(]
0
c
()]
0
()]
0
(&
)
()]
2
(]
>
=
©
(&
(0)]
()]
=
c
Y=
0
©
c
&
)
0
)

Published online: September 30, 2020

Original Research

VIR Prass

Clinical interpretations of the effectiveness of changes in
body position during aerobic fitness after neurologic injury

Nur Fariza Izan®, Sheikh Hussain Salleh':?*, Chee-Ming Ting®**, Fuad Noman', Hadrina Sh-Hussain'**, Roman R. Poznanski®

and Ahmad Zubaidi Abdul Latif®

1 School of Biomedical Engineering and Health Science, Faculty of Engineering, Universiti Teknologi Malaysia, 81310,

Johor, Malaysia

2Centre for Biomedical engineering, Universiti Teknologi Malaysia, 81310, Johor, Malaysia
3Health Education and Lifestyle (HEAL ULTRA), 81300, Johor, Malaysia
4School of Information Technology, Monash University Malaysia, 47500, Bandar Sunway, Malaysia

®Faculty of Computing and Informatics, Universiti Sultan Zainal Abidin, 22200, Beset, Terengganu, Malaysia

Neurosurgery, Faculty of Medicine, Universiti Sultan Zainal Abidin, Medical Campus, 20400, Kuala Terengganu,

Terengganu, Malaysia

*Correspondence: sh.hussain@tutanota.com (Hadrina Sh-Hussain)

DOI:10.31083/].jin.2020.03.222

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).

The purpose is to estimate the effectiveness of electrocar-
diograms during resting and active participation by the
differentiation between the electrical activity of the heart
while standing and sitting in a resting state. The concern
is to identify the electrocardiogram parameters that did
not show significant changes within these positions. The
electrocardiogram parameters can be considered to be a
standard marker for medically compromised patients. The
electrocardiogram is recorded in the standing and sitting
positions focusing on healthy participants using standard
electrode placement of lead-l. Combined lead-l patterns
(camel-hump or ST-segment prolongation) are usually seen
in neurologic injury or hypothermia patients. The pairwise
comparisons of a year data are about 454,400 cycles of
sitting and 493,470 cycles of standing data. Thus, it is
essential fo quantify the nature and magnitude of changes
seen in the electrocardiogram with a change of posture
from sitting to standing in a healthy individual. This makes
the findings of electrocardiogram analysis in this paper in-
teresting in which some parameters (i.e., camel-hump pat-
terns in lead-l) are helpful for clinical interpretations and
could be suggestive of neurologic injury.

Keywords

ECG; aerobic exercise; standing position; sitting; fiducial points;
ANOVA,; neurologic injury

1. Introduction

Electrocardiogram (ECG) is the most common non-invasive
method used for various conditions of heart diagnosis. The ECG
is also used extensively for monitoring patients, especially in the
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Intensive Care Unit (ICU), emergency room, and in the operation
theaters during surgical procedures. Various diagnostic tests, such
as exercise stress tests, also monitor ECG changes to trace the
underlying cardiac pathologies (Khare and Chawala, 2016). The
standard procedure for recording the ECG is in the supine position.
The values of various parameters that define normality are based
on calculations made from supine ECG recordings. However, in
certain situations, such as exercise stress testing and evaluation of
syncope by the head-up tilt test, the ECG is recorded in the upright
position. The same may also be necessary for patients who cannot
assume the supine position due to certain conditions that require
them to adopt other postures.

Most of the previous studies have focused on comparing the
ECG recorded in the supine with the left and right lateral positions
in patients being monitored for myocardial ischemia in the ICU
(Adams and Drew, 1997). Khare and Chawala (2016) , on the other
hand, has started a study on the effect of a change in the supine and
standing positions on the mean frontal plane QRS vector, P-wave,
T-wave, amplitude of P, QRS, and T waves, ST-segment changes,
and QTc interval. The mean frontal plane QRS axis recorded in the
supine and standing positions was comparable. The reclining and
sitting ECG shows a significant variation of the mean QRS axis
as compared to the supine position. The T-wave axis was found
to be comparable in the supine and standing positions. The QTc
interval showed a significant change with a change in the body
position from supine to standing.

