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Astrocytes are the most abundant glia in the central nervous system
that play a significant role in disease. Recently, it roles of synap-
tic plasticity in neuropathological damages have been questioned
whether the structural and functional plasticity of synapses con-
tributes to the pathogenesis of Parkinson's disease. The regulation
of synaptic plasticity by astrocytes has also been widely researched
based on astrocytes regulate synaptic plasticity by releasing Adeno-
sine triphosphate, glutamate, and D-serine. We discuss the possible
role of astrocytes in the regulation of synaptic plasticity, which may
provide a new direction to Parkinson's disease treatment.
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1. Introduction
Parkinson’s disease (PD) is a complex neurodegenerative

disease [1–3] with an unknown etiology. The disease is char-
acterized by several pathological manifestations and symp-
toms that affect bodily systems [4]. Patients with the disease
have irreversible functional alterations in the nerve cells, re-
sulting in selective, progressive loss of dopaminergic neurons
in the nigrostriatal pathway [1, 2, 5]. The gradual dopamin-
ergic denervation leads to dopamine (DA) deficit in the stria-
tum over the long disease course, causing complex functional
deficits within the basal ganglia network. The progressive
degeneration retards the voluntary movement, resulting in
symptoms of rigidity, tremor, and bradykinesia [6], which
worsen as the dopaminergic denervation advances. Nonmo-
tor symptoms, such as psychiatric and cognitive impairment,
sleep disorders, autonomic dysfunctions, and gastrointestinal
dysfunction [7], have an earlier onset, andmore are disabling
than motor symptoms [8–11]. Extensive research over sev-
eral years has highlighted oxidative stress [12, 13], inflamma-
tion [14, 15], accumulation of altered proteins [16, 17], ex-
citotoxicity [18], endoplasmic reticulum stress [19, 20] and
mitochondrial dysfunction [21, 22] as potential molecular
mechanisms of the disease (The possible mechanisms are
shown in Fig. 1). Recently, the significant role of synaptic
plasticity in the pathological processes of PD has been iden-
tified and validated. Neurons use most of the energy at the

synapse. The onset and progression of PD can be explained
by the inability of neurons to experience synaptic plasticity
[23]. The ultrastructural features of pre-and post-synaptic
neuronal elements at the remaining corticostriatal and tha-
lamostriate axo-spinous synapses appeared to undergo com-
plex remodeling, conceding with increased synaptic activity
striatum of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine
(MPTP)-treated Parkinsonian monkeys [24, 25]. In addi-
tion, glial reactions play a crucial role in PD. Astrocytes may
confer neuroprotective effects by releasing glial transmitters,
such as glial-derived neurotrophic factor (GDNF) [26], mes-
encephalic astrocyte-derived neurotrophic factor (MANF)
[27], and ciliary neurotrophic factor (CNTF) [28]. A rela-
tive increase in the level of inflammatory cytokines, senes-
cence markers, and metalloproteinases from astrocytes was
observed in post-mortem substantia nigra specimens of five
patients with PD compared with that in the specimens of five
control subjects [29]. Astrocytes produce increased amounts
of proinflammatory cytokines in response to inflammatory
stimulation by LPS, IL-1β, or TNF-α, which indicates their
involvement in neuroinflammatory processes in PD [30, 31].
The addition ofα-syn into a primary culture of astrocytes in-
creases IL-6 and TNF-α expressions [32].

Transmitters released by astrocytes that regulate synaptic
activity are concluded: (1) ATP [33–40], (2) Purines [41, 42],
(3) Glutamate [43, 44], (4) D-serine [45–51], (5) NO [52], (6)
BDNF [53, 54], (7) S100b [55], (8) Thrombospondin (TSP-
1) [56, 57]. In brain diseases, particularly in neurodegener-
ative conditions, astrocytes become highly reactive, and the
process is known as astrogliosis. In this process, astrocytes
undergo genetic [58] and morphological modifications [59].
Two subtypes, A1 reactive astrocytes and A2 reactive astro-
cytes, are formed [60–63]. A1 reactive astrocytes lose their
normal function and gain toxic functions. Co-culturing of
human dopaminergic neurons with A1 astrocytes activates
neuronal apoptosis, increasing cell death by 25% [64]. In
contrast, A2 reactive astrocytes can upregulate many neu-
rotrophic factors [56, 65–68], contributing to the survival
and growth of neurons or synaptic repair.
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Fig. 1. Possible pathogenetic mechanisms of Parkinson’s disease have been studied.

