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Assessment of heart rate variability (reflective of the car-
diac autonomic nervous system) has shown some predic-
tive power for stress. Further, the predictive power of the
distinct patterns of cortical brain activity and - cardiac au-
tonomic inferactions are yet to be explored in the context
of acute stress, as assessed by an electrocardiogram and
electroencephalogram. The present study identified dis-
tinct patterns of neural-cardiac autonomic coupling during
both resting and acute stress states. In particular, during
the stress task, frontal delta waves activity was positively
associated with low-frequency heart rate variability and
negatively associated with high-frequency heart rate vari-
ability. Low highfrequency power is associated with stress
and anxiety and reduced vagal control. A positive as-
sociation between resting high-frequency heart rate vari-
ability and frontocentral gamma activity was found, with
a direct inverse relationship of low-frequency heart rate
variability and gamma wave coupling at rest. During the
stress task, low-frequency heart rate variability was pos-
itively associated with frontal delta activity. That is, the
parasympathetic nervous system is reduced during a stress
task, whereas frontal delta wave activity is increased. Our
findings suggest an association between cardiac parasym-
pathetic nervous system activity and frontocentral gamma
and delta activity at rest and during acute stress. This
suggests that parasympathetic activity is decreased dur-
ing acute stress, and this is coupled with neuronal cortical
prefrontal activity. The distinct patterns of neural-cardiac
coupling identified in this study provide a unique insight
into the dynamic associations between brain and heart
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function during both resting and acute stress states.
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1. Introduction

Stress associated with maladaptive responses and prolonged
levels of cortisol has been implicated in reduced declarative mem-
ory (Lupien et al., 2002), impaired memory retrieval and decision-
making (Chrousos and Gold, 1992; Dominique et al., 2009) mathe-
matical ability, and diminished working memory capacity (Wirth,
2015), providing evidence for the neural component of stress. Fur-
ther, chronic stress has been linked to an increased risk of is-
chaemic heart disease (Steptoe and Kivimiki, 2013). Thus, the
psychophysiological impacts of stress are widespread, including
both the brain and heart. Numerous theories exist to explain this
neural-cardiac link. The neurovisceral integration model (Thayer
and Lane, 2000) hypothesizes that cardiac vagal tone, as measured
by heart rate variability (HRV), can signify the functionality of the
neural networks implicated in emotion-cognition interactions. The
psychophysiological coherence model draws on dynamic systems
theory, and it posits a sine wave-like pattern in the cardiac rhythms,
amplified synchronicity of the heart and brain, and coherence be-
tween distinct physiological systems (McCraty et al., 2009).

Heart rate variability (HRV) (Pumprla et al., 2002) is a crit-
ical component in the brain-heart axis. It can be used to assess
acute stress responses via the autonomic nervous system (ANS).
Using this technique, the ANS can be non-invasively examined
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using spectral analysis of heart rate variability (HRV) (Pumprla
et al., 2002) to indirectly quantify autonomic control of the heart
(Acharya et al., 2008) and the dynamic interaction between the
sympathetic and parasympathetic nervous systems (Dreifus et al.,
1993; Klein et al., 1995; van Ravenswaaij-Arts et al., 1993). The
two primary bandwidths of the HRV frequency domains are high
frequency (HF) and low frequency (LF), indicating parasympa-
thetic activity and a mixed sympathetic and baroreceptor reflex
activity, respectively (Tulppo and Huikuri, 2004).

Electroencephalography (EEG) is often used to measure cor-
tical electrical activity and can provide information as to the pre-
dominant EEG bandwidth associated with specific tasks or acute
stress responses. The most commonly used technique to catego-
rize EEG waveforms is by the frequency, which includes delta (0.5
to 4 Hz), theta (4 to 7 Hz); alpha (8 to 12 Hz); and beta (13 to
30 Hz). Delta rhythm is present during deep sleep and predomi-
nates in the frontocentral cerebral sites and can also be detected in
awake alert people and during cognitive processes. Theta is associ-
ated with drowsiness and initial phases of sleep and predominates
in the fronto-central cerebral sites. Alpha rhythms are typically
present in normal awake EEG recordings in the cerebral occipital
site (Nayak and Anilkumar, 2019).

Research has shown that stress varies the signals the brain sends
to the heart, and the heart, in turn, responds through several com-
plex autonomic mechanisms (Cacha et al., 2019; Pokrovskii and
Polischuk, 2012). These brain signals result in neurovisceral in-
nervation of vital body organs, including the heart, to induce bi-
ological corrections that attempt to reverse the deleterious effects
of stress or threats on health and well-being.