It is also equally important to study the magnitude of changes
seen in the ECG with a sitting and standing position in healthy
individuals. The results would be useful to the interpretation of
ECG recorded during exercise stress tests. It would also provide
an insight into the feasibility of recording the ECG in the seated
position in patients being examined in the outpatient department of
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hospitals. This study was carried out to describe the changes in 26
parameters of ECG in terms of the mean amplitude of waveforms,
the intervals, the segments, and the slopes on the position of sitting
and standing.

Detection of ECG fiducial points can be defined as the auto-
matic temporal localization of ECG waveforms (P-wave, QRS, and
T-wave) onset, peak, and offset points. Detection of the QRS com-
plex has been extensively investigated in the literature, yet there is
no universal solution to cover the diversity of QRS waveforms. In
contrast, fewer studies have been carried out on the detection of
P and T waves, due to the complexity of detecting such waves
in unusual and noisy cases. Systematic literature reviews over
the past three decades of QRS detection methods are conducted
by Elgendi et al. (2014); Kohler et al. (2002); and Martis et al.
(2013). The typical proposed methods can be categorized into sev-
eral types: (i) derivatives and digital filtering methods (Castells-
Rufas and Carrabina, 2015; Chatterjee et al., 2012; Hamilton and
Tompkins, 1986; Karimipour and Homaeinezhad, 2014; Ning and
Selesnick, 2013; Pan and Tompkins, 1985; Phukpattaranont, 2015),
(ii) transformation-based methods (Bono et al., 2014; leong et al.,
2014; Madeiro et al., 2013; Martinez et al., 2010; Merah et al., 2015;
Pal and Mitra, 2012; Yochum et al., 2016; Zhu and Dong, 2013;
Zidelmal et al., 2014), (iii) machine learning methods (Akhbari et
al., 2018, 2016; Lin et al., 2010) and (iv) other methods (curve fit-
ting (Tafreshi et al., 2014), mathematical modeling (Madeiro et al.,
2013), template matching (Bashir et al., 2014; Chen and Chuang,
2017), correlation analysis (Homaeinezhad et al., 2014; Karim-
ipour and Homaeinezhad, 2014), point process tracking (Citi et
al., 2012), power analysis (Kim and Shin, 2016), and masking &
amplitude analysis (Chen and Chuang, 2017).

The derivative and digital filters are the most widely used ECG
delineation methods due to their less complex, and they do not re-
quire high computational resources. One of the most well-known
methods for QRS detection is the Pan-Tompkins method (Pan and
Tompkins, 1985) and its update (Hamilton and Tompkins, 1986).
These methods are commonly used to delineate normal ECG sig-
nals and mostly fails to process the abnormal ECG signals. The
Wavelet transform (WT) based algorithm also has been used for
ECG delineation due to their suitability to locate different waves
with typical time and frequency characteristics. However, WT-
based methods still suffer from some significant drawbacks: prior
information about the waveforms and their width is required, and
WT uses very rigid arbitrary thresholds to determine the various
wave components.

This work aims to evaluate whether the ECG recording alters
the various components of the ECG curve after the change in neu-
rologically injured patient's position during aerobic fitness. The
ECG was recorded in the sitting and standing positions from one
subject for one year using single-lead standard electrode placement
(the three limb leads of Einthoven's triangle, left-arm, right-arm,
and left-leg). We propose an automatic approach to extract a total
of 26 temporal and morphological ECG parameters to be used for
the statistical tests and analysis. The analysis in this study also
aims to explore and identify various ECG parameters that have the
potential to be set as markers for tracking health performance. The
analysis of variance (ANOVA) statistical test is used to analyze
and determine the existence of statistically significant differences
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between the extracted ECG parameters in a resting state for both
sitting and standing positions.

