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To evaluate the ability of a commercialized deep learning recon-
struction technique to depict intracranial vessels on the brain com-
puted tomography angiography and compare the image quality with
filtered-back-projection and hybrid iterative reconstruction in terms
of objective and subjective measures. Forty-three patients under-
went brain computed tomography angiography, and images were re-
constructed using three algorithms: filtered-back-projection, hybrid
iterative reconstruction, and deep learning reconstruction. The im-
age noise, computed tomography attenuation value, signal-to-noise
ratio, and contrast-to-noise ratio were measured in the bilateral cav-
ernous segment of the internal carotid artery, vertebral artery, basi-
lar apex, horizontal segment of the middle cerebral artery and used
for the objective assessment of the image quality among the three
different reconstructions. The subjective image quality score was
significantly higher for the deep learning reconstruction than hybrid
iterative reconstruction and filtered-back-projection images. The
deep learning reconstruction markedly improved the reduction of
blooming artifacts in surgical clips and coiled aneurysms. The deep
learning reconstruction method generally improves the image qual-
ity of brain computed tomography angiography in terms of objec-
tive measurement and subjective grading compared with filtered-
back-projection and hybrid iterative reconstruction. Especially, deep
learning reconstruction is deemed advantageous for better depiction
of small vessels compared to filtered-back projection and hybrid iter-
ative reconstruction.
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1. Introduction

Brain multidetector-row Computed Tomography An-
giography (CTA) is a suitable noninvasive imaging modal-
ity frequently used in cases of vascular diseases including
aneurysm, vessel dissection, vascular malformations, stroke,
and tumors [1]. The technical improvements with high spa-
tial and temporal resolution enabled CT A to produce compa-
rable image quality to conventional angiography and evaluate
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cerebrovascular diseases, especially intracranial aneurysms
[2]. However, lowering the tube voltage and currents results
in a reduction of radiation exposure, which causes for degra-
dation of image quality on CTA and affects its diagnostic ac-
curacy. Especially the detection of small diameter vessels by
CTA still presents a challenge. To visualize the intracranial
vessels clearly and accurately, there should be a great deal to
improve the image quality by developing image reconstruc-
tion algorithms.

Initially, hybrid iterative reconstruction (Hybrid IR) and
model-based iterative reconstruction (MBIR) were effective
until deep learning image reconstruction appeared on the
stage. Several studies [3-5] reported that MBIR improves the
delineation of small vascular structures with high image qual-
ity and spatial resolution compared to Hybrid IR. However,
long reconstruction time limits its routine use in clinical prac-
tice. Clinical studies have confirmed that the low radiation
dose used during hybrid iterative reconstruction and deep
learning reconstruction (DLR) implies patient safety while
improving image quality; additionally, lower image noise,
higher contrast-to-noise ratio (CNR), and lower blooming
artifacts were observed [6-9].

Advancements in developing deep learning reconstruc-
tion have led to better outcomes by low radiation exposure
and excellent imaging quality. The Food and Drug Admin-
istration has approved two artificial intelligent image recon-
struction algorithms for clinical purposes: Advanced Intelli-
gent Clear-1Q Engine (AiCE, Canon Medical Systems Corpo-
ration, Otawara, Japan) [10] and TrueFidelity”  system (GE
Healthcare, Waukesha, WT) [11]. By utilizing deep convolu-
tional neural networks, AiCE learns differentiation between
the signal and the noise with the target images of MBIR im-
ages (FIRST, forward projected model-based iterative recon-
struction, Canon Medical Systems Corporation, Otawara,
Japan) (Fig. 1). On the other hand, the TrueFidelity” ™ sys-
tem is trained with high-dose filtered-back projection (FBP)
images [12].
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Fig.1. Overview of deep learning reconstruction. The vast learning capacities of the deep convolutional neural network allow for differentiation between

the signal and the noise. Consequently, deep learning reconstruction (DLR) reduces artifacts and noise separately from the signal. AiCE, a DLR used in this

study, was trained to use advanced model-based iterative reconstruction (MBIR) target images.

