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Walking is a fundamental movement skill in humans. However,
how the brain controls walking is not fully understood. In this func-
tional magnetic resonance imaging study, the rhythmic, bilater-
ally alternating ankle movements were used as paradigm to simu-
late walking. In addition to the resting state, several motor tasks
with different speeds were tested. Independent component analy-
sis was performed to detect four components shared by all task con-
ditions and the resting state. According to the distributed brain re-
gions, these independent components were the cerebellum, primary
auditory cortex—secondary somatosensory cortex—inferior parietal
cortex—presupplementary motor area, medial primary sensorimo-
tor cortex—supplementary area—premotor cortex—superior parietal
lobule, and lateral primary somatosensory cortex—superior parietal
lobule—dorsal premotor cortex networks, which coordinated limb
movements, controlled the rhythm, differentiated speed, and per-
formed a function as a basic actor network, respectively. These brain
networks may be used as biomarkers of the neural control of normal
human walking and as targets for neural modulation to improve dif-
ferent aspects of walking, such as rhythm and speed.
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1. Introduction

Walking is a fundamental movement skill in humans. To
date, how the brain controls walking in normal adults is still
not fully understood. Several functional magnetic resonance
imaging (fMRI) studies applied various motor tasks to simu-
late walking or components of walking, including unilateral
leg movements [1-11], alternating bilateral leg movements
[12, 13], leg movements with the foot pedal [5, 9-11] pro-
viding force feedback or without resistance [12], and imag-
ined foot movements [14] or walking [15-18]. These studies
found that several brain regions, including the inferior pari-
etal cortex (IPC), primary motor cortex (M1), premotor cor-
tex (PreM, including dorsal [PMd] and ventral parts [PMv]),
presupplementary motor area (preSMA), supplementary mo-
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tor area (SMA), primary and secondary somatosensory cor-
tices (S1 and S2), superior parietal lobule (SPL), and many
other areas, such as the primary auditory cortex (PAC), par-
ticipate in locomotion control during audio-cued conditions.

In animal experiments investigating locomotion-control
mechanisms, rhythmic muscle activity and left-right alter-
nating leg movements are considered as core factors of lo-
comotion or walking [19]. This criterion is also adopted in a
human study exploring the effects of several drugs on restor-
ing locomotion capabilities in patients suffering a motor-
complete spinal cord injury. The study found that the elec-
tromyography activity of four muscles of each leg presents
locomotion-like features, that is, rhythmic, bilaterally alter-
nating muscle activities in the lower limbs [20]. Here, we
also adopt motor tasks consisting of these components as core
feature to simulate human walking. A normal subject can
change the speed/frequency of steps to meet the needs of the
context. Thus, several motor tasks with core components but
different frequencies are also applied to set up correspond-
ing relationships between the designed tasks and the different
types of walking in real scenes.

Most of the abovementioned fMRI studies applied a
model-based analysis, which predicts blood oxygen level-
dependent (BOLD) responses evoked by motor tasks with
the hemodynamic response function (HRF) model. How-
ever, a transient response at the onset of a stimulus [21] or
adaptation-related brain activities [22] may not be captured
by the HRF model. As a data-driven approach, the indepen-
dent component analysis (ICA) can detect distributed brain
networks with different BOLD signal time courses without
making a specific modeling assumption, such as a canonical
HRF model, and identify motion-related noise from resting-
state and task fMRI data [23].

The patterns of brain organization during task and rest-
ing states share some similarities [24]. However, different
features may also be present [25]. ICA can separate indepen-
dent sources from task- and resting-based fMRI data, and the
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spatial and temporal features of these independent compo-
nents (ICs) from different states can be compared.

In this study, the ICA is used to separate independent
sources from a set of fMRI data consisting of motor tasks to
simulate walking. Several brain networks are expected to be
detected to control the core components of human walking
and identify their functions in different walking status.

2. Materials and methods
2.1 Subjects, tasks, and MRI data acquisition

MRI data were collected from 20 healthy right-handed
subjects (10 males/females, 24.5 + 2.16 years).