2. Methodology
2.1 Database

The CBE Analyzer device is used to collect the ECG data with
a standing or sitting position during the resting state. The CBE
Analyzer's stethoscope was placed on the subject's chest, at the
tricuspid area for heart sound (HS) recording, and ECG electrodes
were clamped to the left forearm, right forearm, and to the left
leg that is the bipolar limb lead-I. Two bio-signals were recorded
simultaneously for 1 minute and saved into a computer by using
CBE Analyzer's application interface. The data are saved in wave
pulse-code modulation (PCM) with a resolution of 16 bit and 8
kHz sampling rate.

The data acquisition system is capable of capturing and stor-
ing the raw data to the computer terminal. The overall gain for
the ECG amplifier is 1000 with an effective filter. The module
includes the right-leg drive for 50 Hz power-line suppression as
well as a return path for the ECG. The module also contains an
isolation amplifier and an isolated power supply to ensure safety
and avoid high current leakage to the patient body. Fig. 1 illus-
trates the ECG and hear-sound components. To date, this study
has collected 947870 cycles of resting data within a period of 1
year, starting from March 2014 to April 2015. However, due to the
non-activity of the subject under study, the data was not collected
for June and July 2014. Table 1 summarizes the data collection
of resting-state with an almost balanced total number of cardiac
cycles for sitting and standing positions.

o
=
2
= -2
g
T * : ‘
8 Diastole LSt Systole LoS2 Diastole
g S ; ; ]
£ i :
Z 0 /\’W‘—«MN\/\/\"—W (O NN
\
: '
5 ' ;
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (sec)

Fig. 1. Example of a single cardiac cycle consisting of ECG and heart-
sound signals with their components.The figure demonstrates the main
components of the ECG signal (T-wave, QRS complex, and T-wave) and
the fundamental sounds in the heart sound signal (S1, systole, S2, and di-
astole). The figure also illustrates the temporal alignment of cardiac elec-
tromechanical events where the S1 sound is aligned with R-peak, and S2

sound starts at T-wave end.

The ECG data were recorded simultaneously with HS signals
to correlate the heart activity domains, where ECG represents the
electrical activity, and the HS represents the mechanical activity.
However, this study mainly focuses on the ECG data to understand
if changes in subject position will alter the various components of
the ECG signals.

Izan et al.
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Fig. 2. Baseline drift removal using a median filter.In ECG automatic analysis procedure, and to reduce the complexity of signal processing, it requires

removing the baseline drift and align the signal to the zero/dc line. The figure depicts the effects of filtering an ECG with severe baseline drift and how

the signal is straightened, which make the R-peak detection much more straightforward.

Table 1. Details of data collection.

Resting Data  Total cycles  Total ECG parameters
Sitting 17,476 454,400
Standing 18,979 493,470

2.2 Preprocessing

In clinical practice, the ECG signals are usually contaminated
by heterogenous noise sources, which degrade the signal quality.
The predominant two types of noise that could be contained in
ECG signals are baseline drift and powerline noise. Fig. 2 shows
an example of an ECG signal with baseline drift noise. A Butter-
worth High-Pass filter with a cut-off frequency of 0.7 Hz is used
to remove the baseline drift. A windowed median approach of
digital subtraction filter is used to remove the high-power line fre-
quency noise. According to Duskalov et al. (1998) and Levkov et
al. (2005), this filter can preserve the spectral content and ampli-
tude of the processed ECG signal.

2.3 ECG Delineation
A stationary wavelet transform is employed to denoise the

ECG signal before the QRS detection procedure.
contaminated ECG signal is decomposed with a three-level de-
composition 'sym4'. The 'sym4' wavelet resembles the QRS com-
plex. It attenuates the other ECG waves and emphasizes the QRS,
which makes it an excellent choice for QRS detection. The ECG
signal then undergoes a baseline drift filter, as detailed in Section

The noise-

2.2. Sliding non-overlap windows of length 8 ms were used for
tangent calculation. This reduces the amount of data to be pro-
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cessed to 1/8 of ECG signal length and speeds up the detection
process. The tangent points are then analyzed, selecting only the
points that reflect the concave and convex (crests and troughs) de-
viations of the ECG signal. The selected tangent points and the
ECG signal are then used for the QRS detection process, which
is initialized by setting two independent thresholds, a slope-based
threshold:

1 N
’71:ﬁzi:1Ai , N=4 (1)

where each A represents the N different maxima slope. This
threshold is updated for each QRS during the detection procedure.
The second threshold is amplitude-based and also adaptive. It was
determined by selecting four maxima slopes from different inter-
vals (1Fs, 2Fs, 3Fs, and 4Fs) considering that one of these maxima
points Pk; would represent an actual QRS peak amplitude:

1
Y2 = 0.7 (NZLPki>—5 ,N =4 (2)

where 3 is an RR duration factor that is used in case, there is a
sudden change in the heart rate (HR) (e.g., the tachycardia and
bradycardia cases). The detection of the QRS peak is considered
as the ECG amplitude that satisfies the thresholds values.

The detected QRS delineation points are used as a reference
for the detection of the P and T wave. The intervals between each
successive pair of QRS complexes (QRS offset to the subsequent
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QRS onset) are extracted from the original ECG signal. The filter-
ing method for the QRS is different from the P-T waves, in which
a zero-phase IIR high-pass filter is used to remove the baseline
drift while maintaining P-T search regions. An important contri-
bution of this algorithm, this filter removes the baseline drift of
the ECG signals without introducing any deformation of the sig-
nal, thus avoiding the loss of any clinical information. The filtered
signal is then passed through an average smoother, where each
data point is sequentially replaced by the average value of adja-
cent points in sliding window spans. The smoothing is given by

y(i) = sxg (Wi + N) +y(i + N = 1)

Y B

where y(i) is the value of the i smoothed data point, N is the total
number of data points present on either side of y(i), and (2N + 1)
is the span.

The interval between each adjacent R-peaks was divided into
two search blocks for P and T wave detection. The T-wave search
block is initially defined as 60% (minimum 45%) of the RR inter-
val, which is then automatically adjusted based on the characteris-
tics of concave and convex curves within this interval. The P wave
search block begins one curve before the end of the T wave search
block and ends at the subsequent QRS onset constrained to 25% of
RR interval. A similar approach of QRS detection is implemented
for P and T wave peaks detection using the heuristic analysis of
maxima/minima points of tangent calculations.

Once the locations for the R, P, and T peaks were detected,
the onsets and offsets of each wave were then located by defining
search blocks around each peak. Initial locations of peaks onset
and offset were found by testing the minima (location and ampli-
tude), and then the tangent is used to investigate the availability
of split waveform morphology. Therefore, this algorithm requires
two reference points within the onset-offset search intervals where
the onset/offset was assumed to be located between these points.
This algorithm employs the polynomial approach, in which a line
needs to be created between these two points. The farthest dis-
tance between the ECG segment and the line is considered an on-
set/offset point. The same polynomial approach is sequentially re-
peated for three possible segments. Heuristic analysis of the three
possible pairs of points around each peak is done to select one out
of the three possible locations as the final onset/offset point. Fig. 3
illustrates an example of QRS delineation using the polynomial
lines for Q and S detection.

2.4 Parameters extraction

A new feature extraction approach of ECG represented by 26
parameters using Principal Component Analysis (PCA) and fidu-
cial points detection methods is proposed. The statistical test
ANOVA is used to analyze and determine the existence of statis-
tically significant differences between the extracted ECG parame-
ters in a resting state for both sitting and standing positions.

The 26 parameters that are extracted from the filtered ECG sig-
nal included the duration, time interval, amplitude of peak, and
slope of the signals. These parameters are RR interval, PR in-
terval, QRS duration, QT interval, QTc interval, P-wave duration,
T-wave duration, PR segment, ST interval, ST segment, P ampli-
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Fig. 3. Example of QRS complex delineation.The figure illustrates the
heuristic search for candidate Q and S waves given the R-peak location.
The green dash-lines represent the prominent candidate Q and S locations.

Heuristic criteria are set to select the best-fit point among these locations.

tude, R amplitude, T amplitude, Q amplitude, S amplitude, RP
Amp Ratio, RT Amp ratio, slope P1, slope P2, slope R1, slope
R2, slope T1, slope T2, P slope ratio, R slope ratio, and T slope
ratio. The ECG is recorded in the standing and sitting position,
and values of various parameters are based on calculations made
from both ECG recordings. In certain situations, such as exercise
testing and evaluation, the ECG is also recorded in both of these
positions. Thus, it becomes equally important to study and quan-
tify the nature and magnitude of changes seen in the ECG with a
change of posture from sitting to standing in healthy individuals.