Several studies have utilized DLR in the abdominal, chest,
and brain CT imaging and cardiopulmonary CTA and found
better image quality than other image reconstruction algo-
rithms [13-18]. No studies so far have investigated the appli-
cation of AiCE to brain CTA protocols. Therefore, we pro-
pose to evaluate the ability of a commercialized deep learn-
ing reconstruction technique (AiCE) to depict intracranial
vessels on the brain CTA and compare the image quality
with other reconstruction algorithms (FBP and Hybrid IR)
in terms of objective and subjective measures.

2. Methods
2.1 Radiation dose

The dose-length product (DLP) and CT dose index-
volume (CTDIvol) values were collected from the dose re-
ports.

2.2 Patients

A total of 43 consecutive patients scheduled for brain CTA
from October 2020 to November 2020 were included in this
study. This retrospective study was approved by the Institu-
tional Review Board. The exclusion criteria were as follows
pregnancy, allergy to iodinated contrast, and severe renal dis-
ease.

2.3 CT scanning protocols and image reconstruction

All CT examinations were performed using a 320 multi-
detector row scanner (Aquillion ONE PRISM version 10.4,
Canon Medical System, Otawara, Japan) with a protocol con-
sisting of a tube voltage of 120 kVp, tube current of 150 mAs,
field of view of 220 mm, detector collimation of 80 x 0.5
mm, 0.5 second gantry rotation time, 0.5 mm slice thickness,
and helical scanning. The slice interval was 0.25 mm imple-
mented by the double slice technique. Each section is 110
mm long in the longitudinal direction. The scan was trig-
gered using the automatic bolus-tracking program (Surestart,
Canon Medical Systems Corporation, Otawara, Japan) in the
common carotid artery at the level of the C4 vertebra (trig-
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ger threshold was set 150 HU). A total of 90 mL of non-ionic
contrast agent (Iopamidol, Pamiray 370, Dongkook, Korea)
was administered in the antecubital vein at a rate of 4 mL/sec
followed by 90 mL saline at a rate of 3.8 mL/sec using an ul-
rich CT motion Injector (CT motion, ulrich Medical, Ulm,
Germany).

Images were reconstructed using three different algo-
rithms: filtered-back projection (FBP) with FC23 kernel, hy-
brid iterative reconstruction (Adaptive Iterative Dose Reduc-
tion 3-D, AIDR-3D, Canon Medical Systems Corporation,
Otawara, Japan) with FC23 standard kernel, and deep learn-
ing reconstruction (Advanced Intelligent Clear IQ Engine,
AiCE, Canon Medical Systems Corporation, Otawara, Japan)
with brain CTA standard option. The CTA images were
sent to workstation (Vitrea version 7.12, Vital, Minneapolis,
USA) for analysis.

24 CT image analysis
24.1 Objective image analysis

Image noise, CT attenuation value (HU), Signal-to-noise
ratio (SNR), and Contrast-to-noise ratio were used to objec-
tively assess the CTA images reconstructed by FBP Hybrid IR
and DLR.

Image noise was derived from the standard deviation of
the HU by placing the largest possible seven regions of inter-
ests (ROIs) in the center of the vessel depending on the diam-
eter of each vessel, i.e., the right and left cavernous segments
of the internal carotid artery (ICA), right and left vertebral
artery, basilar apex, and the right and left M1 segment of the
middle cerebral artery (MCA), avoiding the inclusion of the
vessel wall (Fig. 2). As the reference for contrast, another
ROI (20 mm?) was placed in the right or left of the thalamic
gray matter at the level of each basal ganglia.

The SNR was assessed by dividing the attenuation of the
vessels by its standard deviation. These vessels include the
right and left cavernous segment of the ICA, right and left
vertebral artery, basilar apex, and right and left M1 segments
of the MCA.
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Fig. 2. Measurements of objective image quality in the brain CTA. The
region of interest (ROI) was placed in the center of the right and left vertebral
artery (A), basilar apex (B), right and left cavernous segment of the internal
carotid artery (C), right and left M1 segments of the middle cerebral artery
(D), and right thalamic gray matter (E) avoiding the inclusion of a vessel wall
at the same position in the three image reconstructions with DLR, Hybrid
IR, and FBP.