The fMRI experiment contained six successive sessions
for every volunteer. The first session had a duration of 480s,
and resting-state fMRI data were collected. The second ses-
sion tested a self-paced, free-speed walking task to simulate
a usual walk without pressure following an audio alert “al-
ternating left and right sides in a free speed and keeping a
constant speed” repeated five times for 30 s. Subjects were
instructed to perform ankle dorsiflexion and plantarflexion
alternately and repeatedly to simulate rhythmic, bilaterally al-
ternating muscle activities in the lower limbs during walk-
ing. The following four sessions tested ankle movements at
0.5, 1, and 2 Hz frequencies or a changing speed in a coun-
terbalanced order for every four subjects. Subjects paced the
movements following the audio alert “left-right-left-right...”
at preset frequencies. The 0.5, 1, and 2 Hz conditions con-
sisted of 15, 30, and 60 audio alerts, respectively, during a task
block. The audio alert had a fixed order in every task block of
changing-speed conditions: 4 audio alerts with 1 Hz, 6 alerts
with 1.5 Hz, 8 alerts with 2 Hz, 6 alerts with 1.5 Hz, 8 alerts
with 2 Hz, 8 alerts with 1.5 Hz, and 4 alerts with 1 Hz with an
average frequency of 1.47 Hz.

The following four sessions were counterbalanced for ev-
ery four subjects in the order of arrival to the MRI room.

During fMRI scanning, each subject was instructed to
close his/her eyes but remain awake while lying in a supine
position with a pad under the knees to support the thighs to
relax the spine and prevent motion from transferring to the
head during ankle movements [10].

A monitoring system displayed the real-time amplitude of
translational head motions of the subject during MR scan-
ning. Data scanning was restarted if head movements sur-
passed 1 mm in the x-, y-, or z-axis.

T2* images were collected using the Siemens Prisma 3T
MRI (Siemens Healthineers Ltd., Germany) system (time of
repetition [TR], 2000 ms; time of echo [TE], 30 ms; flip an-
gle, 90°; and voxel size, 2.0 X 2.0 X 2.0 mm) consisting of 64
interleaved axial slices with 0.2 mm gaps between slices. The
3D MPRAGE sequence was used to acquire T1-weighted im-
ages (TR, 2530 ms; TE, 2.98 ms; flip angle, 7°; inversion time,
1100 ms; and voxel size, 0.5 X 0.5 X 1.0 mm). Field mapping
images were also collected (TR, 635 ms; TE, 4.92 and 7.38
ms; flip angle, 60°; and voxel size 2.0 X 2.0 X 2.0 mm).

MRI data were obtained from a previous study [26],
which focused on brainstem and brain activations by us-
ing the model-based approach and investigated the region of
interest-based functional connectivity measured with Pear-
son correlation coefficients.

Data and the informed consent of all participants were ob-
tained. The institutional review board of the National Re-
search Center for Rehabilitation Technical Aids approved the
protocol (code: 2018YFC2001401).

2.2 Data analysis

The SPM software (SPM12, Wellcome Centre for Hu-
man Neuroimaging, University College London, https://ww
w.filion.ucl.ac.uk/spm/software/spm12) was used for tem-
poral and spatial preprocessing. Differences in slice acqui-
sition times of functional images were corrected first. The
FieldMap Toolbox was applied while performing realign-
ment and unwarped simultaneously to correct head motion
and geometric distortion. T2* and T1 images were coreg-
istered and normalized to the standard MNI space as intro-
duced in [27].

ICA was performed using the GIFT4.0b (http://mialab.m
rn.org/software/gift/index.html). The number of ICs from
each condition was estimated with the minimum description
length criteria [28]. The Infomax algorithm [29] was re-
peated 10 times with the ICASSO [30] to separate ICs from
the fMRI data set of each condition. The one-sample t test
was used to acquire the contrast images and t map of each
component (against the null of zero task-related change ei-
ther positive or negative, i.e., a two-sided test) [31]. The spa-
tial map of each component was then acquired using the SPM
software at a threshold of p < 0.001 with a cluster extent of
more than 10 contiguous voxels.

Motion artifacts were identified in accordance with pre-
vious studies [32-35] if the main part of a component was
located on large vessels (e.g., superior sagittal or transverse
sinus), margins of the brain (displaying ring-like shapes), or
regions full of cerebrospinal fluid, such as that surrounding
the brainstem.

Task-evoked ICs were identified if the Pearson correlation
coefficient >0.3 when performing “temporal sorting” func-
tion for task fMRI data sets with the GIFT software. ICs with
correlation coefficient <0.3 might present a spatial pattern
similar to that of the default mode network, which is found
to be uncoupled from task waveform.