2. Astrocytes and synaptic plasticity

Synaptic plasticity is the ability of synapses to change the
strength of their connections. The strength of a synapse
refers to the response generated in a postsynapse due to
presynaptic activity [69]. Plasticity can occur in a short
time and involves molecular mechanisms that influence the
synaptic strength and remove, modify, or add synaptic con-
nections [70–74]. Two forms of classical synaptic plastic-
ity, namely long-term potentiation (LTP) and long-term
depression (LTD) [75], depending on the synaptic activa-
tion of N-methyl-D-aspartate receptors (NMDARs), are re-
garded as the foundation of learning and memory [73, 76].
The highly dynamic astrocytes play various roles in the cen-
tral neural system (CNS) by regulating the blood-brain bar-
rier (BBB) [77], providing structural and metabolic support
[78, 79], maintaining ionic homeostasis [80] and secreting
neurotrophic factors, such as brain-derived nutritional fac-
tor (BDNF) and glial-derived neurotrophic factor (GDNF). It
is estimated that multiple neuronal cell somas, 300–600 den-
drites and more than 100,000 synapses can be ensheathed by
just a single cortical astrocyte in the mouse brain. The num-
ber is even larger in primates and humans, reaching 2million
synapses [81, 82]. Hence, the concept of ʻtripartite synapses’
(TS) was proposed, wherein astrocytes integrate process and
exchange information with pre-and post-synaptic neuronal
elements [83]. In TS, this type of interaction with neurons
requires physical contact between astrocytes and synaptic
spines. Electron microscopic reconstructions revealed that
57% of the spines in a mature hippocampus are associated
with astrocytes [84]. The size and morphology of the spine
regulate the synaptic strength and determine the efficiency
of synaptic transmission. For instance, large, mushroom-

shaped spines contain functional synapses and are more sta-
ble, whereas thin filopodia-shaped spines are relatively un-
stable and nonfunctional [85]. Alterations in astrocytic pro-
cesses are coordinated with the stabilization of larger spines
[86]. Astrocyte processes are essential to the maturation and
regulation of newly forming spines. Thus, the contact be-
tween astrocytes and spines improves both morphological
maturation and the life of spines [87]. Dendritic spines are
vulnerable to structural changes during aging and neurologic
diseases [88–95]. Compared with presynaptic terminals, as-
trocyte processes prefer to localize near dendritic spines [96].
Thrombospondins (TSPs) released by astrocytes are involved
in the formation of excitatory synapses [56]. The reductive
levels of TSP-1 can change the dendritic spine structure and
decrease the number of spine and synapses [97]. Moreover,
astrocytes regulate neurite formation and spine density by re-
leasing BDNF in vitro [53].

In addition, astrocytes can secrete various factors such as
glutamate, ATP andD-serine, which directly regulate the for-
mation of synapses [79]. Hence, astrocytes are considered to
have a central role in the regulation of synaptic plasticity.