The CNR was measured as the contrast divided by the
noise strength. The contrast was difference between CT at-
tenuation of the vessels and the attenuation of the thalamic
gray matter. The vessels include the right and left cavernous
segments of the ICA, right and left vertebral arteries, basilar
apex, and right and left M1 segments of the MCA.

The surgical clips’ sharpness and aneurysm coils were as-
signed with their perimeter and 10-90% edge rise distance
(ERD) on FBP, Hybrid IR, and DLR. The perimeter of sur-
gical clips and aneurysm coils was analyzed by manual place-
ment of an electronic caliper on the workstation (Vitrea, Vi-
tal, Minneapolis, USA). On axial images, the CT attenuation
profile with a horizontal line through the center of the clip
and coil was determined in the same location for all recon-
struction methods. The 10-90% ERD was considered the dis-
tance of 10% and the 90% of the peak CT attenuation num-
ber. The mean value of three measurements was used for
analysis. A shorter edge rise distance demonstrates a higher
sharpness. To assess the sharpness of the surgical clips and

Volume 20, Number 4, 2021

aneurysm coils, normalized profile curves were compared in
the images reconstructed with FBP, Hybrid IR, and DLR us-
ing Image] software (version 3.0, LOCI, University of Wis-
consin, Madison, Wisconsin, USA) [19].

24.2 Subjective image analysis

The images were subjectively evaluated by two neuroradi-
ologists (each with reading experience longer than five years).
The neuroradiologists were blinded to the image reconstruc-
tion methods and randomly evaluated the CTA images. A
five-point Likert scale was used for the analysis: 5 = excellent
image quality, exquisite vessel delineation wall with barely
perceived image noise; 4 = good image quality, good vessel
delineation wall with minimal image noise; 3 = acceptable
image quality, moderate vessel delineation wall with mod-
erate image noise; 2 = suboptimal image quality, fair ves-
sel sharpness and vessel delineation wall with severe image
noise; and 1 = poor limited image quality, limitation in the
vessel wall delineation with excessive image noise.

2.5 Statistical analysis

Continuous variables were shown as mean =+ standard de-
viation. The Kruskal Wallis test was used to compare the
image noise, CT attenuations, SNR, CNR, and ERD between
the image reconstructions. Interobserver agreement was as-
sessed with the Cohen kappa & coefficient where a k value
of less than 0.2 signified poor; 0.21-0.4, fair; 0.41-0.6, mod-
erate; 0.61-0.8, good; and 0.81-1 excellent agreement [20].
Statistical significance was set at p < 0.05. Statistical analy-
sis was performed using the SPSS statistical software ver 25.0
(IBM, Armonk NY, USA).

3. Results
3.1 Radiation dose

The mean DLP was 219.05 £ 20.25 mGyecm, and the
mean CTDIvol was 19.30 mGy.

3.2 Demographic characteristics

Forty-three patients were included in the study (19 were
male (55.8%), and 24 were female (44.2%)). Their mean age
was 56.77 + 16.31 ranging from 15-88 years. The indica-
tions for follow-up brain CTAs were as follows: intracranial
aneurysm (n = 8), vessel dissection (n = 2), trauma (n = 1),
hemorrhage (n = 6), acute ischemic stroke (n = 2), follow-up
study of old infarct (n = 5), and normal findings (n = 12).

3.3 Objective image quality analysis

The objective analysis findings of the FBP, Hybrid IR, and
DLR are shown in Tables 1,2. In all patients, the average
noise was 19.80 + 5.57,16.51 £ 6.00, and 10.95 4= 3.77 in the
FBP, Hybrid IR, and DLR analysis, respectively (p < 0.001).
The noise reduction resulting from using DLR was approx-
imately 33.68% and 44.70% compared with Hybrid IR and
FBP.

