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Cerebrospinal fluid neurofilament light and plasma neurofilament
light concentrations are elevated in patients with mild cognitive im-
pairment and Alzheimer's disease. We investigated the clinical rele-
vance of increased neurofilament light concentrations in mild cog-
nitive impairment and Alzheimer's disease patients. In this study,
244 subjects were divided into cognitively normal control (n = 67),
stable mild cognitive impairment (n = 52), progressive mild cogni-
tive impairment (n = 68), and Alzheimer's disease (n = 57). Linear
regression examined the relationships between neurofilament light
levels in cerebrospinal fluid or plasma and the diagnostic group.
The relationships between neurofilament light and other biomark-
ers were assessed by Spearman correlation. Linear mixed-effects
models were used to test cerebrospinal fluid and plasma neurofil-
ament light as predictors of Alzheimer's disease characteristics, in-
cluding cognition, cortical glucose metabolism, and brain structure.
Cerebrospinal fluid and plasma neurofilament light levels were sig-
nificantly elevated in Alzheimer's disease. Still, the correlations be-
tween neurofilament light and other cerebrospinal fluid biomark-
ers within the diagnostic groups were often not statistically signif-
icant. In addition, the diagnostic accuracy of cerebrospinal fluid
and plasma neurofilament light for progressive mild cognitive im-
pairment and Alzheimer's disease was almost the same as that of
cerebrospinal fluid total tau (T-tau). It is phosphorylated tau (P-
tau) and high cerebrospinal fluid. Neurofilament light predicted
conversion from mild cognitive impairment to Alzheimer's disease.
A high neurofilament light is related to poor cognition, low cere-
bral metabolism, hippocampal atrophy, and ventricular enlarge-
ment caused by Alzheimer's disease. Our work further identifies
cerebrospinal fluid neurofilament light and plasma neurofilament
light as biomarkers of axonal degeneration in patients with mild cog-
nitive impairment and Alzheimer's disease.
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1. Introduction
Alzheimer’s disease (AD) is the main cause of dementia,

which is characterized by extracellular accumulation of ag-
gregated β-amyloid (Aβ), intracellular aggregation of hyper-
phosphorylated tau, and synaptic dysfunction [1, 2]. The
failure of several disease-modifying therapies AD highlights
the need to further explore diverse disease mechanisms and
biomarkers alterations that characterize AD [3–7]. Cere-
brospinal fluid (CSF) Aβ42 and tau have been used to diag-
nose AD and monitor disease progression [8]. In the past
decade, other biomarkers have been confirmed to further
characterize the pathophysiological process of AD [9].

Neurofilaments are the structural components of axons,
which can be measured in CSF [10, 11]. In CSF, neurofil-
ament proteins (cytoskeletal protein of neurons), including
neurofilament light chain (NFL), were associatedwith axonal
degeneration in various diseases, including AD [12]. Several
reports have suggested that CSFNFL are elevated early in the
ADprocess and are associatedwith longitudinal neurodegen-
eration and cognitive decline [13]. Interestingly, recent stud-
ies have demonstrated that concentrations of NFL derived
from plasma were elevated in patients with AD and related
to CSF Aβ and tau and positron emission tomography (PET)
[14–16].

adni.loni.usc.edu
http://adni.loni.usc.edu/wpcontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://doi.org/10.31083/j.jin2004088


However, the diagnostic value of CSFNFL or plasmaNFL
(NFL in plasma) for mild cognitive impairment (MCI) or
AD is unclear [14, 17]. Similarly, it is not clear whether
the combination of CSF NFL and plasma NFL can improve
the diagnostic accuracy of MCI and AD, or whether CSF or
plasma NFL forecasts progression from cognitively normal
(CN) control to MCI or as from MCI to AD. The purpose of
this study is, therefore, to examine the hypotheses that the
combination of CSF and plasma NFL improve the diagnos-
tic accuracy for MCI and AD and whether CSF and plasma
NFL predict progression from MCI to AD or from CN to
MCI or AD in participants enrolled in the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) study [18]. We also as-
sess whether CSF or plasma NFL is related to cognitive dys-
function, brain structure, and cerebral metabolism.

