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Overactivation of the PI3-K/Akt/mTOR signaling pathway and inhi-
bition of autophagy in the brain are involved in Alzheimer's dis-
ease. The present paper's goal was to explore the potential mech-
anisms of geniposide to protect against Alzheimer's disease. We
treated the human neuroblastoma SH-SYsY cell line with AB1 — 42 as
an Alzheimer's disease in vitro model to explore the potential mech-
anisms of geniposide to protect against Alzheimer's disease. Fur-
ther, SH-SY5Y cells damaged by A1 _42 were treated with genipo-
side. Akt/mTOR-related proteins and autophagy-associated proteins
were measured to reveal the molecular mechanisms by which geni-
poside protects against A1 _42-induced toxicity. Results showed
that Akt and mTOR's geniposide inhibited phosphorylation induced
by AB1—42, enhanced expression of the LC3II/LC3l ratio, and Atg7
and Beclin1 expression and inhibited expression of p62 induced by
AP1—_42. Our results lead us to hypothesize that inhibition of the
Akt/mTOR signaling pathway and autophagy enhancement are fun-
damental molecular mechanisms for geniposide to protect against
Ap toxicity.
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1. Introduction

Aging is a pivotal factor for numerous diseases, in-
cluding neurodegeneration, obesity, diabetes, cardiovascu-
lar diseases, and metabolic disorders [1, 2]. Growth fac-
tors, nutrients, and energy metabolism are pivotal factors
for cell growth, development, and proliferation. Activa-
tion of the mechanistic target of rapamycin (mTOR) pro-
motes cell growth in response to favorable environmental
cues and is viewed as a master regulator of this response [3].
Many studies have shown that mTOR signaling dysregula-
tion is involved in age-related diseases, including neurode-
generative diseases, diabetes, metabolic disorders, and cancer
[4]. mTOR signaling networks stimulate the synthesis of nu-
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cleotides, proteins, and lipids and block autophagic catabolic
response at the post-translational and transcriptional levels
[5]. The PI3-K/Akt/mTOR signaling pathway is widely re-
garded as a central signaling axis to regulate cell growth and
proliferation, crucial metabolism processes, apoptosis, and
secretion [6]. Protein kinase B (PKB, also known as Akt) per-
forms its action as a central intersection between phospho-
inositide 3-kinase (PI3-K) and mTOR by phosphorylating
various substrates. Considering its crucial role in regulating
vital cellular functions, dysregulation of PI3-K/Akt/mTOR
is a critical molecular event in mental illnesses [7]. Specif-
ically, abnormalities in PI3-K/Akt/mTOR signaling are in-
volved in Alzheimer’s disease (AD) [8]. Overactivation of
PI3-K/Akt/mTOR signaling in the brain is regarded as an
early pathogenic event in AD and an essential candidate for
pathophysiological processes activated by -amyloid [8]. Ev-
idence gathered also indicates that insulin and IGF-1 can res-
cue and normalize the aberrant PI3-K/Akt/mTOR signaling
and protect against AD’s physiopathologic processes [9].

Recent studies focused on the regulators of longevity and
health span showed that strategies to delay aging are thera-
peutic strategies for aging-related diseases such as AD [10,
11]. mTOR inhibition [12] and autophagy enhancement
[13] are regarded as crucial regulators of longevity and health
span, as well as the novel therapeutic strategies for aging-
associated diseases. mTOR functions as a nutrient sensor by
regulating “protective” autophagy programs [14]. Interest-
ingly, activation of the mTOR signaling pathway is related to
AD [15]. The inhibition of mTOR is being developed into a
novel AD therapy [16].