There was no significant difference in the attenuation of
the thalamus and right and left cavernous segments of the
ICA among all image reconstruction methods. On the other



Table 1. Results of image noise and attenuation.

The mean value + SD p-value
FBP Hybrid IR DLR FBP vs Hybrid IR FBP vs Hybrid FEP vs DLR Hybrid IR vs
vs DLR IR DLR
Image noise (HU)
Thalamus 14.71 £ 1.60 9.92 +0.95 9.00 £ 0.77 0.001 0.001 0.001 0.001
ICA right 19.16 £ 4.37 15.89 £5.30 11.16 £ 3.26 0.001 0.001 0.001 0.001
ICA left 19.71 £ 4.34 16.87 + 4.64 11.87 +3.25 0.001 0.001 0.001 0.001
VA right 19.87 £3.25 16.32 £ 4.72 9.65 £ 2.70 0.001 0.001 0.001 0.001
VA left 19.26 £ 4.32 16.03 £ 3.85 10.09 + 2.85 0.001 0.001 0.001 0.001
BA apex 20.73 £ 6.15 17.85 + 6.26 11.23 £4.29 0.001 0.001 0.001 0.001
MCA right 23.37 £7.24 20.14 +7.86 12.59 £ 5.50 0.001 0.001 0.001 0.001
MCA left 22,18 £5.72 19.04 +6.18 12.03 + 4.37 0.001 0.001 0.001 0.001
Average 19.80 £ 5.57 16.51 £ 6.00 10.95 + 3.77 0.001 0.001 0.001 0.001
CT attenuation (HU)

Thalamus 39.20 £3.78 39.45 £ 2.90 38.64 +2.53 0.289 0.006 0.003 0.005
ICA right 329.03 £ 84.19 327.11£83.97 338.27 £ 87.07 0.743 0.001 0.001 0.001
ICA left 333.85+85.15 336.22 £93.83 343.99 £ 94.60 0.721 0.008 0.002 0.001
VA right 264.01 +71.03 260.85 £ 68.18 331.90 £ 162.75 0.004 0.002 0.001 0.001
VA left 271.86 = 76.11 269.37 +71.03 314.66 £ 83.60 0.010 0.001 0.001 0.001
BA apex 258.07 & 65.49 242.03 £ 66.44 310.02 £ 81.32 0.001 0.001 0.001 0.001
MCA right 304.44 £ 72.57 302.19 £ 74.27 347.65 £ 85.71 0.017 0.001 0.001 0.001
MCA left 293.40 £ 63.49 289.11 £ 63.45 341.08 £ 87.53 0.007 0.001 0.001 0.001
Average 261.73 +112.01  259.54 + 112.69  295.78 £ 135.67 0.001 0.001 0.001 0.001

FBP, filtered back projection; Hybrid IR, hybrid iterative reconstruction; DLR, deep learning reconstruction; ICA, internal carotid artery; VA, vertebral

artery; BA, basilar artery; MCA, middle cerebral artery.

hand, the attenuation of the bilateral vertebral arteries, basi-
lar apex, and the bilateral M1 segments of the MCA were sig-
nificantly higher in DLR than in FBP and Hybrid IR (all p <
0.01).

The CNR was significantly higher in the DLR than in Hy-
brid IR and FBP for all patients (p < 0.001), resulting in an
average improvement of 44.86% and 54.43% compared with
Hybrid IR and FBP, respectively.

Similarly, the SNR was significantly higher in the DLR
than in Hybrid IR and FBP, representing an average increase
in the SNR by 46.22% (DLR vs Hybrid IR) and 55.37% (DLR
vs FBP, p < 0.001).