2. Materials andmethods
2.1 Subjects description

Data for this work came from the ADNI database. The
subjects participating in this study were between 55 and 90
years old. All subjects completed lumbar puncture, Clini-
cal Dementia Rating scale (CDR), Mini-Mental State Exam-
ination (MMSE), and Alzheimer’s Disease Assessment Scale
cognitive subscale 11 (ADAS-cog 11) assessments. Further-
more, all participants hadmagnetic resonance imaging (MRI)
and 18F-Fluorodeoxyglucose-positron emission tomography
(FDG-PET). Based on clinical and behavioral measurements
provided by ADNI, these participants were divided into CN
(n = 67), stableMCI (sMCI, n = 52), progressiveMCI (pMCI,
n = 68), and AD dementia (n = 57).

2.2 Classification criteria

The CN criteria include MMSE score 26–30 and CDR
of 0 [19, 20]. The MCI criteria consisted of subjec-
tive memory complaints, MMSE score 24–30, CDR of 0.5,
and retained activities of daily living [21]. In addition to
the NINCDS/ADRDA criteria, AD individuals had MMSE
scores of 20–26 and CDR scores of 0.5 or 1.0 [22]. We re-
ferred to MCI subjects who did not progress to AD during a
follow-up period of at least 2 years as sMCI and MCI partici-
pants who developed to AD at any time during the follow-up
period as pMCI [23].

2.3 CSF and plasma analyses

As described previously [24], Multiple xMAP Luminex
platforms and Innogenetics INNO-BIA AlzBio3 immunoas-
say reagents were used to measure the levels of CSF Aβ42,
total tau (T-tau), and phosphorylated tau (P-tau). A water
buffer solution containing a combination of three biomark-
ers was used to draw a calibration curve for each biomarker.
The concentration range of the three biomarkers was as fol-
lows: (1) synthetic Aβ1-42 peptidewas 27 to 1574 pg/mL, (2)
recombinant tau was 56 to 1948 pg/mL, and (3) the synthetic
peptide of tau phosphorylated at position 181 of threonine
was 8 to 230 pg/mL. CSF NFL was tested using a commer-
cial ELISA for NFL (NF-light® ELISA, Uman Diagnostics,

Umeå, Sweden) [13, 25]. The lower limit of quantification
for this CSF NFL was 50 ng/L. Values were given as pg/mL.
Plasma NFL concentrations were tested by Single-Molecule
array (Simoa) technology using a homebrew kit. All samples
except one (due to technical reasons) weremeasured in dupli-
cate.1 MMSEandADAS-Cog-11 scores evaluated global cog-
nitive function2. We selected the baseline scores of MMSE
and ADAS-Cog 11. We also selected the baseline hippocam-
pal and ventricular volumes3. The neuroimaging methods of
ADNI have been described previously [26].
2.4 FDG-PET

The baseline data of ADNI PET images were collected and
processed according to the descriptions by Landau et al. [27].
In short, we applied the mean PET SUVRs in anterior cingu-
late, lateral and medial frontal lobes, lateral temporal lobes,
lateral parietal, and posterior cingulate [23]. (18F) FDG-PET
values were normalized using the pons as a reference region.
2.5 Statistical methods

Cohort demographics were examined using chi-square
analysis and analysis of covariance (ANOVA). Multivariate
linear regression was used to measure the relationship be-
tween CSFNFL or plasmaNFL and clinical diagnostic group,
adjusted for age and gender.

The correlation between CSF NFL or plasma NFL and
other core biomarkers was examined using Spearman cor-
relation. The overall diagnostic accuracy (area under
the receiver operator characteristics curve, AUC) of each
biomarker was obtained by Receiver operating curve (ROC)
analyses. The difference of AUC between two pairs of differ-
ent biomarkers was measured using bootstrapping.

To examine the relationship between CSF NFL or plasma
NFL and AD dementia, Cox proportional hazard regres-
sion analysis (adjusted age and gender) calculated hazard ra-
tios (HR) with 95% CIs. According to the median of each
biomarker, CSF NFL and plasma NFL were divided into two
groups in Cox proportional hazard regression analyses.

Baseline values of MMSE, ADAS-cog 11, hippocampal
and ventricular volumes, and FDG-PET SUVRs were ob-
tained from the intercepts of linear mixed-effects models.
The intercepts were subsequently used in linear regression
models, and the CSF and plasma NFL values were used as the
predictor of clinical diagnostic groups adjusted for age and
gender. MMSE and ADAS-cog-11 analyses were addition-
ally corrected for education. Hippocampal and ventricular
volume analyses were additionally corrected for intracranial
volume. All statistics were conducted using SPSS version 20

1 All CSF data in our work were from the ADNI files
“UPENNBIOMK5-8.csv”, “BLENNOWCSFNFL.csv”, and
“ADNI_BLENNOWPLASMANFL_10_03_18.csv”.