EEG and HRV coupling can be used to monitor and assess
the dynamic interaction between the brain and heart during pe-
riods of rest and acute stress-induced in the laboratory. Acute
stress in the laboratory is often induced using the Trier Stress
Test (TSST). In use for over 20 years, the test induces a neural
and cardiac response to acute stress response of public speaking
and mental arithmetic, and has been validated in many biochem-
ical studies, and has been shown to increase heart rate and the
hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal-
medullary (SAM) axis during the task (Birkett, 2011). To date,
limited research has examined this acute stress task (TSST) and
its relationship to brain cortical electrical function and cardiac au-
tonomic function.

Nurses find themselves within the top 6 most stressful occu-
pations (Cooper et al., 1987). Several occupational factors re-
sult in these nurses being viewed as a stress-vulnerable popula-
tion (Hooper et al., 2010). These include the emotional nature
of patient demands, long working hours, and inter-professional
as well as interpersonal conflicts. Studies have shown that stress,
within the workplace, is often linked with occupational demands
and extrinsic effort, such as the necessity of prolonged cognitive
engagement (Mark and Smith, 2012). Studies have also shown that
chronic stress has detrimental effects on the psychophysiological
welfare of health professionals (Jones et al., 2015). Our past stud-
ies have also shown that stress effects are prevalent in this sample,
and has effects on cognitive function (Lees and Lal, 2017).

2. Materials and methods
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2.1 Participants

The data from 30 clinically active nurses, aged between 18-
45 years were used in the current analysis. Before inclusion, an
in-house questionnaire was used to screen participants for current
medication use (any prescribed medications), recent alcohol intake
(previous 12 hours), smoking > 10 cigarettes per day, and chronic
disease/illness. Participants were excluded if they answered yes
to any of the screening questions above. The in-house designed
questionnaire, adapted from the Lifestyle Appraisal Questionnaire
(Craig et al., 1996), also collected demographic, lifestyle (such as
exercise and smoking habits), and work-related data such as shift
length, average working hours per week, years of employment,
and employment site (e.g., private/public hospital). The study was
conducted in accordance with the Declaration of Helsinki, and the
protocol was approved by the UTS Human Research Ethics Com-
mittee.

2.2 Study protocol

At the commencement of the study, participants were asked to
complete the in-house designed questionnaires, adapted from the
Lifestyle Appraisal Questionnaire (Craig et al., 1996), to collect
demographic, lifestyle, and work-related data. Following the com-
pletion of the questionnaire, participants were attached to a 32 lead
electroencephalogram (EEG), which was recorded at a sampling
frequency of 1,000 Hz using the SynAmp? system (Compumedics
Limited, Australia) and utilizing the Scan software (Version 4.3;
Compumedics Limited, Australia). The electrode positions fol-
lowed the International 10-20 system (Homan et al., 1987) and
were as follows: Fp1, Fpz, F7, F3, F., F4, Fs, FT7, FC3, FC, FCy4,
FTs, T, C3, C;, Cy4, Ts, TP, CP3, CP., CP4, TPs, P7, P3, P_,
P4, Pg, O1, O., and Oo. Further, the reference electrode was posi-
tioned at the vertex, and the ground electrode at position AF; two
electrooculograms (EOG) electrodes, one above and one below the
left eye were also utilized. All electrodes were filled with Sig-
nal Gel (Parker Laboratories, USA), and adjusted until an accept-
able direct current value was attained (less than 5 k€2). Addition-
ally, a 3 lead electrocardiogram (ECG) was also recorded using
a Flexcomp Infiniti Encoder (Thought Technology Ltd., Canada)
combined with the Biograph Infiniti software (Thought Technol-
ogy Ltd., Canada), with three disposable Ag/AgCl electrodes were
placed on the participant's chest, one in the left and right second
intercostal space, midclavicular line and one over the xiphoid pro-
cess.

A modified Trier Social Stress Test (TSST) (Birkett, 2011) was
used to elicit a controlled stress response. Continuous simultane-
ous EEG/ECG recordings were taken during the TSST. Only the
participant and the lead researcher were present during the study.
The TSST involved a 10-minute resting session, which was used
to determine a baseline EEG/ECG recording, before which partici-
pants were seated for 10 minutes, followed by a 10-minute prepara-
tion/anticipation task where participants were required to prepare
a short speech. The preparation time was followed by a 5-minute
public speaking task, followed by 5 minutes of mental arithmetic.
Electrophysiological recordings were ceased after the completion
of the mental arithmetic task.

Chalmers et al.



2.3 Electrophysiological data processing

Before statistical analysis, both sets of electrophysiological
data (ECG and EEG) were processed to obtain the relevant vari-
ables.