Spatial correlation coefficients between each IC map of
each condition and all other IC maps of the remaining con-
ditions were calculated to identify task-evoked components
that commonly appeared in all conditions. For a component,
strong and positive correlation values indicated that the spa-
tial map of this component was stable across all conditions,
and the brain regions in the spatial map of this component
constituted a distributed brain network.
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3. Results

3.1 Task-related components that commonly appeared in all
conditions

The estimated numbers of ICs in each condition were 25
(0.5 Hz), 26 (1 Hz), 26 (2 Hz), 25 (changing-speed condition),
26 (free-speed condition), and 27 (resting-state condition).
Three task-related components that commonly appeared in
all conditions presented positive correlation >0.3 for each
task condition. On the basis of their spatial maps, these ICs
were named as cerebellum, PAC-S2-IPC-preSMA, and me-
dial M1S1-SMA-PreM-SPL networks. In addition, one com-
ponent presented negative correlations with the task time
course in 0.5 and 1 Hz conditions but positive correlations
with the task time course in the 2 Hz, changing-speed (aver-
age frequency = 1.47 Hz), and free-speed (average frequency
= 1.46 + 0.67 Hz) conditions. This component was also de-
tected in the resting state and named the lateral S1-SPL-PMd
network on the basis of its spatial map.

The common spatial map of each of the four components
across all conditions (Fig. 1) was determined using the inclu-
sive masking function in the SPM software at primary thresh-
olds of p < 0.001 and p < 0.05 family-wise error corrected
cluster extent provided by the SPM toolbox for the whole
search volume.

3.2 Pairwise spatial correlation values among different conditions

The cerebellum network was distributed in the cerebellum
(fromz=-55toz=-10in Fig. 1). The PAC-S2-IPC-preSMA
network (Supplementary Figs. 1,2) was mainly distributed
in the PAC and S2. Some parts of the network were dis-
tributed in the IPC and preSMA. The PAC is located at Hes-
chl’s gyrus, including cytoarchitectonic subdivisions TE 1.0,
1.1, and 1.2 [36] and at the medial part of the temporal pole
lateral to the posterior insula [37].

The lateral S1-SPL-PMd network (Supplementary Figs.
3,4) was mainly distributed in the parietal cortex (lateral parts
of S1 and SPL). Some parts of the network were distributed
in the PMd. The extensions of preSMA, SMA, and PMd were
determined using a meta-analysis [38].

The medial M1S1-SMA-PreM-SPL network was mainly
distributed in the medial parts of the primary sensorimo-
tor cortex (M1 and S1). This component also covered bilat-
eral SMA, PreM, and SPL (Supplementary Figs. 5,6). The
scopes of these brain regions except that of SMA were deter-
mined using the SPM Anatomy toolbox.

For each of the four components (networks), the pair-
wise spatial correlation values among different conditions are
shown in Table 1. Under most conditions, the medial M1S1-
SMA-PreM-SPL network presented the lowest correlation
value, ranging from 0.30 to 0.38 between the resting-state
and other conditions. However, the pairwise correlation val-
ues of the components between the task conditions were not
less than 0.54. These results indicated that this network ex-
hibited much more variations between resting-state and task
states than between different task conditions. As shown in
Supplementary Fig. 7, the network covered lateral parts of
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M1 and S1 during the resting state and medial parts of these
brain regions during task conditions.

Correlation values were ranked in descending order in
each row. The cerebellum network always presented the
highest correlation value, that is, the most consistent spatial
maps across all conditions. Under most conditions, the lateral
S1-SPL-PMd network presented the second highest correla-
tion value, whereas the medial M1S1-SMA-PreM-SPL net-
work presented the lowest correlation value.

4. Discussion

Four task-related ICs, namely, cerebellum, PAC-S2-IPC-
preSMA, medial M1S1-SMA-PreM-SPL, and lateral S1-SPL-
PMd networks, are found. These brain networks can also be
detected during the resting state. Findings reveal the inter-
action among a number of brain regions during the state of
a simulated walking task. The four brain networks work to-
gether to control the simulated walking patterns, i.e., rhyth-
mic, bilaterally alternating ankle movements.