2 The data of this work were from ADNI files “MMSE.csv” and
“ADAS_ADNI1. csv”.

3 Neurodegeneration, hippocampal and ventricular volumes were ob-
tained from the ADNI files “FOXLABBSI_08_04_17.csv” and “UCS-
DVOL.csv”.
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Table 1. Demographics of subjects at baseline.
Characteristics CN (n = 67) sMCI (n = 52) pMCI (n = 68) AD (n = 57)

Age (years) 75.2 (0.6) 73.4 (1.1) 72.9 (0.9) 74.3 (1.1)
Gender (F%) 30 (44.8%)b 13 (25.0%)a,d 28 (41.2%) 28 (49.1%)b

Education (years) 15.9 (0.3) 15.6 (0.4) 15.9 (0.4) 15.1 (0.4)
APOE ε4 (n%) 17 (25.4%)b,c,d 26 (50.0%)a,d 44 (64.7%)a 40 (70.2%)a,b

Post hoc analysis provided significant differences between groups: afrom CN; bfrom sMCI;
cfrom pMCI; dfrom AD.

Fig. 1. The levels of CSF and plasma NFL in different groups. The levels of CSF NFL (A) and plasma NFL (B) in different groups. Differences among
groups were detected by multiple-variable linear regression. *p< 0.05; **p< 0.01.

(SPSS Inc., Chicago, IL, USA). The statistical significance of
all analyses was defined as p< 0.05.

3. Results
3.1 Baseline characteristics

The biomarker characteristics and demographics of all
subjects are shown in Table 1. There were no differences in
age or education among clinical groups. There were signifi-
cantly fewer female individuals in the sMCI group compared
to CN and AD groups. Apolipoprotein E (APOE) ϵ4 carrier-
ship was more common in AD than CN and sMCI and more
common in pMCI than CN.

3.2 The levels of NFL in different groups

CSF NFL concentrations in pMCI and AD were higher
than that in CN (p < 0.05), and CSF NFL levels in AD were
higher than that in sMCI (p< 0.05), but there was no signifi-
cant difference between pMCI and AD, and between sMCI
and pMCI (Fig. 1A). There were significant differences in
plasma NFL levels between CN and AD, and between sMCI
and AD. There was also no significant difference between
pMCI and AD, or between sMCI and pMCI (Fig. 1B).

3.3 Associations between NFL and other biomarkers
CSF NFL related to plasma NFL in all diagnostic groups

(Fig. 2A and Table 2). There was a negative relationship be-
tween CSF NFL and Aβ42 in CN subjects (Table 2). How-
ever, there were no significant correlations between CSF
NFL and Aβ42 in sMCI, pMCI, and AD individuals (Fig. 2B
and Table 2). CSF T-tau was strongly related to CSF NFL in
CN andAD, but not in sMCI and pMCI (Fig. 2C andTable 2).
P-tau was only strongly related to CSF NFL in CN, but not in
sMCI, pMCI, and AD (Fig. 2D and Table 2). Plasma NFL did
not relate to Aβ42 in all diagnostic groups (Fig. 3A and Ta-
ble 2). CSF T-tau was strongly correlated with plasma NFL
in pMCI but not in CN, sMCI, and AD (Fig. 3B and Table 2).
CSF P-tau did not correlate with plasmaNFL in all diagnostic
groups (Fig. 3C and Table 2).
3.4 Diagnostic accuracy of NFL and other CSF biomarkers

ROC analyses were used to detect CSF biomarkers asso-
ciated with sMCI, pMCI, and AD clinical diagnoses. Ex-
cept for the combination of CSF NFL and plasma NFL, other
biomarkers did not have significantly different diagnostic ac-
curacy for sMCI (Fig. 4A and Table 3). All biomarkers had
significant accuracy in diagnosing pMCI (Fig. 4B andTable 3)
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Fig. 2. CSFNFL in relation to plasmaNFL and other biomarkers. Relationships between CSF NFL and plasma NFL(A) and Aβ42 (B)and tau biomarkers
(C and D) in different groups.