The perimeter for coiled aneurysm and the surgical clip
resulted in 3.93 £+ 0.11 mm; 12.20 £+ 0.97 mm for FBP, 3.94
4 0.10 mm; 12.44 + 1.11 mm for Hybrid IR, and 3.82 £
0.99 mm; 10.62 £ 1.17 mm for DLR, respectively (Fig. 3D
and Fig. 4D). The mean value of 10-90% ERD for coiled
aneurysm was 1.35 £ 0.17 with FBP, 1.47 £ 0.88 with Hy-
brid IR, and 1.04 + 0.22 with DLR while it was 1.50 4= 0.21
with FBP, 1.62 &+ 0.16 with Hybrid IR, and 0.85 & 0.27 with
DLR for surgical clip (Fig. 3E and Fig. 4E).

3.4 Subjective analysis

The subjective image quality scores of DLR were signifi-
cantly higher than those of the Hybrid IR and FBP (p < 0.001)
(Table 3). The interobserver agreement for subjective image
analysis reached a k value of 0.77, representing a good coef-
ficient. Observer 1 scored all scans with DLR as acceptable
image quality. According to observer 2, the image quality
of DLR images was significantly higher than those of Hy-
brid IR and FBP images; however, no significant difference
was observed between Hybrid IR and DLR. Fig. 5 demon-
strates the increased number of cortical branches and well-
demonstrated clinoid and supraclinoid segments of ICA. Fur-
thermore, both observers judged the quality of the images to
be highest with DLR than with FBP and Hybrid IR after as-
sessing two sample images of patients with coiled aneurysms
(Fig. 3) and surgically clipped (Fig. 4) by reducing blooming
artifacts. For better visualization, the magnified images with
red dashed outlines are illustrated in Figs. 3,4,6.

4. Discussion

We evaluated the image quality of brain CTA using dif-
ferent image reconstruction algorithms, i.e., FBP, Hybrid IR,
and DLR. We found that compared to Hybrid IR and FBP,
DLR significantly improved objective and subjective imag-
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Table 2. Results of CNR and SNR.

The mean value & SD p-value
FBP Hybrid IR DLR FBP vs Hybrid IR FBP vs Hybrid IR FBP vs DLR Hybrid IR vs DLR
vs DLR
SNR
ICA right 18.14£5.47 2276 £7.74  33.03+12.25 0.001 0.001 0.001 0.001
ICA left 1825+ 6.25 22.141+9.59  32.36 = 13.60 0.001 0.001 0.001 0.001
VA right 1474 +£5.33  17.52+6.05  38.98 4 20.24 0.001 0.001 0.001 0.001
VA left 1531 £5.28 1853 +6.78  36.09 £ 15.99 0.001 0.001 0.001 0.001
BA apex 13.98 £5.30 16.51 +6.93  32.854 15.26 0.001 0.001 0.001 0.001
MCA right 14.95+7.04 18.05+8.71  34.15+15.70 0.001 0.001 0.001 0.001
MCA left 13.99+3.47 16.76 =491  32.53 +13.52 0.001 0.001 0.001 0.001
Average 13.51 £5.38  16.28+7.12  30.27 4= 14.45 0.001 0.001 0.001 0.001
CNR
ICA right 1599 £5.21 20.02+7.20 29.27 + 11.60 0.001 0.001 0.001 0.001
ICA left 16.13 £ 5.91 19.54 £9.04 28.73 +12.75 0.001 0.001 0.001 0.001
VA right 12.54+£5.02 14841562 344511943 0.001 0.001 0.001 0.001
VA left 13.09 +£4.93 15.80+6.29 31.72 1 14.86 0.001 0.001 0.001 0.001
BA apex 11.85+4.76 13.924+6.17  28.80 & 14.11 0.001 0.001 0.001 0.001
MCA right 12.924+6.50 1549 £7.89  30.13 £ 14.46 0.001 0.001 0.001 0.001
MCA left 12.03 £3.21 14.35 £ 4.34  28.83 +12.65 0.001 0.001 0.001 0.001
Average 15.62£5.74 18.90+7.68 34.28 +15.42 0.001 0.001 0.001 0.001

FBP, filtered back projection; Hybrid IR, hybrid iterative reconstruction; DLR, deep learning reconstruction; ICA, internal carotid artery; VA,

vertebral artery; BA, basilar artery; MCA, middle cerebral artery; CNR, contrast-to-noise ratio; SNR, signal-to-noise ratio.