Autophagy is a critical molecular mechanism in mediat-
ing the lifespan-extending effects of dietary restriction and
mTOR inhibition [17]. Autophagy is a normal cellular pro-
cess in which the lysosome degrades older cytosolic compo-
nents due to nutrient deprivation [18]. Many studies have
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shown that damage due to autophagy occurs at the early
stages of the AD process. Studies also showed that autophagy
performs a pivotal role in the production and metabolism of
AB and AD progress [19]. As the self-degrading process,
autophagy is key in maintaining cellular homeostasis. De-
fects in autophagy homeostasis are considered pivotal patho-
genesis in shortening lifespan and promoting multifarious
aged-related diseases, including obesity, insulin resistance,
diabetes, dementia, atherosclerosis, and neoplasm. Preclin-
ical evidence supports autophagy modulators’ therapeutic
promise to treat obesity and metabolic diseases [20]. Re-
cent work has shown that glucagon-like peptide-1 (GLP-1)-
based therapeutic approaches may positively affect autophagy
in perivascular adipose tissue, thus improving obesity-related
endothelial dysfunction [21]. To explore the effects of GLP-
1 in GLP-1/insulin/insulin-like growth factor-1 (IGF-1) sig-
naling pathway and the autophagic process, Candeias et al.
[22] evaluated the effect of GLP-1 GLP-1 mimetics, exendin-
4 (Ex-4) on insulin, and IGF-1, their downstream signaling
and autophagic markers in brain of the T2D rats [22]. The
results showed that Ex-4 protects T2D rats against hyper-
glycemia; insulin resistance enhances GLP-1 and IGF-1 lev-
els in brain cortical and subsequent signaling pathways. Ex-4
also regulated autophagy markers (as mTOR, PI3K class III,
LC3 11, Atg7, p62, LAMP-1, and Parkin).

Geniposide is a traditional Chinese medicine monomer
isolated from the herb Gardenia jasminoides.
sive pharmacological effects, including anti-diabetes, anti-
inflammation, antioxidation, neuroprotection, and anti-
asthma, have been noted [23]. The protective effects of
geniposide in neurodegenerative diseases have been of keen
interest. A glucagon-like peptide-1 receptor (GLP-1R)-the
dependent mechanism-protected geniposide [24, 25]. Fur-
ther, activation of PI3K/AKT signaling may also involve a
geniposide-induced protective effect [26]. Li et al. [27]
showed that although geniposide was a useful bioactive sub-
stance in treating AD, its toxicity was apparent at a dose
higher than 50 mg/kg/d. Dinda et al. [28] reviewed the ther-
apeutic potential of plant iridoids, including geniposide, in
AD and Parkinson’s disease. Plant iridoids exhibit the prop-
erty of retarding the process of neurodegeneration in AD
and Parkinson’s disease. Geniposide performed its protec-
tive effects after passing the blood-brain barrier [29]. Plant
iridoids, including geniposide, can ameliorate AD by in-
creasing the expression of PPAR-7, and a-secretase, insulin-
degrading enzyme, neprilysin, and decreasing the levels of
Ap oligomers (Afp) deposited in brain neurons. The molec-
ular mechanism has been extensively explored. Itis suggested

Its exten-

that plant iridoids, including geniposide, may: 1. Decrease
expression of GSK-35 and its receptor gene; 2. Improve
the lysosomal autophagy process by increasing the expres-
sion of LC3II, Beclin-1, and cathepsin B genes for the clear-
ance of A3 and neurofibrillary tangles (NFT); 3. Enhanced
expression of transporter proteins, such as P-glycoprotein
and low-density lipoprotein receptor-related protein-1, for
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the clearance of A3 load from brain across the blood-brain
barrier; 4. Enhanced expression of PPAR-vy and ApoE pro-
teins for clearance of A in ApoE mediated pathway from
the brain. Further, plant iridoids may decrease cognitive im-
pairment by enhancing the expression of synaptic proteins,
such as SNAP-25, BDNF, PSD-95, GAP-43 and SYP, to im-
prove learning memory ability in AD. Some of those plant iri-
doids, including geniposide, may improve the expression of
TH-positive neurons, GDNF, and Bcl-2 proteins by increas-
ing the levels of antioxidant enzymes, such as GSH-P xand
SOD, and down-regulate insulin/IGF signaling by activating
MEK. Furthermore, geniposide may enhance the expression
of autophagy-related LAMP-2A-protein for clearance of LB
from dopaminergic neurons in the PD brain via improving
the lysosomal autophagy process.