Fig. 3. PlasmaNFL in relation to other biomarkers. There are relationships between plasma NFL and Aβ42 (A) and tau biomarkers (B and C) in different
groups.
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Table 2. Correlations between NFL and other biomarkers.
CN sMCI pMCI AD

CSF NFL vs Plasma NFL r = 0.514 (p< 0.001) r = 0.603 (p< 0.001) r = 0.530 (p< 0.001) r = 0.371 (p = 0.005)
CSF NFL vs CSF Aβ42 r = –0.245 (p = 0.046) r = 0.001 (p = 0.996) r = 0.195 (p = 0.109) r = 0.237 (p = 0.076)
CSF NFL vs CSF T-tau r = 0.514 (p< 0.001) r = 0.094 (p = 0.502) r = 0.049 (p = 0.687) r = 0.284 (p = 0.032)
CSF NFL vs CSF P-tau r = 0.472 (p< 0.001) r = 0.052 (p = 0.711) r = –0.031 (p = 0.799) r = 0.284 (p = 0.063)
Plasma NFL vs CSF Aβ42 r = –0.125 (p = 0.313) r = –0.044 (p = 0.752) r = 0.030 (p = 0.805) r = 0.247 (p = 0.065)
Plasma NFL vs CSF T-tau r = 0.076 (p = 0.543) r = –0.020 (p = 0.885) r = 0.285 (p = 0.018) r = –0.132 (p = 0.327)
Plasma NFL vs CSF P-tau r = 0.042 (p = 0.737) r = –0.047 (p = 0.738) r = 0.202 (p = 0.097) r = –0.142 (p = 0.292)

Table 3. AUC of biomarkers.
CSF NFL Plasma NFL CSF and Plasma NFL T-tau P-tau

CN vs sMCI 0.604 (0.501–0.706)
(p = 0.053)

0.575 (0.470–0.681)
(p = 0.159)

0.613 (0.510–0.715)
(p = 0.036)

0.578 (0.469–0.687)
(p = 0.146)

0.592 (0.484–0.699)
(p = 0.087)

CN vs pMCI 0.719 (0.632–0.805)
(p< 0.001)

0.630 (0.536–0.724)
(p = 0.009)

0.716 (0.629–0.803)
(p< 0.001)

0.775 (0.695–0.854)
(p< 0.001)

0.781 (0.701–0.860)
(p< 0.001)

CN vs AD 0.760 (0.676–0.844)
(p< 0.001)

0.728 (0.638–0.818)
(p< 0.001)

0.781 (0.702–0.861)
(p< 0.001)

0.811 (0.733–0.889)
(p< 0.001)

0.811 (0.732–0.891)
(p< 0.001)

Fig. 4. ROC analyses. ROC analyses were used to assess the CSF biomarkers associated with clinical diagnoses for sMCI (A), pMCI (B), and AD (C).

andAD (Fig. 4C andTable 3). CSFT-tau and P-tau, CSFNFL
and plasma NFL had almost the same diagnostic accuracy in
pMCI and AD (Fig. 4B,C and Table 3).

3.5 CSF NFL predicts conversion from MCI to AD

17 CN participants progressed to MCI or AD dementia
during the follow-up period, and 68 MCI patients developed
AD dementia. We tested whether baseline concentrations of
CSF NFL and plasma NFL predicted conversion from CN
to MCI or AD dementia and from MCI to AD dementia.
CSF NFL and plasma NFL were used as continuous vari-
ables to establish Cox proportional hazard models. CSF NFL
did not significantly predict conversion from CN to MCI
or AD dementia (Fig. 5A). However, individuals with high
CSFNFL, corresponding toMCI individualswhoseCSFNFL
were ≥1533 pg/mL, progressed much more rapidly to de-
mentia than subjects with lower levels (<1533 pg/mL, corre-
sponding to the lower median levels of CSF NFL) (p = 0.049)
(Fig. 5B). Moreover, plasma NFL could not predict the con-
version from CN to MCI or AD dementia (Fig. 5C) and MCI
to AD dementia (Fig. 5D).

3.6 NFL in relation to baseline cognition

High CSF NFL related to low MMSE (β = –0.267, p =
0.023) (Fig. 6A) and high ADAS-cog 11 (β = 0.325, p = 0.043)
(Fig. 6B) at baseline in AD, and with high ADAS-cog 11 in
sMCI (β = 0.285, p = 0.045) (Fig. 6B). High plasma NFL cor-
related with low MMSE at baseline in AD (β = –0.241, p =
0.011) (Fig. 6C), as well as with high ADAS-cog 11 in sMCI
(β = 0.306, p = 0.002) (Fig. 6D). However, there were not any
relationships between NFL and cognition in CN and pMCI
(Fig. 6A–D).

