MBLDA MKNN MRF

B
ITR (bit/trial)

0.8586
0.8
0.5978
0.6 0.5001
0.4
02220

02 0.1187

. (-

M SVM M GB M BLDA M KNN M RF

Figure 7. Classification performance comparison of different classifiers with the same features. (A) Classification accuracies of MST feature

combined with SYM, GB, BLDA, KNN, and RF classifiers, respectively. (B) Average ITR of each trial.

acteristics of the ST and MST in a channel are given in Fig. 9A
And 9B. Among them, the MST spectro-temporal representation
is plotted for the parameters P = 0.52 and q = 1. There is no over-
lap, and the frequency resolution is 1. It can be inferred that MST
can obtain a better spectro-temporal distribution and more excel-
lent energy concentration than ST in the time-frequency plane.

4.2 Cross-validation and channel analysis

Fig. 10 illustrates the cross-validation accuracies for all 64
channels with the valid parameters P =0.52 and q = 1 (According
to Eqn. 10) and the selected channels. Fig. 10A is the histogram
of average cross-validation accuracies for all channels, where the
highest and lowest points of error bars represent the maximum
and minimum values of channel cross-validation accuracies, re-
spectively. Fig. 10B depicts the selected channels. Among them,
channel 38 has the highest cross-validation accuracy. This channel
must be located in the area where the ERD/ERS phenomena are
apparent, and it is an effective channel with good discrimination.

Fig. 11 illustrates the energy distribution comparison of several
selected channels and discarded channels. Fig. 11A gives the av-
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erage PSD curves for the discarded channel and Fig. 11B demon-
strates the average PSD curves for reserved channels. For differ-
ent MI tasks, the energy distribution of abandoned channels are
almost coincident and difficult to distinguish, but the energy dis-
tribution of selected channels have significant differences. An op-
timized wrapper approach can effectively delete redundant chan-
nels and optimize classification performance. Additionally, the
optimized wrapper method gradually traverses each channel ac-
cording to cross-validation accuracy. Thus, this method not only
preserves the advantages of the wrapper method but also reduces
the time wasted by multiple cycles.

4.3 Results comparison

Fig. 12 gives a comparison of the results of the ECoG and the
EEG. Fig. 12 and 12B show the performance before and after the
channel selection of the ECoG and the EEG. After the channel
selection stage, the classification accuracy of the ECoG has in-
creased from 94.0000% to 98.0000%, and the classification ac-
curacy of the EEG has changed from 82.1429% to 92.8571%.
The classification time of the algorithm is significantly reduced

Xu et al.
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in Fig. 12B. The classification time of ECoG and EEG is respec- accuracy of the EEG reaches 92.8571% when 16 channels are se-
tively reduced by 66% and 30%. The classification accuracies of lected, and the classification accuracy of the ECoG reaches 98%,
the ECoG and the EEG with different channel numbers are given with only 13 channels selected. Optimized channel selection re-
in Fig. 12C And 12D. These figures show that the classification duces the computational burden. Additionally, there are more in-
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terference channels with EEG than ECoG, and the classification
performance of EEG decreases as the number of channels is in-
creased.

It is useful to compare the performance of the algorithm pro-
posed here with other methods for recognition MI tasks with
ECoG. To date, many attempts have been made to improve the
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performance of MI-BCls. Table 2 provides a comparison of clas-
sification accuracy obtained by the method described here and by
others for dataset I. Li et al. (2009) and Wei and Tu (2008), re-
spectively, used the SVM ensemble and FLDA to conduct clas-
sification with CSP features. They improved the performance of
the algorithms by training the classifiers and reducing the data di-
mensions, respectively. The algorithm complexity of these two
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Table 1. Classification accuracies with different features based on different kernel functions.

. Accuracy before channel ~ Accuracy after channel
Feature extraction =~ SVM kernel

selection (%) selection (%)
MST linear 88 94
MST RBF 94 98
MST polynomial 89 92
ST linear 83 87
ST RBF 85 92
ST polynomial 82 90
AR linear 75 83
AR RBF 81 86
AR polynomial 80 86
BP linear 60 71
BP RBF 76 84
BP polynomial 58 58
LBPI} ’i“2 linear 77 77
LBPI} iluz RBF 88 89
LBP[ iluz polynomial 82 84
LB Pg} iluz linear 76 81
LBPg’ iluz RBF 84 85
LBPg ilu2 polynomial 81 85
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EEG. (B) Classification time before and after the channel selection of the ECoG and EEG. (C) The classification accuracy of ECoG data with
different channel numbers. (D) The classification accuracies of EEG data with different channel numbers.