Song et al. [30] pretreated differentiated SH-SY5Y cells or
primary hippocampal neurons with Schizandrol A and sub-
sequently subjected the cells to J-amyloid peptides of 1-42
amino acids (A1 _42) and estimated the effect of Schizan-
drol A by testing its effects on cell viability, apoptosis, ox-
idative stress, and autophagy. Further, these investiga-
tors explored the molecular mechanism underlying this ef-
fect by treating cells with an mTOR inhibitor (rapamycin)
and a PI3K inhibitor (LY294002) to analyze the role of
the PI3K/AKT/mTOR pathway. Their results showed that
Schizandrol A effectively inhibited Af;_4o-triggered in-
creases in apoptotic cell number and pro-apoptotic protein
expression, reduction of viable cells, as well as alterations in
markers of oxidative stress. Also, Schizandrol A enhanced
LC3-II/LC3-I and Beclin-1 and reduced the expression of
p62. At the molecular level, they showed Schizandrol A res-
cued the PI3K/AKT/mTOR-autophagy pathway dysregula-
tion resulting from A3 _ 4o exposure.

Based on the overlapping functions between GLP-1 and
mTOR inhibition, including energy balance, AD protection
and diabetes treatment, we hypothesized in an earlier study
that mTOR inhibition may mediate the protective effect of
GLP-1in AD [31]. Similarly, Jiang et al. [32] explored molec-
ular mechanisms underlying the effect of GLP-1 to improve
insulin signaling in ER-stressed adipocytes. These investiga-
tors showed GLP-1 directly modulated ER stress response,
in part, by inhibiting the mTOR signaling pathway. Further,
a study from our group showed that the downregulation of
mTOR signaling and enhancement of autophagy in APP/PS1
mice mediated the effect of geniposide to protect against amy-
loid deposition and behavioral impairment [33].

In this paper, we test the hypothesis that mTOR inhibition
and autophagic activity are key molecular events that control
the protective effects of geniposide against A in vitro.

2. Materials and methods

2.1 Chemicals and reagents

The SH-SY5Y cell line’s human neuroblastoma was
obtained from the Stem Cell Bank, Chinese Academy of
Sciences. Geniposide (purity > 98%) was purchased from
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Aladdin Bio-Chem Technology Company, LTD, Shanghai,
PR China. Af;_40 (CAT: 1932-2-15, Peptide Sequence:
Asp-Ala-Glu-Phe-Arg-His- Asp-Ser-Gly-Tyr-Glu-Val-His-
His-GlIn-Lys-Leu-Val-Phe-Phe-Ala-Glu-Asp-Val-Gly-Ser-
Asn-Lys-Gly-Ala-Ile-Ile-Gly-Leu-Met-Val-Gly-Gly-Val-
Val-lle-Ala) was purchased from Qiangyao Biotechnology
Company. Anti-LC3II antibody (CAT: 1L8918) was pur-
chased from Sigma, USA. Anti-mTOR antibody (CAT:
ab134903), anti-p-mTOR (Ser2448) antibody (CAT:
ab109268), anti-Akt (Ser473) antibody (CAT: ab81283),
anti-Akt antibody (CAT: ab238477), anti-Atg7 antibody
(CAT: ab133528), anti-Beclin1 antibody (CAT: ab210498),
and anti-P62 antibody (CAT: ab210498) were purchased
from Abcam, UK. Anti-Bcl2 antibody (CAT: BS70205),
anti-Bax antibody (CAT: BS6420), (3-action antibody, and
HRP-labeled Goat anti-Rabbit IgG were purchased from
Bioworld Technology Company, Shanghai, PR China. Fetal
bovine serum was purchased from Cellmax technology
Company. Beijing, PR China.

