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A correct preoperative diagnosis is essential for the treatment and
prognosis of necrotic glioblastoma and brain abscess, but the dif-
ferentiation between them remains challenging. We constructed a
diagnostic prediction model with good performance and enhanced
clinical applicability based on data from 86 patients with necrotic
glioblastoma and 32 patients with brain abscess that were diagnosed
between January 2012 and January 2020. The diagnostic values of
three regions of interest based on contrast-enhanced T1 weighted
images (including whole tumor, brain-tumor interface, and an amal-
gamation of both regions) were compared using Logistics Regression
and Random Forest. Feature reduction based on the optimal regions
of interest was performed using principal component analysis with
varimax rotation. The performance of the classifiers was assessed by
receiver operator curves. Finally, clinical predictors were utilized to
detect the diagnostic power. The mean area under curve (AUC) val-
ues of the whole tumor model was significantly higher than other
two models obtained from Brain-Tumor Interface (BTl) and combine
regions both in training (AUC mean = 0.850) and test/validation set
(AUC mean = 0.896) calculated by Logistics Regression and in the
testing set (AUC mean = 0.876) calculated by Random Forest. Among
these three diagnostic prediction models, the combined model pro-
vided superior discrimination performance and yielded an AUC of
0.993, 0.907, and 0.974 in training, testing, and combined datasets,
respectively. Compared with the brain-tumor interface and the com-
bined regions, features obtained from the whole tumor showed the
bestdifferential value. The radiomicfeatures combined with the per-
itumoral edema/tumor volume ratio provided the prediction model
with the greatest diagnostic performance.
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1. Introduction

There are essential differences in the biological char-
acteristics, treatment and prognosis of brain abscess and
necrotic glioblastoma (GBM). Despite standard treatment
approaches, including aggressively expanded surgical resec-
tions, postoperative adjuvant radiotherapy and chemother-
apy, the prognosis for GBM patients remains depressing,

]. Integr. Neurosci. 2021 vol. 20(3), 623-634
©2021 The Author(s). Published by IMR Press.

with the median survival after diagnosis being about 15
months and overall survival (OS) and progression-free sur-
vival (PFS) being 22 months (range 2 to 168 months) and 10
months (range 1 to 96 months), respectively [1]. In contrast,
the mortality of brain abscess has declined noticeably over
the past 60 years [2]. Patients with timely standard treat-
ment can often avoid high-risk surgery and achieve better
postoperative recovery. However, differentiation of necrotic
GBMs and pyogenic brain abscesses can sometimes be chal-
lenging, as their clinical features are non-specific and they can
often be manifested as expansile rim-enhancing masses with
prominent perifocal edema on conventional magnetic reso-
nance imaging (MRI) [3, 4]. Diverse advanced radiological
techniques have been attempted to make more precise differ-
entiation. Advanced MRIs such as diffusion-weighted imag-
ing (DW1I) and susceptibility weighted imaging have been
utilized to distinguish the two types of lesions, yet mimick-
ing abscesses and necrotic GBMs by abnormal imaging val-
ues exist which leads to the specificity problems [5, 6]. The
differential values of proton magnetic resonance (MR) spec-
troscopy and positron emission tomography (PET) have also
been widely studied, but their clinical use is limited by certain
drawbacks such as drawn-out inspection time and high in-
spection cost [7-9]. Hence, novel imaging techniques based
on conventional MRI is of clinical importance for pretreat-
ment differential diagnosis.

Radiomics can reflect the heterogeneity of diseases by ex-
tracting radiomic features and assist the construction of pre-
dictive models in a non-invasive way. It has been widely
used in tumor differentiation, tumor grading, identifying re-
sponses to treatment and prognosis prediction; its perfor-
mance has usually been shown satisfactory [10]. However,
to the best of our knowledge, there are no studies to date
attempting to use radiomic features to distinguish brain ab-
scesses from necrotic GBM.