3.7 NFL in relation to baseline metabolism and brain structure

CSF NFL correlated with baseline FDG-PET in CN (β =
–0.442, p = 0.006) and AD (β = –0.378, p = 0.011), but not in
sMCI and pMCI (Fig. 7A). There was a trend for relationship
between CSF NFL and FDG-PET in pMCI, but this did not
reach statistical significance (β = –0.242, p = 0.067) (Fig. 7A).
High CSF NFL was associated with hippocampal atrophy in
CN (β = –0.361, p = 0.042), sMCI (β = –0.118, p = 0.029), and
pMCI (β = –0.126, p = 0.019), but not in AD (Fig. 7B). High
CSF NFL was associated with larger ventricules in CN (β =
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Fig. 5. Baseline CSF and plasmaNFL as predictors of conversion fromCN toMCI or AD andMCI to AD. Conversion from CN to MCI or AD (A) and
MCI to AD (B) as a function of CSF NFL. Conversion from CN to MCI or AD (C) and MCI to AD (D) as a function of plasma NFL.

0.411, p = 0.021), sMCI (β = 0.214, p = 0.041), and AD (β =
0.327, p = 0.014), but not in pMCI (Fig. 7C).

Plasma NFL correlated with baseline FDG-PET in CN (β
= –0.246, p = 0.026) and sMCI (β = –0.252, p = 0.021), but not
in pMCI and AD (Fig. 7D). High plasma NFL associated with
hippocampal atrophy in every diagnostic group (β = –0.283,
p = 0.039 for CN; β = –0.312, p = 0.032 for sMCI; β = –0.267,
p = 0.042 for pMCI; β = –0.279, p = 0.044 for AD) (Fig. 7E).
High plasma NFL was also related to larger ventriculuar vol-
ume inCN (β = 0.268, p = 0.040), sMCI (β = 0.296, p = 0.042),
and AD (β = 0.227, p = 0.045), but not in pMCI (Fig. 7F).

4. Discussion
We evaluated the relationships between CSF and plasma

NFL in MCI and AD patients from the ADNI database. We

have the following major findings: firstly, CSF and plasma
NFL concentrations were significantly elevated in AD. CSF
NFL, but not plasma NFL, was significantly increased in
pMCI relative to CN. Secondly, CSF and plasma NFL had al-
most the same diagnostic accuracy as CSF T-tau and P-tau
for pMCI and AD. Our third main finding is that individ-
uals with high CSF NFL progressed much more rapidly to
AD than subjects with lower levels. Finally, CSF and plasma
NFL are associated with baseline cognition in sMCI and AD
and baseline cerebral metabolism and brain structure at some
stages of AD.

In linewith a previous study [13], we report that CSFNFL
was significantly higher in pMCI and AD dementia than CN
individuals. We also observed there were significant differ-
ences between sMCI and AD. However, contrary to some ex-
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Fig. 6. CSF and plasmaNFL in relation to baseline cognition.MMSE (A) and ADAS-Cog (B) at baseline function as baseline CSFNFL in different groups.
MMSE (C) and ADAS-Cog (D) at baseline function as baseline plasma NFL in different groups. Values of all indicators are normalized.

isting reports [14, 15, 17], plasma NFL in our study was sig-
nificantly different between CN and AD and between sMCI
and AD. Still, there were no significant differences among
CN, sMCI, and pMCI. One explanation for these differences
is that the number of cases in our study is relatively small, and
the sampling bias is large. Moreover, in the present study,
the correlations between CSF and plasma NFL with other
CSF biomarkers were usually not statistically significant in
the diagnostic groups. This finding may confirm the pres-
ence of several different pathological conditions in AD (such
as Aβ pathological characteristics, tau pathological changes,
different types of axonal degeneration) and drive different
biomarker reactions, which are generally weakly correlated
[14].

In our study, compared with CSF T-tau and P-tau, CSF
and plasma NFL had almost the same diagnostic accuracy for

pMCI and AD. However, CSF and plasma NFL combined did
not significantly improve the diagnostic accuracy for pMCI
and AD over either biomarker in isolation. Interestingly, the
combination of CSF and plasma NFL provided significantly
different diagnostic accuracy for sMCI in our study, but CSF
NFL, plasma NFL, CSF T-tau, and CSF P-tau had no similar
effects, indicating that the combination of CSF and plasma
NFL may be useful for the diagnosis of prodromal stages of
AD. In the future, we should verify its specificity for the di-
agnosis of sMCI in other neurodegenerative diseases.