2.2 Cell culture

SH-SY5Y cells (ATCC CRL-2266, Shanghai, PR China)
were cultured in DMEM/F-12 medium containing strepto-
mycin (100 pg/mL), penicillin (100 U/mL), and 10% heat-
inactivated fetal bovine serum at 37 °C in a humidified incu-
bator based on 5% CO5 and 95% air. AB1_45 was dissolved
in 100% 1, 1, 1, 3, 3, 3-hexafluoro-2-propanol (HFIP) to a
concentration of 1 mg/mL. This solution was incubated at
room temperature (RT) for 1 h and, after that, sonicated for
10 min. The HFIP/Af31 42 solution was subsequently dried
down in a gentle stream of nitrogen, and the dried A1 42
was resuspended in 1 mM DMSO. The preparation was in-
cubated for 12 min at RT and then pipetted and stored at -80
°C. Before use, the preparation was rapidly thawed, utiliz-
ing 0.1 M PBS, and a final AB;_ 45 concentration of 20 uM
was prepared. Neurons were grouped into control; A3y _ 4o
treatment, the only treatment of geniposide, and AB;_42 +
geniposide treatment.

2.3 Cell viability (MTT) assay

The viability of SH-SY5Y cells was measured utilizing a
3, (4, 5-dimethylthiazol-2-yl) 2, 5-diphenyltetrazolium bro-
mide (MTT) assay. Before analysis, SH-SY5Y cells were
seeded into 96-well density, and the cell density was adjusted
to 5,000 cells/well and incubated for 24 h before treatment.
For selecting an appropriate concentration of Af;_ 49, the
cells were treated with different concentrations of A31_49
(0, 5, 10, 20, 40 uM). Apparentcytotoxicity was seen in cells
treated by 20, 40 uM A _42 and the concentration of 20
1M ASq_ 40 was selected to conduct our study. Where in-
dicated, cells treated with 20 uM A3 _42 were also treated
with different concentrations of geniposide (0, 5, 10, 20, 40
M),

SH-SY5Y cells in various treatment groups (A3 _42 only,
geniposide only, and Af;_42 and geniposide) were treated
24 h. After this, MTT was added to the culture media (0.5
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mg/mL final concentration) and incubated for 4 h at 37 °C
in a CO5 incubator. The culture medium was mixed with
extraction buffer, and then absorbance was measured at 490
nm after an overnight incubation utilizing a microplate ab-
sorbance reader (Bio-Rad Instruments). Untreated cells were
used as controls, and cell viability was calculated using the
formula:

Cell viability = A of a sample (treated by AS;_42, sole
geniposide and AB;_4o + geniposide separately) / A of the
control sample where A = absorbance.

24 Western blot

SH-SYS5Y cells were lysed with RIPA protein lysis buffer
containing 1 mM PMSF (Beyotime Biotechnology, Shang-
hai, PR China) for 30 minutes after washing with cold
PBS. Total proteins in the supernatant were quantified us-
ing a BCA protein assay (Beyotime Biotechnology, Shang-
hai, PR China) after centrifugation of the cell lysate at 12000
r/min for 20 min at 4 °C. Proteins were subsequently re-
solved in 10% sodium dodecyl sulfate-polyacrylamide (SDS-
PAGE) gels (Beyotime Biotechnology, Shanghai, PR China)
and transferred to polyvinylidene difluoride membranes (Be-
yotime Biotechnology, Shanghai, PR China). Membranes
were incubated in 5% BSA (TBST) for 2 h at room temper-
ature and after that were incubated with primary antibod-
ies against Anti-LC3II, mTOR, p-mTOR, Akt, p-Akt, Atg7,
Beclin1, and P62 overnight at 4 °C. Membranes were sub-
sequently washed and treated with horseradish peroxidase-
conjugated secondary antibody (1 : 5000) for 2 h at room
temperature. Proteins were visualized utilizing an enhanced
chemiluminescence method, and -actin was used as a load-
ing control.

The protein bands were visualized using the Chemi-Doc
XRS + imaging system (Bio-Rad). The Western blots were
subjected to quantification of the protein band density using
the Image Pro.

2.5 Statistical analyses

The results were expressed as mean + SD. A one-way
ANOVA analysis was used to determine statistical signifi-
cance. The contrast between multiple groups was performed
by one-way ANOVA based on SPSS 19.0 software, and the
differences observed were further analyzed by the least sig-
nificant difference (LSD)-#-test. A P-value of less than 0.05
was considered statistically significant.