Recent studies have shown that radiomic features ex-
tracted from different regions of a lesion (such as the lesion
itself, brain-lesion interface, and an amalgamation of both
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regions) may yield different diagnostic information [11-14].
Considering the invasive characteristics of GBM,, it is rea-
sonable to hypothesize that the region surrounding the tu-
mor’s enhanced rim on MRI, which seems to be normal brain
tissue to the naked eyes, may contain valuable information
for differential diagnosis. Meanwhile, the central cavity of
brain abscess and GBM have significant different histological
characteristics and microenvironment. Therefore, it would
be interesting to know whether the analytical information
obtained from peritumoral regions alone could be utilized
for radiomic analysis, or whether the combined information
from the intra- and peritumoral regions is more beneficial.

This study evaluated the predictive performance of ra-
diomic features derived from different regions of lesions,
including the intratumoral region (whole tumor), the peri-
tumoral region (brain-tumor interface), and the amalgama-
tion of the two regions (combined region) in differentiating
necrotic GBM from brain abscess. Clinical features including
peritumoral edema/tumor volume ratio (VR) and inflamma-
tory indexes were also assessed to determine if they may en-
hance the diagnostic strength of proposed model.

2. Patients and methods
2.1 Patients

The data of patients diagnosed with brain abscess or high-
grade glioma identified by the radiology and pathology re-
ports between January 2012 and January 2020 in our hos-
pital were retrospectively screened. The histopathological
diagnoses for glioma were identified according to the 2016
World Health Organization classification criteria for GBM.
The inclusion criteria were as follows (see Fig. 1): (1) Diag-
nosis of brain abscess or high-grade glioma was confirmed by
postoperative pathological report. (2) MRI was performed
within two weeks prior to surgery and peripheral blood
tests were completed on admission to the neurosurgery de-
partment before any antibiotic or steroid therapy was ap-
plied. (3) Imaging data included T1-weighted/T2-weighted
image (T1WI/T2WI), contrast-enhanced T1-weighted (CE-
T1) and T2-fluid-attenuated inversion recovery (T2-FLAIR)
sequences. (4) Solitary necrotic lesion with ring-shaped con-
trast enhancement. (5) No clinical signs of infection, such
as leukocytosis, elevated C-reactive protein, nuchal rigidity
or fever. Patients with multiple lesions or who underwent
interventions before MRI scan were excluded. Only patients
with primary GBM were included, while patients with recur-
rent GBM were excluded.

2.2 MRI acquisition

A 3-T scanner (Siemens Magnetom Avanto 1.5-T,
Siemens Magnetom Verio 3-T) with an eight channel head
coil was used for MRI acquisition. The scan parameters were:
T1WI, Repetition Time (TR) 200-520 ms, Echo Time (TE)
2.46-12 ms, slice thickness 4-6 mm; T2WI, TR 3000-9000
ms, TE 90-98 ms, slice thickness 4-6 mm. CE-T1 were ob-
tained in the sagittal and axial planes after intravenous ad-
ministration of 0.2 mL/kg of gadopentetate dimeglumine.
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All images were remotely accessed using the Picturev Archiv-
ing and Communication Systems (PACS; Carestream Vue
PACS, 11.3.4, Carestream Health, Rochester, NY, USA).

2.3 Radiomics extraction
2.3.1 Regions of interest (ROI) segmentation and volume of interest
(VOI) calculation

CE-T1 and T2-Flair images were used for image analysis
to obtain the radiomics indices, focus volume and perifocal
edema. Fig. 2 shows the image processing flow. A neuro-
surgeon (six years experience in brain MRI interpretation)
segmented the MR images manually (by XDD) with open-
source ITK-SNAP software (vision 3.8.0, Penn Image Com-
puting and Science Laboratory (PICSL) at the University of
Pennsylvania, UT, USA, http://www.itksnap.org). Initially,
the tumor and abscess without the surrounding brain tissue
were defined as the regions of interests (ROIs), and were
manually delineated slice-by-slice on CE-T1 images. Using
the same method, the outline of perifocal edema was delin-
eated on T2-flair images (by WJJ). To confirm the reliability
of the data, a senior radiologist with 15 years of experience
in central nervous system lesions checked the segmentation
data. All steps were conducted in a blinded fashion, with-
out prior knowledge of medical or pathological results. The
volume of interest (VOI) was generated through the triangle
meshes of ROIs. Volume calculation was completed using
the the Python package PyRadiomics. The algorithm is given
in Supplementary Fig. 1. The exact VOI of GBM, abscess
and corresponding volume of area inside the edema outline
was calculated. The perifocal edema volume was calculated
as the total volume inside the edema outline minus the tu-
mor/abscess volume.