2.3.1

The recorded ECG data was processed utilizing the Kubios
HRV Premium software (Version 3.1.0; Kubios Oy, Finland) to
derive the activity for the following HRV frequency bands: very
low frequency (VLF; 0 - 0.04 Hz), low frequency (LF; 0.04 - 0.15
Hz), and high frequency (HF; 0.15 - 0.4 Hz). Further, it should be
noted that for each of these variables, normalized units (n.u.) were
utilized. Additionally, the ratio between LF and HF (LF/HF), as
well as overall or total power (TP) was also computed. These com-

Heart rate variability

ponents were chosen based on their effectiveness of representing
acute stress (Kim et al., 2014). These variables were derived from
approximately 10 minutes of ECG, utilizing Welch's periodogram
method (Welch, 1967) applied to a 300-second window with a 50%
overlap. Furthermore, artefacts and ectopics were removed from
the trace before analysis.

2.3.2  Electroencephalography data

Before analysis, all raw time-domain EEG data were bandpass
filtered using a Butterworth IIR filter set at 0.5 and 50 Hz, fol-
lowed by a Hanning window. Then the aligned-artifact average
procedure (Croft and Barry, 1998) was applied, which used the
collected EOG data to minimize eye artefacts. Next, all record-
ings (baseline and active) were partitioned into approximately 300
two-second epochs and the periodogram power spectral density
estimate was used to calculate the activity in the delta (0.5 - 4 Hz),
theta (4 - 8 Hz), alpha (8 - 13 Hz), beta (13 - 35 Hz) and gamma (35
- 50 Hz) frequency bands (Rowan and Tolunsky, 2003). Outlying
activity values across all epochs were removed using a modified
z-score statistic (Leys et al., 2013) greater than or equal to 5, which
was calculated using the following equations (Leys et al., 2013):

X —%
~ MAD 1)

where X = Epoch value, X = Median value and MAD = Median
Absolute Deviation.

The median absolute deviation was calculated using the fol-
lowing equation (Leys et al., 2013):

MAD = % (|Xi — % (X)) (2)

where x = Median and X = Epoch value

After removing outliers, the retained activity values were av-
eraged to derive a single value in each frequency band for each
electrode location. Finally, the activity values for all recordings
were collated, and outliers were again removed using the modified
Z-score statistic, with a removal threshold greater than or equal to
10 (Leys et al., 2013).

2.4 Statistical analysis

STATISTICA (Version 10, 1999, StatSoft, USA) was used to
conduct the present statistical analysis, and statistical significance
was set at P < 0.05. Partial Pearson's correlation analysis (control-
ling for age and BMI) examined the associations between the col-
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lected EEG and HRV data. Least absolute shrinkage and selection
operator analysis (LASSO) (Tibshirani, 1996) also examined the
relationship between EEG and HRV data and supplemented the
correlation analysis. LASSO was computed using Matlab (Ver-
sion, 2018b, Mathworks, USA), as per the least absolute shrinkage
and selection operator equation (Tibshirani, 1996):

N /4
Iglig (;vZ(yi_ﬁo_sz/B)2+>‘Z’f3j|> ®3)
0 i=1 J=1

where: N is the number of observations, y; is the response at ob-
servation i., x; is data, a vector of P values at observation i., A is a
nonnegative regularization parameter corresponding to one value
of Lambda, the parameters 3¢ and S are scalar and p-vector re-
spectively. Note: As A increases, the number of nonzero compo-
nents of 3 decreases. The lasso problem involves the L' norm of
B, as contrasted with the elastic net algorithm.

LASSO is a statistical technique that provides coefficients or
weights (that can equal zero) that evaluate the importance of in-
put variables for ensuing analysis (Tibshirani, 1996); a normal-
ized weight with an absolute value of 0.75 or greater was utilized
to identify important EEG variables. Additionally, before LASSO
analysis, all previously removed EEG values were imputed by cal-
culating the mean of the previous and next non-missing value for
the variable containing the missing value (Keil et al., 2014).

Finally, if significant relationships between one dependent and
three or more independent variables were identified, general linear
multiple regression analysis was undertaken to evaluate the rela-
tionship further.