2.1 Calcium

Astrocytes are involved in regulating the synaptic func-
tion [98, 99]. The passive homeostatic regulation of synap-
tic function by astrocytes is well recognized. In addition, as-
trocytes sense synaptic activity and respond to neurotrans-
mitters released by these synapses and, in turn, release glio-
transmitters to regulate synaptic transmission and plasticity
[100, 101]. The release of Ca2+ underlies this regulatory
function of astrocytes. Moreover, several ion channels and
membrane receptors expressed by astrocytes allow them to
respond to neuronal activity on a millisecond time scale by
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increasing the intracellular Ca2+ levels [102–107]. In as-
trocytes, the basic steps leading to intracellular Ca2+ waves
(ICWs) typically involve the activation of G-protein-coupled
receptors and phospholipase C and production of IP3, which
lead to Ca2+ release from the endoplasmic reticulum (ER)
following IP3R activation [108, 109]. Moreover, these cells
can transmit such calcium signals to nonstimulated astrocytes
located proximally through ICWs [107, 110]. The first glial
transmitter found to be dependent on Ca2+ release is glu-
tamate [111]. Afterward, the release of ATP [112] and D-
serine [113] was proved to be associated with Ca2+ signaling
in astrocytes. In [114], it was indicated that choline could in-
duce LTPproduction. The realization of this process requires
Ca2+ signaling in astrocytes to stimulate glutamate release,
thus activating metabotropic glutamate receptors (mGluRs)
on neurons.

2.2 Glutamate
Glutamate is converted to glutamine in astrocytes by glu-

tamine synthetase, and glutamine is then recycled to neu-
rons to synthesize glutamate that facilitates the regulation
of synaptic transmission [115]. For instance, astrocytes re-
lease glutamate, which acts on the pre- [116–118] and post-
synaptic [119–122] sites to alter synaptic transmission and
neuronal excitability at both excitatory [43] and inhibitory
[123] synapses. Synapses are dynamic structures in terms
of morphology, biochemistry, and function. Most excita-
tory glutamatergic synapses terminate at dendritic spines un-
dergoing actin-driven movement [124]. An interesting fea-
ture is that glutamate can control the structural characteris-
tics of neurons. For instance, glutamate released from the
presynaptic terminals maintains the spine stability [125] and
leads to small protrusions from the spinewhen locally applied
[125].

Further, astrocytes induce the remodeling of dendritic
spines by regulating the extracellular glutamate level [126].
They were revealed that the synaptic strength could be in-
creased by stimulating astrocytes directly. In addition, direct
stimulation of single astrocytes in the hypothalamus [127]
and hippocampus [117] induces the sustained potentiation
of synapses. This type of astrocyte stimulation in the hip-
pocampus increases glutamate release and leads to NMDA-
independent LTP production [116]. Furthermore, evidence
indicates that astrocytes canmodulate LTP by regulating glu-
tamate levels at the synapse and by releasing cofactors of glu-
tamate receptors at the neurons [128].

Moreover, astrocytes can regulate the rate of uptake and
release of glutamate [119, 128–130], and glutamate combines
with the AMPA and NMDA receptors on the post-synaptic
neurons to induce LTP [130, 131]. This type of functional
expression of LTP is due to increased exocytosis of native
AMPA receptors to the membrane surface and their recruit-
ment into excitatory synapses [132]. The AMPA-type glu-
tamate receptors (AMPARs) are glutamate-gated ion chan-
nels that induce many fast excitatory synaptic transmissions
in the brain [133]. Alteration in the number, composi-

tion and biophysical properties of the AMPARs in the post-
synaptic membrane is the primary mechanism of synaptic
strength regulation [134]. During LTP induction, presynap-
tic input stimulation on a neuron’s postsynapse terminates
post-synaptic Ca2+ influx through the NMDARs. Intracel-
lular Ca2+ then causes AMPAR elevation in the postsynapse,
which enhances the synaptic strength [135]. The production
and regulation of the LTP require the most suitable extracel-
lular glutamate concentration [136], which is maintained by
glutamate transporters in astrocytes. Thus, glutamate trans-
port in astrocytes is the key to induce and sustain hippocam-
pal LTP. In addition, glutamate transport in astrocytes is as-
sociated with LTD in the hippocampus, amygdala [137], and
cerebellum [138]. LTD can be enhanced by blocking the glu-
tamate uptake [137, 139]. However, excess synaptic gluta-
mate levels lead to post-synaptic glutamate receptor over-
stimulation, resulting in excitotoxic neuronal death [140].
Generally, astrocytes involved in glutamate uptake can con-
trol excitotoxic glutamate levels in the brain to avoid exci-
totoxicity [141]. However, during an excitatory crisis, the
potentially protective functions of reactive astrocytes, such
as K+ buffering, glutamate uptake, and elimination of free
radicals, can be eventually reduced or even destroyed, which
could worsen the neural damage [142, 143].