The ROIs of brain-to-tumor and brain-to-abscess on CE-
T1 sequence were obtained by a semi-automated algorithm
performed with Python. Initially, based on the tumor and
abscess ROls, a tumor contour was automatically obtained.
An in-house script written in Python then simultaneously
moved the inner and outer outline. The ROI boundary was
then automatically extended in both of two directions to gen-
erate a 10 mm boundary ROI. Meanwhile, to avoid the effect
of the skull-surfaces regions, ROIs crossing the brain surface
were manually erased using ITK-SNAP. Finally, the bound-
ary ROI and GBM/abscess ROI were combined for each pa-
tient using the semi-automated Python script. The resultant
combined ROI contained the area of both the whole lesion
and a 5 mm outer contour.

2.3.2 ROI preprocessing and radiomics extraction

Images were preprocessed before radiomics feature ex-
traction. In this study, CE-T1 images were resampled to a
3 X 3 x 3 isotropic voxel size. Normalization was performed
with a scale of 100 and voxel array shift of 300. The ideal
number of bins used for texture feature computation ranged
from 16-128 and the bin width was set to five hounsfield
units. After these preprocessing steps, the influence of dif-
ferent parameter settings was minimized. The algorithms
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Fig. 1. Patient selection criteria. Ethical approval was obtained from the institutional review board (2021-0098). Informed consent was obtained. 118

patients were included in this study and their demographic data is summarized in Table 1. 32 (24 males, 8 females; mean age 44 1 16.2 years) were diagnosed

with brain abscesses and 86 (49 males, 37 females; mean age 50.4 & 3.3 years) had high-grade gliomas with a ring-enhancing lesion.

for radiomic feature extraction were developed with Pyra-
diomics, an open-source Python package (version 3.0.0, http
s://github.com/AIM-Harvard/pyradiomics). The extracted
features included first order (n = 198), shape (n = 14) and
texture (n = 792). Ten additional images were generated us-
ing either log-domain(LoG) wavelet filters or Wavelet filters.
Detailed information about feature extraction is provided in
Supplementary Fig. 2.

2.3.3 Feature selection and modeling

The minimum absolute contraction and selection opera-
tor (LASSO) was applied to filter variables through 10-fold
cross validation, these variables were then ranked by impor-
tance and those corresponding to the Events Per Variable
principle were selected to build a logistic regression model
and a random forest model. Additionally, radiomic feature
reduction was performed using principal component analysis
(PCA) with varimax-rotation (R package version 234 2.1.3,
https://CRAN.R-project.org/package=psych).

24 Preoperative peripheral blood test

The absolute counts of erythrocytes, leukocytes, platelets,
hemoglobin, neutrophils, monocytes, albumin and lym-
phocytes were collected from the peripheral blood test
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report. The following inflammatory indexes were then
calculated: neutrophil (NE), neutrophil/lymphocyte ra-
tio (NLR), neutrophil/(leukocyte-neutrophil) ratio (INLR),
platelet/lymphocyte ratio (PLR), lymphocyte/monocyte ra-
tio (LMR), platelet X neutrophil/lymphocyte ratio (SII), al-
bumin + 5 X lymphocyte ratio (PNI) [15-17]. These ratios
have been reported as useful biomarkers for the diagnosis and
prognosis of various diseases [18-21].

2.5 Statistical analysis

Quantitative variables such as the interquartile range are
expressed as either mean £ SD or median and descriptive
statistics reported as counts and percentages. Either a t-test
or Wilcoxon test was used for comparisons between numeri-
cal variables, while either a ¥ test or the exact Fisher test was
used to compare the frequency distributions between sub-
groups of categorical variables. A receiver operator curve
(ROC) was employed to assess the classifier discriminative
ability, area under the curves (AUCs) were also calculated.
The predictive performance of a model was reflected by its ac-
curacy, sensitivity (i.e., true positive rate) and specificity (i.e.,
true negative rate), positive predictive value and negative
predictive value. Decision curve analysis (DCA) is a decision-
making tool for assessing the clinically meaningful net benefit
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Fig. 2. Images show the BT, WT and Com radiomics of necrotic GBM in a woman at CE-TIW MR image. Step 1: A 3-T scanner (Siemens Magnetom