There is increasing evidence that axonal degeneration is
a surrogate indicator of AD neurodegeneration progression
[1, 28]. Although it has been shown that the combination of
plasma NFL and MMSE could reliably predict whether MCI
patients might progress to AD dementia within 5 years [29].
To our knowledge, no studies using Cox proportional haz-
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Fig. 7. CSF and plasma NFL in relation to baseline metabolism and brain structure. FDG (A), hippocampal volumes (B), and ventricular volumes (C)
at baseline as a function of baseline CSF NFL in different groups. FDG (D), hippocampal volumes (E), and ventricular volumes (F) at baseline as a function of
baseline plasma NFL in different groups. Values of all indicators are normalized.

ard models have evaluated the predictive value of CSF NFL
for the conversion from CN to MCI or AD and from MCI
to AD. Here, we demonstrate that CSF NFL but not plasma
NFL provides predictive value for future disease progression
inMCI participants. Our findings indicate that CSFNFLmay
contribute to the prognostic roles of CSF Aβ42, T-tau, and
P-tau in predicting the evolution of cognitive impairment.

Previous research has reported that plasma NFL might be
a promising biomarker of progressive cognitive decline in
elderly patients with MCI [30]. We examined the associa-
tions between CSF or plasma NFL and cognition. Statisti-
cally significant interactions were found at baseline for the
sMCI group and MMSE or ADAS-cog 11 and the AD group
and MMSE or ADAS-cog 11. These results suggest that CSF
and plasma NFLwere more strongly associated with the cog-
nitive outcomes in sMCI and AD than in CN at baseline. It
has been shown that in theMCI group, higher CSFNFL con-
centrations were related to faster brain atrophy over time, as
measured by changes inwhole-brain volume, ventricular vol-
ume, and hippocampal volume [13]. In addition, Mattsson
et al. [14] reported that elevated plasma NFL was associated
with AD-related atrophy (baseline and overtime) and brain
hypometabolism (over time).

Our results show that CSF and plasma NFL were cor-
related with several baseline imaging measures of AD-
related neurodegeneration, including low cortical glucose
metabolism, hippocampal atrophy, and ventricular enlarge-

ment. These relationships were particularly pronounced
with CSF and plasma NFL in relation to large ventricles in
CN, sMCI, and AD groups. These results indicate that AD’s
cognition, brain structure, and cortical metabolism may be
related to axonal degeneration. However, there were some
inconsistencies in the correlation between NFL and cogni-
tion and between NFL and brain metabolism or structure.
For example, the correlations betweenMMSE or ADAS-Cog
and CSF or plasma NFL in pMCI patients were the opposite
of all other groups.

Similarly, brain metabolism correlated well with plasma
NFL in CN and sMCI but not in pMCI and AD. Vice
versa CSF NFL correlated well with baseline FDG brain
metabolism in CN and AD, but not in pMCI and sMCI, sug-
gesting that they were confounded by diagnosis. We do not
know the exact reason, but it indicates that cognition, brain
metabolism, and brain structure may be related to many fac-
tors, and NFL is only one of them.

CSF and plasma NFL concentrations are significantly
higher in other neurodegenerative diseases other than AD
than healthy controls [28, 31–34]. In addition, although a
previous study investigated that CSF NFL had the potential
to help distinguish frontotemporal dementia from AD and
Parkinson disease from atypical Parkinson’s syndrome [34],
the diagnostic usefulness of CSF and plasma NFL might be
limited due to the finding that it is also elevated in other neu-
rodegenerative diseases, indicating low specificity for AD.
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5. Conclusions
Our results support the use of NFL as a biomarker of ax-

onal degeneration. CSF and plasma NFL were significantly
elevated in AD. In addition, compared with CSF T-tau and
P-tau, CSF and plasma NFL had similar diagnostic accuracy
for pMCI and AD. Moreover, high CSF NFL predicted con-
version fromMCI to AD. Finally, high CSF and plasma NFL
are related to poor cognition, low metabolism, hippocampal
atrophy, and ventricular enlargement at some stages of AD.
These findings may suggest the potential use of NFL in trial
designs, monitoring response to therapies, treatment deci-
sions, and outcome evaluations.
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