3. Results
3.1 Participant descriptive

The average age of participants was 29.7 + 6.3 years £ SD,
with an average body mass index of 25.0 &= 4.1. 6% of the popula-
tion were male (n = 2). The cohort consisted of registered nurses
(n =22, 66%), midwives (n = 6, 18%) and assistants in nursing (n
=2, 6%), who worked in the public hospital system (n = 25, 75%),
the private hospital system (n =4, 12%) and in a home care setting
(n =1, 3%). On average, participants had spent 5.8 & 4.7 years
in their role and worked 8.4 4 1.5 hours each shift. The average
blood pressure readings (+ standard deviation) were as follows;
Pre-study diastolic blood pressure: 73.5 £ 9.2 mmHg, Pre-study
systolic blood pressure: 114.5 £ 9.7 mmHg, Post-study diastolic
blood pressure: 72.0 £ 8.1 mmHg, Post-study systolic blood pres-
sure: 114.6 £+ 8.0 mmHg.

3.2 Baseline
3.2.1 Low Frequency Heart Rate Variability (normalized
units)

Baseline Low Frequency Heart Rate Variability (normalized
units) (LFn.u.) was significantly negatively correlated with fron-
totemporal delta and frontocentral gamma EEG parameters, and
positively correlated with a parietal gamma EEG variable. All
other EEG variables were not significantly correlated to baseline
LFn.u.

Also, the LASSO analysis demonstrated the importance of
baseline F4 theta activity and P4 gamma activity for predicting
LFn.u.
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Table 1. Stepwise forward general linear regression analysis between baseline LFn.u. and the significantly correlated EEG variables.

R =0.612; R2 = 0.375; AR? = 0.345;
F=12.59;df = 1,21; P < 0.001*

Variable b SE of b B SE of B t P
Intercept 78.03 3.66 21.33 < 0.000*
g-FC3 -0.612 0.172548 -41.278628 11.634643 -3.547907 < 0.001*

Table 1 displays a stepwise forward general linear regression analysis between baseline LFn.u. and the significantly corre-
lated EEG variables. Of the 5 EEG variables originally entered into the model, the analysis retained 1: FC3 gamma.
Key: bold = P value of < 0.01; C = Central; df = Degrees of Freedom; F = Frontal; v = gamma; LFn.u. = Low Frequency

Heart Rate Variability (normalized units); * = Statistical Significance; < Less than

Table 2. Stepwise forward general linear regression analysis between baseline HFn.u. and the significantly correlated EEG variables.

R =0.22; R? =0.387; AR2 =0.359
F=13.91,df=1,22; P < 0.001*

Variable b SE of b B SE of B t P
Intercept 21.64 345 6.26 < 0.000*
g-FC3 0.622 0.167 41.79 11.21 3.73 <0.001*

Table 2 displays a stepwise forward general linear regression analysis between baseline HFn.u. and the significantly corre-
lated EEG variables. Of the 4 EEG variables originally entered into the model, the analysis retained 1: FC3 gamma.
Key: bold = P value of < 0.01; C = Central; df = Degrees of Freedom; F = Frontal; v = Gamma; HFn.u. = High Frequency

Heart Rate Variability (normalized units); * = Statistical Significance; < Less than

A forward stepwise general linear regression informed by the
correlation and LASSO analysis retained 1 of the 5 originally en-
tered variables (FCs gamma activity) and had an overall signifi-
cance of P < 0.001 (Table 1). This variable explained 38% of the
variance in LFn.u. (F=12.59, DF = 1; P < 0.001; R = 0.61; R® =
0.38; AR” = 0.35).

3.2.2 High Frequency Heart Rate Variability
(normalized units)

Baseline High Frequency Heart Rate Variability (normalized
units) (HFn.u.) was significantly positively correlated with delta
and gamma EEG parameters and negatively correlated to a gamma
EEG variable. Further, all other EEG variables were not signifi-
cantly correlated to baseline HFn.u. The LASSO analysis, again,
reduced the weights of all investigated EEG variables to zero.

As multiple significant correlations were identified for base-
line HFn.u, a forward stepwise general linear regression was un-
dertaken to establish predictive capability. The regression analysis
retained 1 of the 4 originally entered variables (FC3 gamma activ-
ity) and had an overall significance of P < 0.001 (Table 2). This
variable explained 39% of the variance in HFn.u. (F = 13.91, DF
=1; P < 0.001; R = 0.622; R? = 0.39; AR® = 0.36).

3.2.3  Total power

Baseline TP was significantly positively correlated with frontal
beta and gamma EEG parameters, and all other EEG variables
were not significantly correlated to baseline TP. The LASSO anal-
ysis for EEG variables and baseline TP HRV reduced the weights
of all investigated EEG variables to zero.

The regression analysis for baseline TP HRV retained 1 of the
4 originally entered variables (F. beta activity) and had an overall
significance of P < 0.001 (Table 3). This variable explained 39%
of the variance in baseline TP (F = 14.96, DF=1; P < 0.001; R =
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0.63; R% =0.39; AR? = 0.38.