4.1 Cerebellum network

The cerebellum network covers most parts of the cere-
bellum and exhibits the highest level of consistency across all
conditions (Table 1). These findings suggest that this compo-
nent plays a fundamental role in walking control. Compared
with simple limb movements, the cerebellum is more likely to
participate in modulating complicated movements [39]. Ad-
ditionally, the cerebellum is a place to modulate movements
with somatosensory inputs [40]. The motor tasks applied in
this study are bilaterally involved alternating ankle dorsiflex-
ion and plantarflexion, which are more complex than unilat-
eral ankle movements and require more somatosensory in-
formation for feedforward and feedback controls. Therefore,
this component covers extensive areas of the cerebellum.

The cerebellum is responsible for the coordination of
movements, especially skilled voluntary motor tasks. Cere-
bellar lesions lead to incoordination (ataxia) of volitional
movement and gait disorders [41]. Therefore, the bilaterally
alternating ankle dorsiflexion—plantarflexion movements de-
pend on cerebellar functions.

4.2 Rhythm-control network

The PAC-S2-IPC-preSMA network mainly covers the
PAC, indicating a primary role in processing audio informa-
tion. This feature is consistent with the audio cues used to
prompt ankle movements for all tasks in this study. This
network also covers some parts of the preSMA. When per-
forming sequential movements, the preSMA participates in
chunking and related processes, such as task switching, re-
sponse selection, and response inhibition [42]. Thus, for se-
quential movements, such as simulated walking movements,
preSMA can play a role in separating the motor task into
minor fragments and in switching these fragments. The
preSMA uses audio information from the PAC to achieve
these functions. Other brain regions in these networks, in-
cluding S2 and IPC, can provide sensory information for this
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Fig. 1. Spatial maps of four independent components in all conditions. The spatial map of each commonly appearing independent component was
projected on the average T1 images by using the MRIcron software (v1.0.20190902, https://www.nitrc.org/projects/mricron). The numbers indicate MNI
coordinates in the z-axis. Cerebellum network: red; PAC-S2-IPC-preSMA network: yellow; medial M1S1-SMA-PreM-SPL network: blue; S1-SPL-PMd

network: purple.
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Table 1. Pairwise correlation values of different conditions.

0.75 0.69
0.5Hzvs.1 Hz
Cerebellum  PAC-S2-IPC-preSMA
0.75 0.68
0.5Hzvs.2 Hz
Cerebellum Lateral S1-SPL-PMd
0.74 0.65
0.5 Hz vs. Changing-speed
Cerebellum Lateral S1-SPL-PMd
0.65 0.61
0.5 Hz vs. Free-speed
Cerebellum Lateral S1-SPL-PMd
0.71 0.59
0.5 Hz vs. Rest
Cerebellum Lateral S1-SPL-PMd
0.75 0.67
1Hzvs.2 Hz
Cerebellum Lateral S1-SPL-PMd
0.74 0.63
1 Hz vs. Changing-speed
Cerebellum Lateral S1-SPL-PMd
0.65 0.60
1 Hz vs. Free-speed
Cerebellum Lateral S1-SPL-PMd
0.74 0.56
1 Hz vs. Rest
Cerebellum Lateral S1-SPL-PMd
0.77 0.74
2 Hz vs. Changing-speed
Cerebellum Lateral S1-SPL-PMd
0.68 0.66
2 Hz vs. Free-speed
Cerebellum Lateral S1-SPL-PMd
0.70 0.54
2Hz vs. Rest
Cerebellum Lateral S1-SPL-PMd
0.68 0.66
Changing-speed vs. Free-speed
Cerebellum Lateral S1-SPL-PMd
0.68 0.57
Changing-speed vs. Rest
Cerebellum Lateral S1-SPL-PMd
0.59 0.50
Free-speed vs. Rest
Cerebellum Lateral S1-SPL-PMd