3. Results
3.1 Geniposide reverses loss of cell viability induced by AB1_ 42 in
SH-SY5Y cells

To investigate the effect of A31_40 on SH-SY5Y cells,
an MTT assay was conducted to quantify cell viability. Re-
sults indicated a concentration-dependent effect of A1 _42
on cell viability (Fig. 1A). Lower doses of A1 _45 (5 and 10
M) did not affect cell viability, whereas higher concentra-
tions of A1 _42 (20 and 40 M) had measurable effects on
cell viability. A(B;_42 (20 uM) treatment significantly de-
creased the cell viability to 61.8 + 4.1% versus control (100%).
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Fig. 1. Geniposide reverses cellular toxicity induced by A3 in SH-SY5Y cells. There was no significant difference in cell viability between the cells

treated by different concentrations of geniposide and control. Cells treated with 20 uM A1 _42 for 24 hours. Cell viability was measured utilizing an MTT
assay. Values were denoted as mean =+ SD. ***P < 0.001, *P < 0.05 vs. control. *P < 0.05, #P < 0.01, **P < 0.001 vs. A31_42 treatment.

Based on these findings, 20 uM concentrations of A1 _42
were selected for further study. Treatment of SH-SY5Y cells
with various concentrations of geniposide did not affect the
cells’ viability versus untreated controls (Fig. 1B). However, a
concentration-dependent relationship of geniposide to pro-
tect against lost cell viability following A3 _ 4o exposure was
observed (Fig. 1C). Specifically, cell viability was restored
from 61.8 + 4.1% in cells treated with 20 uM AB1 42 to 64.1
+ 3.2%, 70.0 &+ 3.2%, 74.8 £ 4.3%, and 69.0 = 3.517% af-
ter different concentrations (5, 10, 20, and 40 M, respec-
tively) of geniposide. 20 M geniposide was selected for fur-
ther studies based on the maximum effect to improve viability
induced by 20 uM A1 _4o treatment.

3.2 Geniposide protects against A31—42 by downregulating
mTOR signaling

mTOR signaling was upregulated in the SH-SY5Y cells
treated by A1 _4o. phosho-AKT (Ser473)/AKT ratio in-
creased from 0.370 &+ 0.087 in control to 0.748 &+ 0.131 in
SH-SY5Y cells treated by A1 _ 4o (Fig. 2A), and the phospho-
mTOR (Ser2448)/mTOR ratio increased from 0.476 £ 0.076
in control to 0.907 £ 0.160 in SH-SY5Y cells treated with
A61,42 (Flg ZB)

Treatment of SH-SY5Y cells with geniposide only
did not influence mTOR signaling as the phospho-AKT
(Ser473)/AKT ratio (0.400 + 0.050) as the phospho-mTOR
(Ser2448)/mTOR ratio (0.498 4= 0.085) in the SH-SY5Y cells
treated with geniposide only were not statistically differ-
ent from control cells. Geniposide reversed mTOR signal-
ing upregulation induced by Af3;_42 as the phospho-AKT
(Ser473)/AKT, and phospho-mTOR (Ser2448)/mTOR ra-
tios were upregulated in the SH-SY5Y cells treated by
AB1_40. Specifically, we measured a 0.415 4+ 0.052 in
phospho-AKT (Ser473)/AKT ratio (Fig. 2A) and a 0.570 +
0.0239 in phospho-mTOR (Ser2448)/mTOR ratio (Fig. 2B)
after geniposide treatment.

3.3 Geniposide protects against A1 _ 49 toxicity by enhancing
autophagy

Autophagy was inhibited in SH-SY5Y cells treated by
ABy_4o (Fig. 3). Specifically, the LC3-II/LC3-I ratio de-
creased from 0.330 = 0.080 in control to 0.204 4= 0.034 in SH-
SYS5Y cells treated with A1 42 (Fig. 3A). Beclin1 decreased
from 0.358 & 0.102 in control to 0.131 4= 0.044 in SH-SY5Y
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cells treated with A1 _ 4o (Fig. 3B), and Atg7 decreased from
0.806 + 0.241 in control to 0.317 4 0.142 in SH-SY5Y cells
treated with Af31 42 (Fig. 3C). Finally, expression of p62 in-
creased from 0.306 0.137t00.728 = 0.170 in SH-SY5Y cells
treated with AB;_ 4o (Fig. 3D).