Table 3. The subjective image analysis scores.

. p-value
FBP Hybrid IR DLR
FBP vs Hybrid IR vs DLR  FBP vs Hybrid IR FBP vs DLR  Hybrid IR vs DLR
Observer 1
Overall image quality 2.14 £ 0.35 3.26 +-0.44 3.46 £ 0.51 0.001 0.001 0.001 0.02
Observer 2
Overall image quality 2.23 £ 0.43 3.30 4= 0.46 3.49 4 0.50 0.001 0.001 0.001 0.074

FBP, filtered back projection; Hybrid IR, hybrid iterative reconstruction; DLR, deep learning reconstruction.

ing quality by reducing image noise, blooming artifacts and
improving SNR and CNR. Compared to Hybrid IR and FBP,
DLR has the advantage of maintaining higher image qual-
ity while minimizing the cumulative radiation exposure with
low tube voltage and current [15, 21]. Recently, the fast speed
reconstruction and radiation dose reduction have increased
the interest in the use of DLR. Previous studies have inves-
tigated the importance of radiation dose reduction by DLR
[15, 18]. The vast learning capacities of the deep convolu-
tional neural network allow for differentiation between the
signal and the noise, and consequently, DLR reduces artifacts
and noise separately from the signal. AiCE, a commercial-
ized DLR used here, was trained to the target images of ad-
vanced model-based iterative reconstruction (MBIR); addi-
tionally, it overcomes the limitations of MBIR with fast re-
construction time and improved spatial resolution and image

Volume 20, Number 4, 2021

quality [14, 22]. The reconstruction time is up to 3.5 images
per sec for MBIR [15]. The reconstruction times by Hybrid
IR and DLR were about 25 images per sec and 43 images per
sec, which was similar to [15].

The DLR significantly reduced image noise and improved
the attenuation for bilateral ICA segments, bilateral vertebral
arteries, bilateral M1 segments of the MCA, and basilar apex,
which led to significant improvement in the SNR and CNR.
We found a 33.68% and 44.70% reduction in noise when us-
ing DLR compared to Hybrid IR and FBP. Additionally, the
CNR was improved by 44.86% and 54.43% when using DLR
compared to Hybrid IR and FBP, respectively. The DLR algo-
rithm allowed an average increase in the SNR of 46.229% and
55.37% compared to Hybrid IR and FBP. No study has inves-
tigated the use of DLR in brain CTA despite previous stud-
ies investigating DLR in other body sections [13, 15, 16, 18].



A. Filtered-back projection

——FBP
~—Hybrid IR
——DLR

B. Hybrid IR C. Deep learning reconstruction

——FBP
~—Hybrid IR
——DLR

Normalized signal

Distance [mm]

Fig. 3. Examples of brain CTA scan for a coiled aneurysm in the left paraclinoid internal carotid artery. The blooming artifact from coiling reduced

in the deep learning reconstruction (DLR) (C) compared to filtered-back projection (FBP) (A) and hybrid iterative reconstruction (IR) (B). The coiling part

can be seen on the magnified images with the red dashed outline for FBP, Hybrid IR, and DLR. Deep learning reconstruction was rated 3 scores, while the

hybrid iterative and filtered-back projection were rated 2 by objective 2. The reduction blooming artifact and image sharpness were markedly improved in

the deep learning reconstruction than FBP and Hybrid IR in terms of the perimeter (D) and normalized profile curve of 10-90% edge rise distance (E).

Our results are consistent with previous studies investigating
CT imaging of other organs [5, 13-17] despite the difference
in location. The current and previous studies demonstrated
the improved imaging quality when using DLR compared to
Hybrid IR, MBIR, and FBP. We believe this improved image
quality with DLR may be due to advanced MBIR images used
for training DLR images. There was no significant difference
in the attenuation of the right and left cavernous segments of
the ICA among all image reconstruction methods. We con-
sider that this phenomenon was caused by beam hardening
artifacts in the ICA segments near the surrounding bone.