2.5 Statistical test

Then statistical test, ANOVA, was conducted, and the outcome
of the ANOVA test is presented in Table 2. In this case, the P-
value is compared with the significance level to assess the null
hypothesis. The null hypothesis states that the group of means is
equal. Usually, a significance level («) of 0.05 works well, where
this level of 0.05 indicates a 5% risk of concluding that a differ-
ence exists when there is no actual difference. If P-value < «,
meaning the differences between some of the means are statisti-
cally significant and reject the null hypothesis.

Meanwhile, if the P-value > «, then the differences between
the means are not statistically significant. This study also used the
Bonferroni procedure to group the information from pairwise com-
parisons of #-test with 95% confidence intervals (Cls). Bonferroni
is chosen because the method is valid for equal or unequal sample
size (Bland and Altman, 1995). The CI is used to determine the
likely ranges for differences and to determine whether the differ-
ences are practically significant. The 95% CI indicates that it can
be 95% confident that all the CIs contain true differences.

3. Results

The experimental hypothesis to evaluate whether a change in
the subject position during the ECG recording alters the various
components of the ECG curve is initiated by looking at the mean
value of 26 parameters for a year observation. The data is divided
into a group of weeks in which 1 week consists of data for 7 days.
There are 16 weeks of sitting ECG data with 112 files. Fig. 4 il-

Izan et al.
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Fig. 4. A year observation of sitting 26 ECG parameters from Jan to Dec. (a) shows the time-domain related parameters. (b) amplitude parameters.

(c) amplitude slope parameters. (d) amplitude slope ratio between two ECG components.

lustrated the significant changes of the 26 parameters of ECG for
16 weeks. The extracted set of 26 parameters for each ECG cycle
is illustrated in Fig. 6.

Fig. 4 and 5 clearly show that the PR interval, ST interval,
ST segment, R amplitude, Slope R1, Slope R2, and P slope ra-
tio have different variations. Standing ECG, on the other hand,
has about 18 weeks of data that were recorded and showed the
same trend of different variations between the parameters. The
one-way ANOVA is used then to determine whether there are any
statistically significant differences between the means of three or
more independent (unrelated) groups. Table 2 presents the sta-
tistical analysis results using ANOVA. The pairwise comparison
between sitting and standing is calculated using a year data collec-
tion, which is about 454,400 cycles of sitting and 493,470 cycles
of standing data. ANOVA is used to compare differences of means
among the 2 groups by looking at variation in the data and where
that variation. Specifically, it compares the amount of variation
between groups with the amount of variation within groups.

Table 2 summarized the statistical ANOVA test results in terms
of P-value and CI measure of the extracted 26 ECG parameters
when comparing the sitting and standing positions. According to
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Table 2, the highlighted rows are parameters that show signifi-
cantly different between sitting and standing. A total of 10 pa-
rameters are reported with a significant difference where some of
these parameters (i.e., PR int, PR seg, QT int, ST int, ST seg, and T
wave dur) are clinically important parameters and any significant
change of their values for the same subject could indicate a serious
health problem. On the other hand, 16 ECG parameters show that
sitting and standing are not significantly different. In other words,
these parameters exhibit approximately similar behavior for both
positions. Homogeneity of variances was violated, as assessed by
Bonferroni's procedure for inequality of variances. A statistically
significant difference shows from activity of sitting and standing
at specific parameters, where (Table 3) simplified the results from
the analysis.

Changes in body position are known to cause changes in the
features of ECG, mainly in the intervals and segments, as shown
in Table 3. These shifts have been attributed to the chest cavity,
changes in lung volume, and change of electrode contact with the
skin (Sigler, 1938). Most of the ECG wave amplitudes showed
no significant difference between the sitting and standing posi-
tion. Therefore, for specific purposes such as regular conditions
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Table 2. The pairwise CI (Bonferroni) of sitting and standing.