Avanto 1.5-T, Siemens Magnetom Verio 3-T) with an 8-channel head coil was used for MRI acquisition. CE-T1 and T2-Flair images were used for image

analysis to obtain the radiomics index, focus volume and perifocal edema. Step 2: The tumor was manually segmented on CE-T1W1I by one researcher with

open-source ITKSNAP software. Another researcher manually outlined peritumoral oedema on FLAIR in a similar fashion. The ROIs of brain-to-tumor

and brain-to-abscess on CE-T1 sequence were obtained by a semi-automatic Python (version 3.8.0, Python Inc., Netherlands) algorithm. See section 3 in

“Patients and methods” part for details. Step 3: Images were preprocessed before radiomics feature extraction. Algorithms for radiomic features extraction

were developed with Pyradiomics, an open-source Python package (version 3.0.0, Python Inc., Netherlands).

of diagnostic tests that cover a range of patient preferences for
receiving under- and over-treatment risk. It assists decisions
about test selection and use. Statistical analyses were per-
formed using R software (version 4.0.1, Lucent Technologies
Inc., NJ, USA, https://www.r-project.org). Statistical signif-
icance was fixed at p < 0.05 (« = 0.05).

3. Results
3.1 Patient characteristics

Table 1 gives patient characteristics and baseline informa-
tion. The mean age of the brain abscess group was younger
than that of the glioma patients (44.06 (16.24), 50.43 (13.31);
p=0.032). There was no substantial variation in either sex or
inflammation indexes amongst the two groups with the ex-
ception of NLR, PLR and SII groups (p-value 0.048, 0.034 and
0.022, respectively). Tumor volume and peritumoral edema
volume between brain abscess and necrotic GBM were sta-
tistically different. The brain abscess group had a smaller VR
than necrotic GBM (p < 0.001), which indicated that brain
abscess patients generated a more aggressive edema of brain
tissue.

3.2 Comparison of performance across ROI areas
3.2.1 Whole tumor based radiomics features showed the best
overall diagnostic performance

Fig. 3 shows the optimal ROI selection process to ob-
tain a radiomic model. First, included samples were ran-
domly divided (all sets: necrotic GBM: 86; brain abscess: 32)
into a training set (necrotic GBM: 68; brain abscess: 26) and
test/validation set (necrotic GBM: 18; brain abscess: 6) in a
ratio of approximately 1:4. The testing set was an indepen-
dent blind test used only for algorithm evaluation (Fig. 3C,
a, downward side and Fig. 4). The training set was used for
establishment of the mean cross-validation performance and
classifiers. 1015 radiomic features were screened by LASSO
and ranked by a random forest (RF) algorithm, respectively,
for the training and testing cohorts. It should be noted that
the violin plot of the AUC value distribution of different ROI
areas in the training set (Fig. 3C, a, upward side) and the
testing set (Fig. 3C, a, downward side) was calculated inde-
pendently using the algorithm in Fig. 3B. The LASSO and
RF algorithm both have the effect of data dimension reduc-
tion and were used for feature reselection. During feature
selection and the establishment of classifiers, fivefold cross
validation with 1000 samplings without replacement were
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Table 1. Patient characteristics.