3.2.4 Low Frequency to High Frequency Ratio

Baseline Low Frequency to High Frequency Ratio (LF : HF)
was significantly positively correlated with delta, theta, alpha,
beta, and gamma EEG parameters; all other EEG variables were
not significantly correlated to baseline LF : HF. The LASSO anal-
ysis reduced the weights of all investigated EEG variables to zero.

The forward stepwise general linear regression for baseline LF :
HF regression analysis retained 4 of the 14 originally entered vari-
ables (F. delta, F, theta, TPs gamma and P4 gamma activity) and
had an overall significance of P < 0.001 (Table 4). This variable
explained 79% of the variance in LF : HF (F=11.06, DF = 4; P <
0.001; R = 0.89; R? = 0.79; AR? = 0.72).

3.3 Stress
3.3.1 Low Frequency Heart Rate Variability (normalized
units)

Low frequency (normalized) HRV during the stress task was
significantly positively correlated with delta and theta EEG param-
eters. All other EEG variables were not significantly correlated to
stress LFn.u. The LASSO analysis was investigating EEG vari-
ables and stress LFn.u. They have reduced the weights of all EEG
variables to zero.

The forward stepwise regression for stress LFn.u. retained 1
of the 10 originally entered variables (F. delta activity) and had
an overall significance of P < 0.001 (Table 5), and this variable
explained 20% of the variance in stress LFn.u. (F = 12.26, DF =
1; P < 0.001; R = 0.61; R* =0.20; AR? = 0.19).

3.3.2 High Frequency Heart Rate Variability
(normalized units)
High Frequency Heart Rate Variability (normalized units)
(HFn.u.) during the stress task was significantly negatively cor-

Chalmers et al.



Table 3. Stepwise forward general linear regression analysis between baseline TP and the significantly correlated EEG variables.

R =0.628; R? = 0.394; AR? = 0.368
F=14.96, df = 1,23; P < 0.001*

Variable b SE of b B
Intercept 734.39
b-F4 0.63 0.16 141.58

SE of B t P
248.68 2.95 0.007*
39.6 3.87 <0.001*

Table 3 displays a stepwise forward general linear regression analysis between baseline TP and the significantly correlated

EEG variables. Of the 4 EEG variables originally entered into the model, the analysis retained 1: F4 beta.
Key: bold = P value of < 0.01; df = Degrees of Freedom; F = Frontal; 8 = beta; * = Statistical Significance; < Less than

Table 4. Stepwise forward general linear regression analysis between baseline LF : HF and the significantly correlated EEG variables.

R =0.887; R2 =0.787; AR? = 0.716
F=11.064, df = 1,12; P < 0.001*

Variable b SE of b B

Intercept 0.057
q-Fz 1.54 0.3 0.53
d-Fz -1.1 0.3 -0.06
- TP8 0.58 0.26 0.13
g-P4 0.84 0.25 3.52

SE of B t P
0.015 3.71 < 0.001*
0.102 52 < 0.001*
0.015 -3.71 0.001*
0.058 2.21 < 0.001*
1.056 3.34 < 0.001*

Table 4 displays a stepwise forward general linear regression analysis between baseline LF : HF and the significantly cor-

related EEG variables. Of the 5 EEG variables originally entered into the model, the analysis retained 4: Fz delta, Fz theta,

TP8 gamma, and P4 gamma.

Key: bold = P value of < 0.01; df = Degrees of Freedom; F = Frontal; LF : HF = Low Frequency to High Frequency Ratio;

P = Parietal; T = Temporal; z = Midline; § = Delta; 6 = Theta; v = gamma; * = Statistical Significance; < Less than

Table 5. Stepwise forward general linear regression analysis between stress LFn.u. and the significantly correlated EEG variable.

R =0.451; R? = 0.203; AR2 =0.187
F=12.26, df = 1,48; P < 0.001*

Variable b SE of b B
Intercept 67.31
d-Fz 0.45 0.128823 0.086644

SE of B t P
1.91 35.16 < 0.000*
0.024748 3.50106 <0.001*

Table 5 displays a stepwise forward general linear regression analysis between stress LFn.u. and the significantly correlated

EEG variables. Of the 10 EEG variables originally entered into the model, the analysis retained 1: Fz delta.
Key: bold = P value of < 0.01; df = Degrees of Freedom Model; F = Frontal; z = Midline; § = Delta; LFn.u. = Low
Frequency Heart Rate Variability (normalized units); * = Statistical Significance; < Less than

related with delta and theta EEG parameters, and all other EEG
variables were not significantly correlated to stress HFn.u. Also,
the cut-off weight for the LASSO analysis demonstrated the im-
portance of F. delta activity and O, delta activity for predicting
stress HFn.u.