0.65 0.63
Medial M1S1-SMA-PreM-SPL lateral S1-SPL-PMd
0.65 0.63
Medial M1S1-SMA-PreM-SPL PAC-S2-IPC-preSMA
0.62 0.59
PAC-S2-IPC-preSMA Medial M1S1-SMA-PreM-SPL
0.56 0.51
Medial M1S1-SMA-PreM-SPL PAC-S2-IPC-preSMA
0.55 0.35
PAC-S2-IPC-preSMA Medial M1S1-SMA-PreM-SPL
0.66 0.63
Medial M1S1-SMA-PreM-SPL PAC-S2-IPC-preSMA
0.58 0.54
PAC-S2-IPC-preSMA Medial M1S1-SMA-PreM-SPL
0.53 0.52
PAC-S2-IPC-preSMA Medial M1S1-SMA-PreM-SPL
0.46 0.30
PAC-S2-IPC-preSMA Medial M1S1-SMA-PreM-SPL
0.60 0.56
PAC-S2-IPC-preSMA Medial M1S1-SMA-PreM-SPL
0.57 0.57
PAC-S2-IPC-preSMA Medial M1S1-SMA-PreM-SPL
0.44 0.36
PAC-S2-IPC-preSMA Medial M1S1-SMA-PreM-SPL
0.58 0.57
PAC-S2-IPC-preSMA Medial M1S1-SMA-PreM-SPL
0.57 0.33
PAC-S2-IPC-preSMA Medial M1S1-SMA-PreM-SPL
0.45 0.38

PAC-S2-IPC-preSMA

Medial M1S1-SMA-PreM-SPL

function. The inferior temporal cortex preferentially partic-
ipates in the cognitive aspects of discriminating shape and
object, whereas the IPC plays roles in object-oriented action,
object recognition, and motor planning [43]. This network
controls the rhythm of the simulated walking tasks by in-
tegrating audio inputs (PAC), chunking/switching function
(preSMA), and sensory processing in high-order sensory cor-
tices (S2 and IPC).

4.3 Walking speed-differentiating network

The lateral S1-SPL-PMd network is mainly distributed in
the parietal lobe, including the lateral parts of S1 and SPL.
This network also covers a small part of PMd. This network
presents a negative temporal correlation value with the time
course of motor tasks with slow speeds (0.5 and 1 Hz) but a
positive temporal correlation value with the time course of
high-speed motor tasks (2 Hz, free- and changing-speed con-
ditions). Thus, this network plays a role in differentiating
walking speed.

The SPL participates in sensorimotor integration, such as
tactile exploration [43] and processing kinesthetic cues dur-
ing action-related somatosensory inputs [44]. The PMd con-
trols proximal limb muscles for positioning the limb to per-
form a motor task during the preparation stage [45]. Accord-
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ing to a previous study [46], the lateral part of S1 in this net-
work covers the representation area of body parts above the
knees but not the lower leg. We hypothesize that the lat-
eral S1-SPL-PMd network integrates somatosensory inputs
from the rest of the body (other than the moving part) and
the functions of the PMd (movement preparation) and SPL
(sensorimotor integration) to facilitate the involvement of
the whole body during fast walking. This network does not
directly control movement because M1 is not included in this
network.

4.4 Basic actor network

The medial M1S1-SMA-PreM-SPL network is mainly
distributed over the medial parts of M1 and S1 and covers
the representation areas of the lower leg, including ankles
and feet. These regions are commonly reported in previous
fMRI studies on foot movements and are fundamental brain
regions for motor execution and related sensory processing.
Hence, this network is a basic actor network to control the
walking movement.

This basic actor network can be detected in all motor task
conditions and in the resting state. The map during the rest-
ing state covers more lateral parts of M1 and S1 than the map
during task conditions (Supplementary Fig. 7). Such spa-



tial inconsistency leads to low correlation values (Table 1).
The spatial map in the task conditions is only the medial part
of the map in the resting state because only the lower leg is
involved in motor tasks.

5. Conclusions

A rhythmic, bilaterally involved flexor-extensor alternat-
ing ankle movement was applied to simulate basic compo-
nents of human walking on the basis of applied paradigms
used in previous studies [1-3, 5, 7-12, 14, 47, 48]. Differ-
ent speeds were used to provide variations. Four walking-
control brain networks, namely, cerebellum, rhythm-control
(PAC-S2-IPC-preSMA), walking speed-differentiating (lat-
eral S1-SPL-PMd), and basic actor (medial M1S1-SMA-
PreM-SPL) networks, were determined using ICA. These
networks may be used as biomarkers of neural control of
normal human walking and as targets for neural modulation
to improve various aspects of walking, such as rhythm and
speed.

The task paradigm in this study has not involved the body
weight support, which is a basic factor during human walk-
ing in real situations. Therefore, the detected brain networks
need to be confirmed by further studies investigating human
walking in real contexts.
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