Brain abscess Necrotic glioblastoma p value
Patients, n 32 86 0.032
Age, (mean (SD)) 44.06 (16.24) 50.43 (13.31)
Sex, n (%)
Male 24 (75.0) 49 (57.0) 0.114
Female 8(25.0) 37 (43.0)
Laboratory test, (mean (SD))
Leukocyte* 9.50 (3.72) 8.29 (3.67) 0.115
Erythrocyte* 4.30 (0.93) 4.36 (0.52) 0.666
Hemoglobin® 125.62 (19.47) 130.15 (15.63) 0.194
Platelet* 215.28 (65.81) 206.41 (66.51) 0.519
Neutrophil® 7.42 (3.88) 6.06 (3.62) 0.077
Lymphocyte* 1.41 (0.79) 1.59 (0.64) 0.192
Monocyte* 0.55 (0.23) 0.52 (0.33) 0.639
Albumin® 36.84 (6.89) 39.17 (5.70) 0.065
NLR, mean (IQR) 5.35 (2.16, 11.56) 2.81(1.95, 6.23) 0.048
dNLR,mean (IQR) 1.23 (1.10, 1.88) 1.55 (1.19, 2.05) 0.051
PLR,mean (IQR) 154.21 (114.01, 248.80) 125.03 (94.27, 175.27) 0.034
SII, mean (IQR) 1068.50 (521.66, 2002.32) 618.61 (352.58, 1332.46) 0.022
LMR 0.51 (0.36) 0.40 (0.39) 0.172
PNI 43.88(9.43) 47.14 (7.44) 0.052
MR Imaging (mean (SD))
T2-Flair volume® 131.23 (57.13) 120.79 (56.94) 0.378
Tumor volume® 28.50 (21.60) 46.38 (30.12) 0.003
Peritumoral dema volume® 102.74 (45.40) 74.41 (45.86) 0.003
Volume ratio, mean (IQR) 0.25 (0.14, 0.40) 0.55(0.35,1.12) <0.001

NLR, neutrophil/lymphocyte ratio; dNLR, neutrophil/ (leukocyte-neutrophil) ratio; PLR, platelet/lymphocyte

ratio; SII, Systemic Immune-inflammation Index; LMR, Lymphocyte to Monocyte Ratio; PNI, Prognostic Nu-

tritional Index; MR, Magnetic Resonance; SD, Standard deviation; IQR, Interquartile Range. *, X 109/ L; &,
g/L; $, mL.**, p < 0.01; ****, p < 0.0001. LASSO, Least Absolute Shrinkage and Selection Operator; CV,
Cross Validation; RF, Random Forest; LR, Logistic Regression; PC1, Principal Component 1; PC2, Principal

Component 2; PC3, Principal Component 3; PC4, Principal Component 4; PCA, Principal Component Anal-

ysis; WT, Whole Tumor; BTI, Brain-Tumor Interface; AUC, Area under curve; ROI, Region of interest.

used (Fig. 3B). Fig. 3C, a depicts the distribution of AUCs for
three ROIs after 1000 iterations. The AUC value was calcu-
lated separately in the two data sets and validation of train-
ing and test sets was performed independently to see whether
the whole tumor (WT) area had the best predictive perfor-
mance for two independent units. In other words, previously
the average AUC of the whole tumor model in the training
set (Fig. 3C, a, upward side) was much greater than that of
the other models based on various ROIs, both by the logistic
regression (AUC mean = 0.85) and random forest algorithm
(AUC mean = 0.98). Using the same approach as for the test
set/training set, the same pattern was observed in the test co-
hort (Fig. 3C, a, downward side).

3.2.2 Feature reselection and radiomic model building

After calculating AUCs in the training and testing cohort
for WT ROI, features in the training cohort with AUC x 0.6
and frequency X 100 times in 1000 iterations were retained
and the 43 features and detailed features showed in Fig. 3B
were obtained. Feature reduction was performed using PCA
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with varimax-rotation and four principal components were
obtained, including principal component (PC) 1, PC2, PC3,
PC4 (Supplementary Fig. 1). Backward stepwise logistic re-
gression (LR) and RF algorithms were used to construct a ra-
diomic model. As showed in Fig. 4, the radiomic model con-
structed from the WT region gave a robust predictive power
with AUC from RF as 0.889 (0.757-1) and from LR as 0.852
(0.69-1) in the testing set.

3.3 Clinical predictors

Table 1 and Supplementary Fig. 2 indicate that VR
showed a significant difference between the two groups with
AUCas0.804 and 0.722 in the training and testing set, respec-
tively. Although the differential efficacy of NE is weak (AUC,
0.668 in training; 0.528 in testing), considering the infectious
nature of a brain abscess, NE was still included in the clinical
model, performance of which is given in Table 2.

3.4 Combined model

Ranking of variable importance for distinguishing a brain
abscess from necrotic GBM in the combined model is shown
in Fig. 5A and the significant radiomic parameters are sum-
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marized in a heatmap (Fig. 5B). As shown by the DCA curves
(Supplementary Fig. 3), the cutoff value was set accord-
ing to clinical benefit. The combined model contained three
components and provided superior discrimination perfor-
mance compared to the radiomic model, as an independent
predictor, VR improved the AUC by 0.002, 0.013 and 0.02 in
training, testing and all cases set respectively (Table 2).