The LC3-1I/LC3-1 ratio (0.323 =+ 0.038), and expression
of Beclin1 (0.332 + 0.119), Atg7 (0.723 + 0.270), and p62
(0.383 £ 0.108) in the SH-SY5Y cells treated by only treat-
ment of geniposide were not statistically different from those
measured in control cells, indicating that treatment of SH-
SY5Y cells with geniposide only did not influence autophagy-
related signaling. Geniposide did reverse the inhibition of au-
tophagy induced by Af;_4o. Specifically, geniposide treat-
ment increased the level of LC3-1I/LC3-I ratio to 0.317 +
0.066 (Fig. 3A), Beclin1 expression to 0.310 + 0.075 (Fig. 3B),
and Atg7 to 0.705 + 0.247 (Fig. 3D). Similarly, geniposide
treatment decreased the expression of p62 to 0.506 £ 0.155
(Fig. 3C).

3.4 Geniposide protects against A1 42 by inhibiting Apoptosis

Apoptosis was activated in the SH-SY5Y cells following
treatment with AS31_4o. The Bax/Bcl-2 ratio was increased
after a 24 hours treatment with AB1_4o (1.864 + 0.333)
versus control (0.391 + 0.194) (Fig. 4). However, geni-
poside alone did not influence the Bax/Bcl-2 ratio in SH-
SY5Y (0.421 + 0.140) cells treated with only geniposide. In
contrast, geniposide blunted apoptosis activation induced by
AB1_42 as the Bax/Bcl-2 ratio fell dramatically to 0.499 +
0.185 in SH-SY5Y cells treated with geniposide and AB; 4o
(Fig. 4).

In sum, data gathered during this study provides evi-
dence that geniposide can protect against the toxic effects of
AB1_42 by inhibiting mTOR (Fig. 5). Evidence supporting
this conclusion comes from the observations that phospho-
AKT (Ser473)/AKT and phospho-mTOR (Ser 2248)/mTOR
ratios were restored to near control levels with geniposide,
and geniposide enhanced autophagy by increasing the LC3-
[1/LC3-I ratio, increasing expression of Beclin 1, Atg7, and
inhibiting expression of p62. Finally, we observed that geni-
poside blunted the apoptotic response to Af31_49, as evi-
denced by measuring the Bax/Bcl-2 ratio.
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4. Discussion

A prior study showed that geniposide-mediated protec-
tion against pathological hallmarks of AD and behavioral
impairment correlates with downregulation of mTOR sig-
naling and enhanced autophagy in APP/PS1 double trans-
genic mice [33, 34]. In the present study, we sought to de-
termine the mechanism by which geniposide prevents Af3-
associated toxicity. Considering that geniposide can activate
the glucagon-like-1 receptor (GLP-1R) and adenylyl cyclase
(AC)/cAMP signaling pathways and promotes insulin secre-
tion and inhibition of protein kinase A (PKA) [35], we hy-
pothesized that geniposide prevents A/ toxicity by inhibit-
ing the PI3-K/Akt/mTOR signaling pathway, and enhances
the autography as an agonist of the GLP-1 receptor. Our re-
sults showed that geniposide protected SH-SY5Y cells against
lost cell viability induced by Af3;_42. Further, we showed
mTOR signaling was upregulated in the SH-SY5Y cells
treated by Af31_42. phosho-AKT (Ser473)/AKT ratio and
the phospho-mTOR (Ser2448)/mTOR ratio increased in SH-
SY5Y cells treated with A1 _45. Geniposide reversed mTOR
signaling upregulation induced by A1 _42. The phospho-
AKT (Ser473)/ AKT and phospho-mTOR (Ser2448)/mTOR
ratios were reversed after geniposide treatment. This find-
ing implies that inhibition of the PI3-K/Akt/mTOR path-
way may be a pivotal molecular event controlling geniposide’s
ability to prevent the toxic effects of Af3.