Kim et al. [16], investigating the commercialization of
DLR, TrueFidelity”™, found improved image noise com-
pared to Hybrid IR in Brain CT. Compared to previous work
[23, 24], we assessed DLR’s performance with more ROI’s in
various cerebral arteries. Lenfant ef al. [15] reported that
the use of AiCE allowed an approximately 25% noise reduc-
tion and 20% for both SNR and CNR improvement compared
to AIDR 3D in pulmonary CTA. In our work, greater SNR
and CNR improvements were observed in the posterior cra-
nial fossa, including the basilar artery and the bilateral ver-
tebral arteries. This indicates an advantage of DLR in diag-
nosing posterior fossa infarction, aneurysm, and dissection of

Volume 20, Number 4, 2021



A. Filtered-back projection

=

Normalized signal

——FBP
~———Hybrid IR
——DLR

B. Hybrid IR

C. Deep learning reconstruction

——FBP
~———Hybrid IR
——DLR

Distance [mm]

Fig. 4. Examples of brain CT angiographic scan for surgically clipped left paraclinoid aneurysms. The blooming artifact from surgically clips de-

creased in the deep learning reconstruction (DLR) (C) than hybrid iterative reconstruction (IR) (B) and filtered-back projection (FBP) (A). The surgical clip

can be seen on the magnified images with the red dashed outline for FBP, Hybrid IR, and DLR. The subjective score of images qualified from two observers on

deep learning reconstruction (score 4) was higher than hybrid iterative reconstruction (score 3) and filtered back projection (score 3). The use of DLR resulted

in sharper images with reduction of blooming artifact compared to FBP and Hybrid IR when considering the analysis of perimeter (D) and normalized profile

curve of 10-90% edge rise distance (E).

these arteries. Increased diagnostic value of DLR is deemed to
result from CNR, SNR, and noise reduction improvements.
Further work is required to investigate the diagnostic accu-
racy of DLR in the posterior fossa.

Subjectively, improvements were observed in image qual-
ity when using DLR compared to FBP and Hybrid IR. Ac-
cording to observer 2, DLR images showed significantly bet-
ter overall image quality than FBP and Hybrid IR; however,
no significant difference was observed between Hybrid IR
and DLR. The unfamiliar visual appearance of image features

Volume 20, Number 4, 2021

in DLR images may have affected this result, as reported pre-
viously [16, 25]. The high kVp tube voltage and variable fil-
ter kernels are the most effective approach to overcome the
blooming artifacts. Unfortunately, images at high kVp tube
voltage suffernlmstringname at the cost of increased radia-
tion dose. Therefore, the image reconstruction algorithms
and kernel settings are viable options to reduce the stent-
related blooming artifact without exposure to high radiation
doses. The reduction of blooming artifacts with DLR im-
proved the visualization of intracranial vessels in the regions
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A. Filtered-back projection B. Hybrid IR C. Deep learning reconstruction

Coronal

Sagittal

Fig. 5. Volume rendering of brain vessels extracted by bone removal from only CTA images. The volume-rendered image of brain CTA using deep
learning reconstruction (C) shows an increased number of cortical branches and completeness of clinoid and supraclinoid segments of ICA (white arrows)
compared to hybrid iterative (B) and filtered back projection (A). In addition, deep learning reconstruction allows more conspicuous visualization of the major
terminal branches, including frontobasal and frontopolar arteries (dashed circle). At the same time, they are not seen in the hybrid iterative reconstruction (IR)
and filtered back projection. Deep learning reconstruction provided significantly greater enhancement on small cortical branches of brain arteries, resulting

in markedly improved vascular visualization. The images were views in the same window level and width.