The correlation and LASSO informed forward stepwise general
linear regression for stress HFn.u retained 1 of the 10 originally
entered variables (F, delta activity) and had an overall significance
of P=0.001 (Table 6). This variable explained 20% of the variance
in stress HFn.u. (F = 12.09, DF = I; P < 0.001; R = 0.45; R*=
0.20; AR? =0.18).

3.3.3

Stress TP was significantly negatively correlated with theta
EEG parameters (Table 7). All other EEG variables were not
significantly correlated to stress TP. Also, the LASSO analysis

Total power
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demonstrated the importance of T~ theta activity for predicting
stress TP; all other weights were reduced to zero.

As numerous EEG variables were determined to be important
for total HRV power during a stress task, a forward stepwise gen-
eral linear regression was performed, and retained 1 of the 4 origi-
nally entered variables (FC, theta activity) with an overall signifi-
cance of P < 0.002 (Table 7). This variable explained 10% of the
variance in stress TP (F=5.27, DF = 1; P < 0.002; R = 0.32, R?
=0.10; AR = 0.08).

3.4 Low Frequency to High Frequency Ratio

Low Frequency to High Frequency Ratio (LF : HF) during the
stress task was significantly positively correlated with delta and
theta EEG parameters. The LASSO analysis for Stress LF : HF
reduced the weights of all investigated EEG variables to zero.

Finally, as multiple EEG variables were indicated to be impor-
tant for LF : HF during a stress task a forward stepwise general
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Table 6. Stepwise forward general linear regression analysis between HFn.u. during the stress task and the significantly correlated EEG
variables.

R =0.448; R%2 = 0.201; AR2 = 0.185
F = 12.09, df = 1,48; P < 0.001*

Variable b SE of b B
Intercept 32.51
d-Fz -0.09 0.02 -0.45

SE of B t P
1.91 17.04 < 0.000%*
0.13 -3.48 < 0.001*

Table 6 displays a stepwise forward general linear regression analysis between HFn.u. during the stress task and the sig-

nificantly correlated EEG variables. Of the 10 EEG variables originally entered into the model, the analysis retained 1: Fz

delta.

Key: bold = P value of < 0.01; df = Degrees of Freedom; F = Frontal; z = Midline; v = gamma; HFn.u. = High Frequency

Heart Rate Variability (normalized units); * = Statistical Significance; < Less than

Table 7. Stepwise forward general linear regression analysis between stress TP and the significantly correlated EEG variables.

R =0.321; RZ = 0.103; AR? = 0.083
F=527,df =1,23; P < 0.002*

Variable b SE of b B
Intercept 19
q-FCz 0.32 0.14 -0.44

SE of B t P
0.62 30.68 < 0.000*
0.19 -2.3 0.026*

Table 7 displays a stepwise forward general linear regression analysis between stress TP and the significantly correlated

EEG variables. Of the 4 EEG variables originally entered into the model, the analysis retained 1: FCz theta.
Key: bold = P value of < 0.01; C = Central; df = Degrees of Freedom; F = Frontal; = Theta; * = Statistical Significance;

< Less than

linear regression was performed and retained 3 of the 12 origi-
nally entered variables (F, delta, T delta and O, delta) and had
an overall significance of P = 0.001 (Table 8). This variable ex-
plained 29% of the variance in stress LF : HF (F = 6.291; DF = 4;
P =0.001; R =0.53; R* = 0.29; AR? = 0.25).

A summary of correlation findings for the baseline resting
phase is presented in Table 9.

A summary of correlation findings for the stress phase is pre-
sented in Table 10.

4. Discussion

The present study identified distinct patterns of neural-cardiac
coupling during both resting and acute stress states. During the
stress task, frontal delta wave activity was positively associated
with LF HRV and negatively associated with HF HRV. Low HF
power is associated with stress and anxiety, and reduced vagal con-
trol has been linked to increased morbidity and mortality (Thayer
et al., 2010). It has been proposed that LF HRV is associated with
the baroreceptor reflex rather than sympathetic nervous system ac-
tivity alone (Goldstein et al., 2011; Rahman et al., 2011; Vaschillo
et al., 2002). During the stress task, LF HRV was positively asso-
ciated with frontal delta activity. That is, as the parasympathetic
nervous system is reduced during a stress task, so too is frontal
delta wave activity. Delta wave activity is associated with drowsi-
ness and sleep, and previous studies have shown that during stress,
inhibition of our REM-on hormones ensures adequate vigilance
and attentiveness (Krueger et al., 2018). The cognitive and neural
functions associated with delta waves have been mapped to pre-
frontal structures and awake EEG delta activity.