4. Discussion

The discriminative ability of radiomic features extracted
from three ROIs including WT, brain-tumor interface and
combined regions on CE T1-weighted images were com-
pared for their ability to distinguish necrotic GBMs from
pyogenic brain abscesses. It was demonstrated that the ROI
of WT provided the best distinguishing value. Three pre-
diction models were further constructed using RF algorithms

and a combined model was found to give superior discrimi-
native performance when compared to either a clinical or a
radiomic model alone.

Maximally capturing heterogeneities was expected to
increase the performance of the prediction model. Re-
cently, many studies have shown that multimodal imaging,
which combines quantitative radiomic features from differ-
ent modalities, provides better delineation of ROIs and more
precise modeling outcomes [22]. However, most applica-
tions of multimodality models are related to advanced im-
age examinations, such as PET, DWI and diffusion tensor
imaging [22]. Although discriminative power seems to be
strengthened, clinical practicability and utility are limited due
to the high procedure cost for patients and lack of the requi-
site equipment in some small centers. Thus, such advanced
image examinations were not included in this study for con-
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Table 2. Diagnostic performance of classifiers.

Parameter Combined Model Clinical Model Radiomics Model
Volume ratio + PC1 + PC3  Volume ratio + Neutrophil count PC1 +PC2 + PC3
Training sets ~ TN/FP/FN/TP 67/1/3/23 63/5/15/11 67/1/4/22
AUC 0.993(0.98, 1) 0.815 (0.725, 0.905) 0.991 (0.979, 1)
Accuracy 0.957 (0.895, 0.988) 0.787 (0.691, 0.865) 0.947 (0.88,0.983)
Sensitivity 0.885 0.423 0.846
Specificity 0.985 0.926 0.985
Pos Pred Value 0.958 0.688 0.957
Neg Pred Value 0.957 0.808 0.944
Testing sets TN/FP/EN/TP 17/1/3/3 15/3/4/2 17/1/4/2
AUC 0.907 (0.787, 1) 0.694(0.452,0.937) 0.894(0.762, 1)
Accuracy 0.833 (0.626, 0.953) 0.708 (0.489, 0.874) 0.792 (0.578, 0.929)
Sensitivity 0.5 0.333 0.333
Specificity 0.944 0.833 0.944
Pos Pred Value 0.75 0.4 0.667
Neg Pred Value 0.85 0.789 0.81
All sets TN/FP/EN/TP 84/2/6/26 78/8/19/13 85/1/10/22
AUC 0.974 (0.951, 0.997) 0.791 (0.706, 0.876) 0.972 (0.948, 0.996)
Accuracy 0.932 (0.871,0.97) 0.771 (0.685, 0.843) 0.907 (0.839, 0.953)
Sensitivity 0.812 0.406 0.688
Specificity 0.977 0.907 0.988
Pos Pred Value 0.929 0.619 0.957
Neg Pred Value 0.933 0.804 0.895

TN, Ture Negative; FN, False Negative; FP, False Positive; TP, Ture Positive; AUC, Area Under Curve; PPV, Positive Predic-

tive Value; NPV, Negative Predictive Value.
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Fig. 4. The receiver operating characteristic curves from applying
the backward stepwise LR and random forest algorithm derived

from the training set, validation set and all set.

tradicting to our original intention. Some publications have
also confirmed the superiority of multimodality modeling
based on conventional MR sequences. Chang et al. [23] uti-
lized four conventional MR sequences containing three spa-
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tial dimensions and developed a deep learning model to pre-
dict the presence of the isocitrate dehydrogenase (IDH) geno-
type in glioma (grade II-IV). After incorporating age at diag-
nosis into the model it achieved accuracies of 87.3% (AUC =
0.93), 87.6% (AUC = 0.95), and 89.1% (AUC = 0.95) in the
training, validation and testing sets, respectively. Zhang et
al. [24] integrated clinical variables with multimodal features
captured from conventional MRI to build a model predic-
tive of the IDH genotype in high-grade gliomas. Their model
achieved accuracies of 86% (AUC = 0.883) and 89% (AUC =
0.923) in the training and validation cohort, respectively.