A. Filtered-back projection B. Hybrid IR C. Deep learning reconstruction

Fig. 6. Axial cut brain CTA images for visualization of intracranial vessel. Comparison of brain CTA between filtered-back projection (A), hybrid
iterative reconstruction (IR) (B), and deep learning reconstruction (C) in the vessel visualization. The deep learning reconstructions (C) demonstrated a good
vessel delineation wall with minimal image noise and sharp vessels compared to hybrid iterative (B) and filtered back projection (A) algorithms. The circle of
‘Willis can be clear on the magnified images of the red dashed outlines. The image quality of the deep learning reconstruction was assessed by 4 scores, 3 scores

for hybrid iterative reconstruction, and 2 scores for filtered-back projections by observer 1.
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containing a surgical clip or coil. Therefore, DLR should
have advantages in assessing the follow-up of aneurysms
treated with flow diverters, stents, and clipping due to lower
blooming artifacts. The use of DLR resulted in sharper im-
ages compared to FBP and Hybrid IR when considering anal-
ysis of 10-90% ERD and perimeter. However, hybrid iter-
ative reconstruction reduces the blooming artifact, which is
strongly related to the kernel strength [26, 27]. The result of
10-90% ERD and perimeter of the coiled aneurysm and sur-
gical clip in FBP was similar to Hybrid IR that may be affected
by reconstruction kernels used in our paper (FC23 kernel for
both FBP and Hybrid IR). Therefore, the optimized recon-
struction kernel is required for the reduction of blooming ar-
tifacts.

As seen in Fig. 5, the cortical segments of large vessels
and the clinoid and supraclinoid segments of the ICA were
well-demonstrated. The vessel completeness was the high-
est in the DLR, which are impacted less by noise. The use
of DLR has increased the spatial resolution [28, 29]. It has
been shown to significantly enhance small cortical branches
of brain arteries, resulting in markedly improved vascular vi-
sualization. In addition, increasing the volume or injection
rate of contrast media could enhance the small peripheral ves-
sels. Fig. 6 illustrates that the excellent vessel delineation wall
and sharp vessels were more evident in DLR than in Hybrid
IR and FBP. The improvement of the spatial resolution can
decrease errors in the evaluation of small vessel and carotid
stenosis. Thus, the deep learning image reconstruction may
be especially helpful for delineating major terminal branches,
e.g., frontobasal and frontopolar arteries, and accurately es-
timating the grade of carotid artery stenosis. Further studies
need to be done to establish these qualities of DLR as bene-
fits in detecting vascular abnormalities, including arteriove-
nous fistula, abnormalities of the collateral vessels, and dis-
tal aneurysms. The DLR resulted in sharper images and re-
duced the blooming artifact caused by surgical clips and coiled
aneurysm compared to FBP and Hybrid IR without increas-
ing the tube voltage that leads to high radiation dose for pa-
tients. The size of the surgical clip and coiled aneurysm ap-
peared larger than its actual size due to blooming artifacts in
the FBP and Hybrid IR than DLR. The visualization of in-
tracranial vessels in the regions containing a surgical clip or
coils could be evaluated accurately with DLR.

This work has several limitations. First, this was a ret-
rospective study that only assessed a relatively small number
of patients. Second, pathologic findings were not sufficiently
studied. Third, we did not compare the radiation exposure in
each reconstruction method in our study. In addition, image
reconstructions in this study were provided by one CT.

Furthermore, the evaluation of image quality of brain
CTA with deep learning reconstruction by other vendors is
needed. Lastly, the analysis of 10-90% ERD and perimeter
in the surgical clip and coiled aneurysm was evaluated for
only two patients and limited to coils and surgical clip types.
Despite these limitations, improving vascular enhancement
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provides better visualization of small branches in the brain
arteries without increasing the overall iodine dose delivery.
As mentioned above, the image quality is improved in the
deep learning reconstruction compared to filtered-back pro-
jection and hybrid iterative reconstruction.

5. Conclusions

The deep learning reconstruction method generally im-
proves the image quality of brain CTA in terms of objective
measurement and subjective grading compared with filtered
back projection and hybrid iterative reconstruction methods.
Especially, deep learning reconstruction is deemed advanta-
geous for better depicting small vessels than FBP and Hybrid
IR.
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