Additionally, deeper anatomical structures associated with
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deep subcortical delta activity also map well to areas associated
with autonomic control. It is also known that cognitive tasks that
require verbal memory and mental arithmetic both increase sig-
nificant broad areas of prefrontal EEG delta activity (Harmony,
2013). This waking delta activity has been suggested to suppress
other cognitive systems for better attention to the task activity. At
the same time, others have also suggested such activity will likely
trigger emotive cognitions. Hence a cognitive task that elicits pre-
frontal delta activity is likely also associated with acute stress re-
sponse and deeper thalamocortical and brainstem regions that can
control cardiac autonomic responses (Riganello et al., 2019). In
summary, delta activity, as recorded in prefrontal areas, is well
described and increases during different complex cognitive pro-
cesses that can be stressful (Massimini et al., 2000).

The inverse relationship was identified when examining HF
ECG derived parameters, as HF HRV was negatively correlated
with frontal cortex delta wave activity. That is, as cardiac
parasympathetic nervous system activity increases, delta wave ac-
tivity decreases. The frontocentral region, or prefrontal cortex,
is associated with complex cognitive behaviors, decision making,
and behavioral responses (Euston et al., 2012). This may infer a
psychophysiological response to acute stressors. This may have
implications for an extrapolative model of HRV analysis, which
utilizes HF and LF HRYV patterns to predict behavioral responses
to stress, as inferred by prefrontal cortex activity.

The present study also identified a positive association be-
tween resting HF HRV and frontocentral gamma activity, the di-
rect inverse relationship of the LF HRV-gamma wave coupling
at rest. That is, the findings suggest a link between parasympa-
thetic nervous system activity and frontocentral gamma activity
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Table 8. Stepwise forward general linear regression analysis between stress LF : HF. and the significantly correlated EEG variables.

R =0.539; RZ =0.291; AR2 = 0.245
F =6.291, df = 3,46; P = 0.001*

Variable b SE of b B SE of B t P

Intercept 1.6 0.729 2.19 0.033*
d-Fz 0.31 0.15 0.02 0.008 2.04 0.047*
d-T7 0.53 0.18 0.06 0.019 2.98 0.005%*
d-Oz 0.56 0.19 0.1 0.033 3.04 0.004*

Table 8 displays a stepwise forward general linear regression analysis between LF : HF during a stress task, and the signif-
icantly correlated EEG variables. Of the 12 EEG variables originally entered into the model, the analysis retained 3: Fz
delta, T7 delta, and Oz delta.

Key: bold = P-value of < 0.01; df = Degrees of Freedom; F = Frontal; O = Occipital; T = Temporal z = Midline; § = Delta;
* = Statistical Significance

Table 9. Summary of findings from stepwise forward linear regression analysis between baseline HRV parameters and significantly

correlated EEG variables.

HRYV Parameter EEG Correlate EEG Correlate location Direction of relationship
LF n.u. Gamma wave activity Frontocentral Inverse
HF n.u. Gamma wave activity Frontocentral Direct
Total Power Beta wave activity Frontal Direct
LF: HF Delta wave activity Frontal Direct
Theta wave activity Frontal
Gamma wave activity Parietotemporal
Gamma wave activity Parietal

Table 9 presents a summary of electroencephalography and electrocardiography correlation findings for the
baseline resting phase.
Key: HFn.u.: High-frequency heart rate variability normalized units; LFn.u.: Low-frequency, heart rate

variability, normalized units; LF : HF: Low frequency to High-frequency ration (sympathovagal balance)

Table 10. Summary of findings from stepwise forward linear regression analysis between stress HRV parameters and significantly

correlated EEG variables.

HRYV Parameter EEG Correlate EEG Correlate location Direction of relationship
LF n.u. Gamma wave activity Frontal Direct
HF n.u. Gamma wave activity Frontal Inverse
Total Power Theta wave activity Frontocentral Inverse
LF: HF Delta wave activity Frontal Direct
Delta wave activity Temporal
Delta wave activity Occipital