Volume 20, Number1, 2021

Autophagy is a primary physiologic function for clearing
abnormal proteins within mammalian cells and contributes
to protein homeostasis and neuronal health. An autophagy
deficitis found in early AD pathogenesis, and autophagy plays
a critical role in the formation and metabolism of A3 [31]. In
the present study, we assessed autophagy by measuring the
LC3-II/LC3-1 ratio, as well as Atg7, p62, and Beclin1 expres-
sion utilizing western blotting in SH-SY5Y cell lines treated
with A1 _42. Our results showed that geniposide protected
against the cellular damage induced by A31_ 45 in SH-SY5Y
cells. Further, we showed that geniposide reversed the LC3-
[1/LC3-I ratio and repression of Atg7 and Beclinl induced
by AB1_42 and reversed the expression of p62 enhanced by
ApB1_42 in SH-SY5Y cells. The cytosolic form of LC3-I is
converted to the phosphatidylethanolamine-conjugated form
(LC3-I1) and binds to autophagosomes’ membranes [36].
Thus, the LC3-II/LC3-I ratio is an often-used marker for au-
tophagy in various tissues, including the brain [37]. We ob-
served a decrease of the LC3-1I/LC3-I ratio after treatment of
SH-SY5Y cells with A1 _49, which suggests that AJ dam-
ages the brain by, in part, inhibiting autophagy. The ratio
was reversed after the treatment by geniposide, indicating
that geniposide protects against AD by enhancing autophagy.
Atg7 is an E1-like activating enzyme that is down-regulated
during aging [38] and is needed for the autophagic conjuga-
tion system and formation of autophagosomes [39]. Sim-
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Fig. 4. Changes in apoptosis-associated proteins in SH-SY5Y cells. Quantitative western blot analyses of Bax and Bcl-2 expression were conducted. S-actin
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Fig. 5. Molecular mechanism for geniposide protection. Geniposide performs its protection against A1 _ 42 toxicity by inhibiting mTOR and enhancing

autophagy. Geniposide reverses increase of AKT and mTOR induced by to AB1_42. Geniposide reverses a decrease in the LC3-1I/LC3-I ratio, decreases

expression of Beclin 1 and Atg, and increases expression of p62 induced by A1 _42. Geniposide also blunts the A31_42-induced apoptotic response by

reducing the Bax/Bcl-2 ratio.

ilarly, the expression of Beclin-1, an autophagy-associated
gene, is also widely used to reliably quantify autophagosome
formation. There is a close relationship between AD and Be-
clin1, as Pickford et al. [40] showed a decrease of Becline 1
in the brain of patients with AD. Our results indicate that
the enhancement of autophagy-related proteins, including
the LC3-1I/LC3-I ratio, Atg7, and Beclin-1, maybe a critical
molecular event in the protective effects of geniposide during
the toxic response to Af3.

LC3B-II is a trustworthy indicator for the formation of
autophagic vacuoles, just as the lipidized form LC3B-I and
p62 are markers for autophagic flux as an adapter for selec-
tive autophagy [41]. The degradation of p62 is widely utilized
as a marker to monitor the autophagic activity because p62
can directly bind to LC3 and is selectively degraded during
autophagy [42]. To estimate the effect of IL-4 on the for-
mation of autophagic vacuoles and promote autophagic flux
in microglia, Tang et al. [43] measured LC3 B-II and p62 in
microglia and found an enhancement of LC3 B-II and an at-
tenuation of p62 in microglia treated with IL-4. Song et al.
[44] showed that the treatment of selenium-enriched yeast
(Se-yeast) also significantly attenuated the levels of p62 ac-
companying an increase of turnover of A and APP in AD
mice. Similarly, by these studies, we showed that geniposide
lowered the expression of p62, which was increased in SH-
SY5Y cells treated by A5 _40.

Volume 20, Number1, 2021

In summary, we speculate that mTOR inhibition and en-
hancement of autophagy induced by mTOR inhibition may
be a critical molecular event in geniposide mitigating AfS-
induced toxicity.
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