BCI schemes is low, but the accuracy is considerably lower than Moreover, the scheme of Li et al. (2009) has a high compu-
that of the scheme proposed here. tation burden, which can be attributed to the absence of channel
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Table 2. Performance comparison of the proposed model with other methods for ECoG.

Feature extraction Classifier Channel selection Number of Accuracy (%)
channels selected
CSP (Li et al., 2009) SVM Ensemble No 64 84
BP (Chong et al., 2010) LDA, KNN, SVM No 64 89
Wavelet variance (Yan and Guan, 2013) PNN Wavelet variance 6 88
CSP (Wei and Tu, 2008) FLDA GA 7 90
Wavelet Energy (Zhao et al., 2010) PNN PCA 8 91.8
BP (Zhao et al., 2011) FLDA BP 11 94
ST (Chang and Yang, 2018) BLDA GA (Feature selection) 64 96
Fractal and LBP (Xu et al., 2016) GB Cross-validation 41 95
MST (Xu et al., 2014) GB Cross-validation 9 92
MST (Zheng et al., 2019) SVM Cross-validation 36 95
MST SVM Optimized Wrapper 13 98

selection. In the work of Chong et al. (2010), linear discriminant
analysis (LDA), KNN and SVM were introduced to form a com-
bination classifier and a lower accuracy of 89% was achieved with
a BP feature. This scheme has effectively optimized the algo-
rithm by adjusting the combined classifier. Multiple classifiers
lead to higher algorithm complexity. Compared with the algo-
rithm introduced here, the method of Chong et al. (2010) has low
efficiency, high computational complexity, and low accuracy. A
wavelet variance feature and probabilistic neural network (PNN)
classifier have been employed to obtain 88% classification accu-
racy (Yan and Guan, 2013). It has extracted effective feature in-
formation and selected high-quality channels by adjusting wavelet
coefficients. In that case, computational complexity was reduced
by selecting 6 channels to process. Compared with the current
algorithm, MST-based spectral features have better energy con-
centration than wavelet variance features.

Additionally, the method is more accurate. Zhao et al. (2010)
achieved 91.8% classification accuracy with a relative wavelet en-
ergy feature and PNN classifier. This algorithm has improved the
classification accuracy by extending the feature dimension. Prin-
cipal component analysis (PCA) is introduced to reduce data re-
dundancy and dimensionality. Although PCA reduces data dimen-
sionality to a certain extent, the rapidity of the algorithm is rela-
tively slow due to the expanded feature region. The BP feature
and FLDA classifier gave 94% classification accuracy. Zhao et
al. (2011) utilized BP to form feature vectors, introduced FLDA
as a classifier, and 11 channels with distinct features were selected
by using the BP feature as the channel selection tool.

In contrast, the current algorithm achieves more satisfactory
classification results. The work of Chang and Yang (2018)
adopted the ST feature and genetic algorithm (GA) to select 48.6%
of'a dataset as an efficient subset to obtain 96% classification accu-
racy with a BLDA classifier. It has introduced the GA algorithm to
improve the performance of the scheme. MST-based features have
higher energy than ST-based features compared to the scheme de-
scribed here. Furthermore, the high number of selected feature
subsets increased algorithmic complexity. In summary, the clas-
sification performance of these algorithms is lower than that of the
algorithm proposed here.
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In our previous work, fractal and LBP were combined to rep-
resent ECoG, and the accuracy of 95% was obtained with the GB
classifier (Xu et al., 2016). That scheme applied nonlinear dy-
namics theory to MI task classification and achieved a good com-
promise in both classification accuracy and algorithm efficiency.
The classification performance of the current scheme was very
competitive at the time. The method proposed here employs time-
frequency analysis to extract data features and optimizes the per-
formance of the algorithm using an optimized wrapper method.
Both have resulted in the construction of novel and effective BCI
systems. Such a scheme is more straightforward because only par-
tial features need to be extracted.

Additionally, classification accuracy has been further im-
proved. Based on our previous work (Xu et al., 2014; Zheng et
al., 2019), it was further found that the appropriate scale factors of
the MST algorithm extract a higher quality representation, and the
optimized wrapper method can be used to implement a channel
selection. The framework proposed here has both better classi-
fication accuracy and lower algorithmic complexity. Due to its
flexible window adjustment ability, the MST algorithm can ef-
fectively capture changes in brain signal rthythm. The optimized
wrapped algorithm can effectively improve the efficiency of the
algorithm. It will help to realize the analysis of more complex
cognitive tasks by adjusting the MST algorithm window, match-
ing the appropriate classifier, and combining with the optimized
wrapped algorithm.
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