Parameter P-value CI

P amp 0.76713 (-130.82019, 59.16317)
PR int 0.02914 (7.50047, 204.77463)
PR Seg 0.00000 (9.33298, 21.63670)

P slope ratio 0.76189 (-336.01158, 150.68840)
P wave dur 0.10773 (-4.61474, 0.29611)

Q amp 0.00057 (55.82564, 272.41974)
QRS dur 0.92800 (-1.35569, 0.83339)
QTc int 0.97762 (-11.89285, 16.33932)
QT int 0.00444 (4.71746, 35.63593)
R amp 0.18808 (-1736.75144, 216.48785)
RP amp ratio 0.87828 (-1.33737, 2.43251)
RR int 0.00000 (38.74582, 80.35886)
R slope ratio 0.03372 (0.00171, 0.06275)
RT amp ratio 0.01006 (-1.75877, -0.16796)

S amp 0.37799 (-152.53813, 657.10440)
Slope P1 0.99922 (-0.43262, 0.47874)
Slope P2 0.40557 (-0.19580, 0.79474)
Slope R1 0.06203 (-10.72226, 0.17529)
Slope R2 0.22441 (-1.32967, 9.01175)
Slope T1 0.92556 (-0.58019, 0.94970)
Slope T2 0.84751 (-0.90849, 0.47097)
ST int 0.00454 (34.23390, 260.33508)
ST seg 0.00429 (65.50043, 489.38892)
T amp 0.88980 (-129.06950, 229.28805)
T slope ratio 0.86379 (-0.34745, 0.18569)

T wave dur 0.02044 (-12.47187, -0.72235)

in monitoring the patient during the stress test exercise, recording
ECG in stand position can be considered as a fair test. On the other
hand, the RR interval shows significantly different during sitting
and standing. An important contribution in this paper is that it
can show that the HR for sitting is different from HR of standing
for resting state. These parameters, RR interval, the PR interval,
QT interval, ST interval, ST segment, PR segment, and T wave
duration, also shows a significant difference between sitting and
standing position, as these parameters are physiologically related
to the frequency of HR. The results showed that 16 of the parame-
ters specify that sitting and standing are not significantly different.

In contrast, another 10 parameters show that sitting and stand-
ing are significantly different from each other, as shown in Table 2.
Fig. 5 illustrates the data distribution in Table 2, where the high-
lighted parameters (highlighted rows of Table 2) show a significant
difference between sitting and standing. A change in the body po-
sition from standing to sitting results in changes in the ECG. These
changes manifest in changes in the mean QRS, P wave, and T wave
axis recorded in the frontal plane, as well as changes in the am-
plitude of the P, QRS, and T waveforms. ECG recordings in the
sitting and standing positions are comparable with insignificant
differences with specific parameters. The QTc interval shows a
significant difference in the standing position compared to the sit-
ting position and suggests changes in cardiac repolarization with
the assumption of the standing position.

Several pathologies make it necessary to record an ECG from a
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patient in a vertical position, including neurological patients. This
study demonstrates the way for a significant ECG analysis with
using the lead-I in the absence of the possibility to conduct a clas-
sic ECG recording, due to a specific pathology (extensive burns,
eczematous damage). This makes the findings of ECG analysis in-
teresting in which some parameters (i.e., camel-hump patterns in
lead-I") are helpful for clinical interpretations and could be sug-
gestive of neurologic injury or diagnosis of hypothermia patients.
The results indicate that the electrocardiographically significant
parameters obtained during such registration allow us to conclude
both the processes of impulse conduction and the myocardial con-
tractility to some extent.

4. Discussion

Employing ECG features in monitoring exercise progress could
extend information in several aspects, for example, in detecting
symptoms of heart disease and deficiency in the blood. Changes
in the ECG resting as well as during and after exercises in healthy
subjects were observed decades ago. However, a complete de-
scription of the whole ECG at all levels during or after exercise
is needed for treatment of patients with neurologic injury from
conditions such as stroke, cardiac arrest, and traumatic brain in-

1 National Institute for Health and Care Excellence. (2019) Lead-
I ECG devices for detecting symptomatic atrial fibrillation using
single time point testing in primary care. Available at: https://ww
w.nice.org.uk/guidance/dg35 (Accessed: 03 February 2020).