The ROIs for radiomic feature extraction were delineated
for the CE-T1 sequence. With the combination of radiomic
features and VR, the accuracies of the prediction model in
training, testing and total sets increased to 96.8% (AUC =
0.995), 79.2% (AUC = 0.926) and 89.8% (AUC = 0.926), re-
spectively. Although differentiating the IDH genotype may
be more difficult than identifying brain abscess from necrotic
GBMs, the performance of the mono-modality model de-
scribed here appears to be comparable to that of the multi-
modality models.

Until now, the combination of fully automated tumor seg-
mentation and texture analysis algorithms has been rare, un-
reliable and mostly semi-automatic or manual, so when pre-
dictive modelling is introduced into daily routine, a mono-
modality model would undoubtedly be more efficient. If a
multimodality model shows limited improvement in accu-
racy when compared with a mono-modality model, the au-
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Fig. 5. Multiple types of radiomic features associated with brain invasiveness in the combined model. (A) Variable importance for classification of

event in combined model. (B) Radiomic Features-based principal component analysis (PCA) of two tumors. PCA shows that PC3 and PC1 are almost able to

distinguish the necrotic GBM and brain abscess groups and that the multivariate variation of different radiomics features of PC1, PC2 and PC3.

thors consider it sensible to sacrifice a tiny reduction in accu-
racy for higher clinical efficiency. CE-T1 shows a clearly sig-
nificant gadolinium enhancing rim for both brain abscess and
necrotic GBMs lesions which is supposed to contain more
heterogeneous information than three other more conven-
tional MR sequences. Hence, a mono-modality model was
initially constructed based on the CE-T1 sequence. In con-
sideration of the relatively good performance of the model
described here, a multimodality model was not further pur-
sued.
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Another critical and contentious component of radiomics,
which may greatly affect the textural information captured,
is the ROI. As reported in prior literature, most 11 param-
eters were significantly different when different ROIs were
selected in the same disease [25-28]. The diagnosis and pre-
diction values of ROIs focusing on intratumoral and peritu-
moral radiomic features have been compared in several stud-
ies on various tumors such as esophageal squamous cell carci-
noma, glioma, breast cancer and gastrointestinal stromal tu-
mor [11-14]. Combinations of intratumoral and peritumoral
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regions were reported to achieve significantly better perfor-
mance in radiomics models [11-14]. Sun et al. [11] reported
that models based on peritumor regions were better behaved
than those based on intratumor regions, while those that em-
ployed combined regions behaved the best. Thus, when it
comes to the differential diagnosis between necrotic GBM
and brain abscess, selecting the optimal ROIs from intrale-
sional, perilesional and the combined regions is of particular
importance for model building.

From a histopathological viewpoint, both the intrale-
sional and perilesional regions contains great heterogene-
ity, which might be reflected in the radiomic features. For
example, the central cavity of a brain abscess is full of yel-
lowish brown viscous pus, which is composed of bacteria,
necrotic tissue, inflammatory cells and proteinaceous exuded
plasma. Its high viscosity and cellularity restrict the diffusion
of water molecules and has been reported to associate with
imaging features such as low apparent diffusion coefficient
(ADC) values [7]. In contrast, the necrotic regions of GBM
contain more serous fluid, which facilitates the diffusion of
water molecules [26]. The brain abscess capsule consists of
neutrophils, lymphocytes, macrophages and granulation tis-
sue that surrounds the inflammatory region and later devel-
ops into a fibrous capsule [29]. Correspondingly, the cystic
regions of GBM contain some inflammatory infiltrates and
microinvasion by tumor cells [30]. In this case, the abscess
wall has a relatively poor vascularity, while the tumor wall
exhibits microvessel angiogenesis, which results in the con-
trasting relative cerebral blood volume (rCBV) values for the
two diseases [7]. Although gliosis exists in both brain abscess
and GBM, glial fibers are laid down more irregularly in the
former case and more regularly in GBM due to the different
characteristics of the disease course [31]. To select the best
ROI, three ROIs including WT, BTI and combine regions
were compared, and models based on whole tumor regions
were found to achieve the best performance.