Table 10 presents a summary of electroencephalography and electrocardiography correlation findings for the
stress phase.
Key: HFn.u.: High-frequency heart rate variability normalized units; LFn.u.: Low-frequency, heart rate

variability, normalized units; LF : HF: Low frequency to High-frequency ration (sympathovagal balance)

at rest. Frontocentral gamma activity is associated with memory
formation (Basar et al., 1991; Singer and Gray, 1995), language
processing (Pulvermiiller et al., 1995), perception (Pulvermiiller et
al., 1997; Steriade et al., 1996), and associative learning (Miltner et
al., 1999). The parasympathetic system predominates during quiet,
resting conditions (McCorry, 2007). This coupling pattern during
the resting phase lends itself to the psychophysiological coherence
model proposed by (McCraty et al., 2009). This model suggests
that distinct emotions and environmental conditions such as relax-
ation infer psychophysiological synchronicity, such that the bod-
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ily systems work in unison. The findings from the present study
suggest a distinct neurocardiac coupling pattern of HRV and fron-
tocentral gamma activity at rest. That is, during rest, there is a
negative correlation between LF HRV and frontocentral gamma
activity, and a positive correlation between HF HRV and fronto-
central gamma activity.

Total power (TP) is defined as the sum of the variance in the
four spectral bands; LF, HF, Ultra Low Frequency, and Very Low
Frequency. In the present study, resting TP was positively cor-
related with frontal beta wave activity. It is well accepted in the
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literature that increases in prefrontal beta wave activity can rep-
resent anticipatory responses to stimuli (Haenschel et al., 2000).
During the stress phase, TP was positively correlated with fronto-
central theta wave activity. Previous studies have suggested that a
predominance of theta waves during active tasks may suggest cog-
nitive fatigue (Lal and Craig, 2002). Prolonged cognitive acuity is
often a requirement of those within the nursing occupation. The
predominance of theta waves during the stress task may indicate
the cognitive fatigue associated with the task. Further, the rela-
tionship between TP and frontal theta waves may provide a future
neurophysiological biomarker of cognitive fatigue.

Several limitations warrant comment. We have used hetero-
geneous nursing participation samples; as such, we have not con-
trolled for baseline chronic stress upon entry into the study or epi-
demiological factors such as years of nursing experience. On the
other hand, we are using within the design to explore acute stress
states during a stressful activity versus baseline that we have cap-
tured. In doing so, we have found associations with cortical EEG
and cardiac HRV coupling. Any population that we choose will
likely be heterogeneous with respect to their background stress lev-
els, and people will have different social cognitions that mitigate
both chronic stresses and burn out at baseline. There is a signifi-
cant body of literature that indicates that baseline stress levels are
challenging to capture (Epel et al., 2018). The acute stress task
chosen (Trier Social Stress Test) is robust and reliably induced an
acute stress response as per our associations reported during the
task. Given the baseline level of stress experienced by this sample,
it can be inferred the stress response couplings that were recorded
can be extrapolated to a broader stressed population. If the re-
sultant stress neural-coupling responses are evident in a popula-
tion with a high resting baseline stress level, within whom stress
accommodation is likely being physiologically engaged, these re-
lationships may be present to an even greater degree in a non-
stressed population. The task engages several cognitive domains
during the stress task itself that can elicit an emotional stress re-
sponse, and this has been validated previously by other investiga-
tors concerning biological markers of salivary cortisol, heart rate,
and the hypothalamic-pituitary-adrenal axis (Birkett, 2011; Hell-
hammer and Schubert, 2012). Finally, given the exploratory na-
ture of the paper, the data were not corrected for multiple compar-
isons. As such, findings should be interpreted with caution given
the multiple correlations and the chance of Type 1 error. We have,
however, highlighted results with a P-value of < 0.01, which con-
forms to reducing type 1 error.

Future research may benefit from the exploration of neural-
cardiac relationships identified within this study, in particular, the
inverse relationship between LF and HF HRV and frontocentral
delta waves. The delta waves demonstrate a consistent pattern of
neural cardiac coupling, which could be further examined by ex-
ploring different frequencies in the delta range to assess the power
of this relationship further and to explore acute stress recovery.
We have not explored cognitive parameters in the present study
and how these may interact with specific coupling and was not our
aim to do so. Where appropriate, we have drawn reference to the
interaction of cognitive states that may affect the EEG biomarkers
and also explain an underlying stress response.
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5. Conclusions

The distinct patterns of neural-cardiac coupling identified
within this study provide a unique insight into the dynamic asso-
ciations between brain and heart function during both resting and
acute stress states. Moreover, the findings from this study con-
tribute to a growing body of literature that suggests HRV may be
used to predict behavioral responses to stress. This study provides
the foundations for future research regarding possible ubiquitous
patterns of neural-cardiac stress patterns and may allow for early
identification of a physiologically stressed state. This, in turn,
may allow for early intervention and management of deleterious
stress responses in occupations where stress impairs functional-
ity. Moreover, the findings underscore the hypothesis of response
stereotypy in that neural and cardiac responses to stress are often
universal despite possible differing individual coping strategies.
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