Izan et al.
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Fig. 5. A year observation of standing 26 ECG parameters from Jan to Dec. (a) shows the time-domain related parameters. (b) amplitude parameters.

(c)

(c) amplitude slope parameters. (d) amplitude slope ratio between two ECG components.

(d)

R Slope Ratio «—

RT Amp Ratio

RR int

P Slope Ratio

PR Amp Ratio

Slope R1

QRS Dur
\\

Slope PI ™~

\[~P\\

R Amp

Fig. 6. The 26 parameters illustration.The figure consists of two subsequent cardiac cycles showing the measurement points of 10 time-domain, five
amplitude, six amplitude slope, and five amplitude slope ratio parameters. A total of 25 parameters are extracted from each cardiac cycle, with one
parameter (RR int) is shared between two contiguous cycles.
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Table 3. The division between significant differentiation of sitting and standing.

Activity Interval Amplitude Slope
sit = stand QTc interval, R amplitude, P slope ratio,
QRS duration, S amplitude, T slope ratio,
P wave duration P amplitude, Slope R1,
T amplitude, Slope R2,
RP amplitude ratio Slope P1,
Slope P2,
Slope T1,
Slope T2
stand # sit QT interval, Q amplitude, R slope ratio
ST interval, RT amplitude ratio
RR interval,

PR interval,
ST segment,
PR segment,

T wave duration

jury. This article also contributes to improving the technique of
computer processing of bioelectric signals, in the particular ECG,
due to the qualitative description of the proposed procedure of the
ECG delineation and parameters extraction when using the lead-I
electrocardiogram.

Changes in body position are known to cause changes in the
ECG, mainly in the electrical axis, QRS amplitude, ST segment,
and T wave. These shifts have been attributed to changes in the
anatomical orientation of the heart in the chest cavity, changes
in lung volume, and change of electrode contact with the skin.
Analysis performed on the 26 parameters using the pairwise t-test
shows that 16 parameters (62%) specify that sitting and standing
are not significantly different, which means approximately simi-
lar; P wave duration, QRS duration, QTc interval, P amplitude, S
amplitude, T amplitude, R amplitude, Slope P1, Slope P2, Slope
T1, Slope T2, Slope R1, Slope R2, P slope ratio, T slope ratio, and
RP amplitude ratio. Thus, these parameters are fair to be used as a
marker for monitoring patients in an emergency room or diagnos-
tic test in the laboratory on the position standing or sitting. Thus,
it becomes equally important to study and quantify the nature and
magnitude of changes seen in the ECG with a change of posture
from sitting to standing in healthy individuals.

In most ECGs obtained in clinical practice, used digital pro-
cessing algorithm built into the modern ECG system to assess
the cardiac thythm measures the HR, PR, QRS, and QT inter-
vals. However, these studies are focused on a specific few param-
eters of the ECG. A recent review by Lyon et al. (2018) showed
some ECG systems, which include; Sovilj et al. (2013) findings
on the effect of simulated myocardial infarctions at various loca-
tions on ECG changes, specifically in the ST segment. Bacharova
etal. (2016) used computer simulations to investigate the influence
of left ventricular (LV) mass on QRS, and specifically increased
QRS amplitude, in the context of LV hypertrophy. They also in-
vestigated the effect of slow ventricular activation on the QRS
complex and showed how alteration of electrical properties might
mimic ECG morphologies associated with anatomical abnormal-
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ities. Thamizhvani et al. (2018) monitors the abnormality of the
heart by Electrocardiograph (ECG) waveform, which is formed of
the PQRS pattern. Differentiation of the abnormalities based on
the ECG signal can be applied for diagnosis in a clinical setting.
They extracted the QRS complex to determine the presence of an
arrhythmia. They showed that the QRS complex of an ECG signal
plays a vital role in identifying the physical conditions of the heart.
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