Nevertheless, it is noteworthy that the algorithms used
and the definitions of the peritumoral region have significant
influence on the interpretation of the peritumor region [14].
Three ROIs were compared using both Logistic Regression
and Random Forest classifiers. However, defining the per-
itumoral region as a 10 mm boundary along the enhancing
rim does not seem sufficiently rigorous, as individual tumor
sizes vary greatly between individuals.

As mentioned above, inflammatory factors play a signif-
icant role in the pathophysiologic development of both dis-
eases. Previous studies have also suggested that inflammation
may act as a hallmark of cancer and highlight the diagnostic
value of preoperative inflammatory markers and their ratios
in glioma patients [32-36]. Meanwhile, several studies have
demonstrated a moderate elevation of the leukocyte and C-
reactive protein (CRP) levels in brain abscess, which may aid
in the differential diagnosis [37-39]. Therefore, apart from
capturing pathophysiologic features from radiomics, directly
utilizing the inflammatory indicators from blood tests may
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provide more heterogeneous information to improve the dif-
ferential accuracy. In this study, only the neutrophil count
showed significant differences between groups. Thus, al-
though the three inflammatory indices calculated based on
the inflammatory cell counts, including NLR, PLR and SII
showed statistical difference, they were not considered for the
models. As the most abundant leukocytes in the blood, neu-
trophils lead the first wave of host defense to infection and
are powerful effector cells that destroy infectious threats, and
definitely play a critical role in brain abscess formation [40].
Meanwhile, significant increased extent of neutrophil infil-
tration and circulating levels were observed in GBM [41].
These neutrophils are highly associated with tumor pathol-
ogy such as immunosuppression, tumor necrosis and mediat-
ing the crosstalk with the tumor microenvironment [42-45].
The different but critical roles that neutrophils play in the two
diseases might account for different circulating levels, which
accordingly may contribute some diagnostic value.

Additionally, results presented here the VR of glioma is
significantly greater than that of brain abscess, which has
greatly assisted differential diagnosis. This phenomenon
might be explained by the two types of edema caused by vari-
ous etiologies [46-49]. The edema of brain abscess belongs to
vasogenic edema, which results from an increased permeabil-
ity of the endothelium of cerebral capillaries to albumin and
other plasma proteins [47, 48]. Correspondingly, the edema
of GBM seems more like a tumor-infiltrating edema, where
different types of immune and tumor cells infiltrate and as-
sociate with the tumor microenvironment [50]. Compared
with other differential components, VR showed a significant
superiority in diagnostic performance. Thus, it was included
into the combined model and elevated model performance.

Glioblastoma is a malignant tumor and brain abscess is an
infectious disease and may be cured with conservative treat-
ment. When differentiating the two types of condition, the
aim is to diagnose a brain abscess as reliably as possible, so
a brain abscess was regarded as “Positive” and glioblastoma
as “Negative”. However, owing it its incidence in this study,
the number of cases in the brain abscess group was consid-
erably lower than that in the glioblastoma group. In the test
set, the brain abscess group contained only six samples, which
may further affect the reliability of the model. It is considered
that together, the foregoing reasons result in the low sensi-
tivity and that this should be improved with increased sample
size.

This study has several limitations. Firstly, although five-
fold cross validation was used for both datasets, the sample
size of brain abscess cohort was relatively small. Secondly,
when selecting the optimal ROIs, a fixed peritumoral region
might not be sufficiently rigorous. Thirdly, all the patients
included in the brain abscess cohort were diagnosed with
a bacterial brain abscess. Thus, the prediction model em-
ployed here may not suit discrimination between brain ab-
scess caused by other pathogens such as the amoebic, tuber-
cular and fungal abscesses as their unique pathophysiologi-
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cal processes might reflect different radiomic and clinical fea-
tures [51]. The applicability and suitability of the prediction
model reported here should be further evaluated in such pa-
tients. Finally, it is unclear how to explain the association
between radiomic features and their underlying clinical and
biological characteristics.

5. Conclusions

A diagnostic prediction model was constructed to discrim-
inate between brain abscess and necrotic GBM. Compared
with the BTI and the combined region, features extracted
from the WT presented the best differential value. A model
that combined these radiomic features and the VR showed
the best diagnostic performance.
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