2.3 Adenosine triphosphate

Adenosine triphosphate (ATP), released by astrocytes and
neurons in the pathophysiological environment and during
neural activity, modulates the synaptic strength and plastic-
ity by activating ionic P2X andmetabolic P2Y receptors. ATP
released by astrocytes regulates neuronal excitability by stim-
ulating the purine receptors [144]. Moreover, ATP released
by astrocytes is degraded to adenosine, which participates in
the regulation of activity-dependent heterosynaptic depres-
sion at excitatory synapses [41, 100]. Some studies have indi-
cated that ATP released by astrocytes leads to highly efficient
glutamatergic synaptic transmission in the paraventricular
nucleus; however, it causes low synaptic efficiency in theCA1
region of the hippocampus [144, 145]. ATP from both glia
and neurons can activate the post-synaptic P2X, wherein the
synaptic currentsmediated by theNMDARdecreased signifi-
cantly [146]. LTP inCA1 neuronswas shown to be decreased
in P2X4−/− mice [147]. Under pathological conditions, such
as brain injury and ischemia, several ATPs released by astro-
cytes can provoke synaptic plasticity by activating the P2X re-
ceptors [148, 149]. This regulation mechanism inhibits LTP
by activating Ca2+-dependent NMDRs [150, 151] or induces
LTP in the hippocampus [147, 150]. In addition, ATP re-
lease was shown to inhibit LTD in [152]. Associating ag-
ing with synaptic plasticity, ATP driven by astrocytes sig-
nificantly weakens the synaptic inhibition in the pyramidal
neurons via Ca2+ interaction between neuronal ATP and γ-
aminobutyric acid (GABA) receptors. Meanwhile, ATP from
astrocytes contributes to the LTP of synaptic plasticity in the
neocortex [36].
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2.4 D-serine

NMDA-dependent LTP and LTD have been widely stud-
ied, and theNMDAreceptors are regarded as the crucial com-
ponents of LTP [135, 153]. The activation of NMDA recep-
tors requires glycine and D-serine in addition to glutamate
[46, 154]. A product of serine racemase, D-serine, was first
identified in most astrocytes and was considered an endoge-
nous ligand for the glycine-binding site of the NMDA re-
ceptor. Addition of D-amino acid oxidase to the cerebellar
slices to deaminate D-serine significantly reduces the NMDA
receptor-dependent synaptic transmission [155]. D-serine
induces synaptogenesis in embryonic cortical neuron culture
induced by TGFβR1 activated by astrocyte-derived TGFβ
[156].

The effects of astrocyte-derivedD-serine on synaptic plas-
ticity and astrocyte-derived amino acids were shown to par-
ticipate in the LTP [157]. LTP ability of the cultured neu-
rons was recovered by adding D-serine to the astrocyte-
conditioned medium [157], and the recovery process re-
quired interaction between the astrocytes and neurons. Yang
et al. [157] demonstrated that hippocampal neurons cultured
with astrocytes could undergo LTP, whereas LTP could not
be induced in neurons cultured in astrocyte-conditioned me-
dia without astrocyte contact. However, the induction of
NMDA-dependent LTP was limited by D-serine released by
the hippocampal astrocytes [48]. Christian Henneberger re-
ported that the clamping of internal Ca2+ in astrocytes could
block LTP induction in nearby excitatory synapses. How-
ever, this LTP blockade can be reversed by exogenous D-
serine [48]. The lack of D-serine and disruption of exocytosis
in an individual astrocyte blocks local LTP [48].

Moreover, blocking glial cell activation with fluoroac-
etate, a metabolic inhibitor, was shown to block LTP in
the prefrontal cortex due to decreased extrasynaptic D-serine
[158]. In contrast to the findings above, [159] reported that
the astrocytes release L-serine, converted to D-serine by ser-
ine racemase in the neurons, and the latter modulates synap-
tic plasticity. To confirm this finding, Benneyworth et al.
[160] demonstrated that LTP and NMDAR currents are sig-
nificantly reduced in neuronal serine racemase conditional
knockout mice but not in astrocytic serine racemase condi-
tional knockout mice. Therefore, these findings highlight
that astrocytes possibly play direct and indirect roles in the
D-serine regulation of LTP.

3. Synaptic plasticity in Parkinson disease
PD is a neurodegenerative disorder characterized by the

gradual loss of dopaminergic neurons in the substantia nigra
pars compacta (SNpc), which decreases DA input to the stria-
tum and hence causes motor dysfunctions [161]. A decrease
in LTP activation has been observed in PD models, allevi-
ated by the DA precursor treatment [162, 163]. Short- and
long-term changes in corticostriatal synaptic plasticity may
be involved in PD [162, 164]. Some researchers have de-
scribed two classic forms of synaptic plasticity, LTP and LTD,

at the corticostriatal synapse inmedium spiny neurons in vivo
[165, 166]. In the early stages of PD, extracellular DA was
shown to be reduced by 40% in PINK1-knockout heterozy-
gous mice; although these mice did not demonstrate any mo-
tor symptoms, LTP was alternatively impaired [167]. At the
onset of motor dysfunctions in patients with PD, >50% of
SNc DA neurons are already lost and DA is reduced by>60%
in the striatum [167–169]. Meanwhile, both LTP and LTD
are impaired [167, 170]. Damage to LTP and LTD is con-
current with the deletion of DA and the appearance of PD
symptoms. These findings suggest that changes in synaptic
plasticity induced by the loss of DAmay play an essential role
in PDmotor dysfunction. According to the classic pathologi-
cal mechanism of PD, the loss of dopaminergic neurons is the
foundation for the complex structural and functional changes
in the striatal projection nerves that may also act as a trigger
for changes in synaptic plasticity.

Synaptic plasticity occurs in dendritic spines under phys-
iological conditions [171]. Thus, the alterations of spines in
PD are related to synaptic plasticity damage. Significant stri-
atal spine loss induced by nigrostriatal dopaminergic lesions
has been observed in various PD animal models [25]. The
neurotoxin MPTP causes the alternative loss of dopaminer-
gic neurons in themidbrain area of both humans and animals
[172, 173]. The MPTP-treated mouse is a common PD ani-
mal model [174]. Some studies have found that MPTP treat-
ment can impair LTP [175, 176]. Toy et al. [177] suggested
that MPTP injection decreases, whereas exercise increases
the dendritic spine density. Motor training has alleviated PD
symptoms by promoting synaptic formation and increasing
dendritic arborization in the motor cortex [178, 179]. The
classic synaptic plasticity forms of LTD and LTP also influ-
ence PD symptoms by mediating changes in dendritic spines.
In adult mice with dopaminergic nerve degeneration in the
motor cortex, LTP loss was accompanied by an increased rate
of spine elimination [180].

In addition to motor dysfunctions, cognitive deficits in
PD, including learning and memory impairment, seriously
impair patients’ life quality and social functions, which cause
a great deal of psychological and economic burden to their
families. The hippocampus is crucial for spatial and episodic
memory formation and novelty detection [181, 182]. Most
studies on PD cognitive impairment have focused on the hip-
pocampus. Abnormalities in the hippocampus’s structure and
functionwere observed in sporadic patients and patientswith
genetic predisposition with PD, suggesting an association of
the organ with memory deficits in PD [183–186]. In ad-
dition, the hippocampus is associated with memory deficits
[184, 185, 187–189]. Like motor regulation, cognitive reg-
ulation in the disease is based on DA, which conforms to
the classical PD pathology. Reportedly, the changed habit-
uation to a new environment in PD animals due to impaired
hippocampal LTP can be reversed by the systemic L-DOPA
treatment [190]. Moreover, LTP in the CA1 hippocampus
is reduced in both genetic and neurotoxic PD models [190].

518 Volume 20, Number 2, 2021



This alteration of CA1 LTP is accompanied by hippocampal-
dependent learning deficits in both 6-OHDA-lesioned and
mutant animals [191].

4. Future
PD is a neurodegenerative disease associated with DA de-

pletion and progressive loss of dopaminergic neurons. The
primary treatment strategy involves external DA supplemen-
tation to alleviate the functional impairment of the basal
ganglia induced by DA deficiency. However, none of the
currently available PD therapies can slow down or impede
the disease progression without dopaminergic neuron re-
covery. Therefore, the development of effective therapeu-
tic strategies is essential to prevent disease progression. The
cell-replacement therapy has been advancing considerably
that uses the fetal midbrain tissue as the source of midbrain
dopamine neurons (mDAs) for transplantation [192]. How-
ever, technical difficulties in obtaining sufficient graft tis-
sues, ethical considerations, and rejection of cells limit the
use of this therapy [193–195]. Alternative cell sources, such
as stem cells or reprogrammed cells, have also been consid-
ered [196, 197]. The therapeutic effects of embryonic stem
cells (ESCs), neural stem cells (NSCs), and bonemarrowmes-
enchymal stem cells (BMSCs) have beenwidely studied [198–
200].

Nevertheless, ethical consideration, differentiation, and
risk of tumor limit the application of NSCs and ESCs. The
complex brain environment also interferes with the survival
and function of BMSC-derived transplanted neurons [201–
203]. Astrocytes have been studied as potential candidates
to improve the hostile brain environment for neural trans-
plantation. Astrocyte cografting can significantly improve
the survival rate of dopaminergic neurons and the behavior
of PD rats [201]. Stem cell transplantation and cell repro-
gramming are also the proposed alternatives. In these pro-
cesses, induced dopaminergic neurons, which are the pheno-
typically specific and functionalDAneurons obtained directly
from somatic cells, are used. The induced dopaminergic neu-
rons share morphological characteristics similar to those of
resident dopaminergic neurons in the brain. They produce
and release DA, survive in the brain, and stimulate the tar-
get regions [204–208]. Astrocytes are considered potential
cells for reprogramming due to their particular role in PD. In
vitro studies have demonstrated that astrocytes can be con-
verted into functional neurons [209–212]. Novel strategies,
such as direct reprogramming of resident astrocytes in vivo
[212], by combining gene- and cell-based therapy have been
developed. These strategies can be applied to convert reactive
astrocytes in the injured brain and degenerative diseases into
functional neurons in vivo and are being developed further
[213]. In addition, compensating dysfunctional astrocytes is
an attractive choice. Functional astrocytes can be obtained
from embryonic glial restricted precursor cells (GRPCs) and
human pluripotent stem cells [214–216]. In vivo transplan-
tation of embryonic GRPC-derived astrocytes could release

trophic factors and antioxidants in the striatum, improved
behavioral deficits, and restored TH expression in PD rats
[217]. Mouse astrocytes could be transformed into dopamin-
ergic neurons in vivo, and this strategy could be used to treat
animal models of PD [218].

In addition, asmentioned earlier, damage to LTP andLTD
in PD is parallel to DA depletion and the occurrence of PD
dyskinesia. Indeed, damage to LTP precedes the onset of
PD symptoms. Astrocytes can affect the synaptic plasticity of
neurons and improve LTP and LTD by releasing Ca2+, glu-
tamate, ATP, and D-serine. Therefore, astrocytes may be an
essential intervention target in PD therapy, and the progres-
sion of PD can be considerably delayed, possibly by target-
ing the astrocytes. In the past few years, significant progress
has been made in understanding the molecular mechanism,
signal transduction, and function and morphology of astro-
cytes and laying a technical foundation for astrocytes [218].
Based on the vital role of astrocytes in neuropathy and broad
research prospects, we need more tools to explore astrocyte
biology from the molecular level to the level of the system to
investigate astrocyte therapy mechanisms for PD.

In conclusion, further research is required to explore ef-
fective treatment strategies to delay or stop PD progression.
Advances in the transplantation technology and regulation
of synaptic plasticity by astrocytes can be leveraged to de-
velop new strategies to prevent disease progression at an
early stage. We believe that this approach can provide a po-
tential research direction for future studies on PD.
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