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Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-
activating polypeptide (PACAP) are twowidely expressed neuropep-
tideswith important immunomodulatory andneuroprotectiveprop-
erties in the central nervous system (CNS). Both VIP and PACAP have
been implicated in several neurological diseases and have shown
favourable eȞfects in diȞferent animal models of multiple sclerosis
(MS). MS is a chronic inȠlammatory and neurodegenerative disease
of the CNS aȞfecting over 2.5 million people worldwide. The dis-
ease is characterised by extensive neuroinȠlammation, demyelina-
tion and axonal loss. Currently, there is no cure for MS, with treat-
ment options only displaying partial eȞficacy. Importantly, epidemi-
ological studies in the MS population have demonstrated that there
is a high incidence of neurological and psychological comorbidities
suchasdepression, anxiety, epilepsy and strokeamongaȞȠlictedpeo-
ple. Hence, given thewidespreadprotective eȞfects of theVIP/PACAP
system in the CNS, this review will aim at exploring the beneficial
roles of VIP and PACAP in ameliorating some of the most common
neurological comorbidities associatedwithMS. Thefinal scopeof the
review is to putmore emphasis on how targeting the VIP/PACAP sys-
tem may be an eȞfective therapeutic strategy to modify MS disease
course and its associated comorbidities.
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1. Introduction
1.1 Neuropeptides

Over the last couple of decades, general knowledge on
the biological role of neuropeptides in the central nervous
system (CNS) has increased substantially. Currently, more
than a hundred different neuropeptides have been described
in the CNS, most of which are involved in the modulation
of different brain functions [1–5]. Neuropeptides are small,
amino acid-based molecules that can influence neuronal ac-
tivity, neuro-immune responses and whose dysregulations
have been implicated in the pathogenesis of several mental
illnesses such as Alzheimer’s or Parkinson’s disease, depres-
sion, anxiety, stroke, migraines, epilepsy andmultiple sclero-
sis [6–15].

It has become increasingly clear that certain neuropep-
tides such as neuropeptide Y (NPY), somatostatin, calcitonin
gene-related peptide (CGRP), vasoactive intestinal peptide
(VIP) and pituitary adenylate cyclase-activating polypeptide
(PACAP) exert anti-inflammatory effects in the CNS [16].
This has resulted in research focusing on these neuropeptides
as potential therapeutic targets for the treatment of neuroin-
flammatory diseases [17–21].
1.2 PACAP and VIP

The neuropeptides pituitary adenylate cyclase-activating
polypeptide (PACAP) and vasoactive intestinal peptide (VIP)
arewidely distributed throughout theCNS and the peripheral
nervous system (PNS) and are involved in neuroprotection
and immunomodulation [22–27]. The activities of PACAP
and VIP are mediated by three G protein-coupled receptors
(GPCRs), namely PAC1, VPAC1 and VPAC2 [28] (Fig. 1).

PACAP binds with high affinity to both PAC1, VPAC1
and VPAC2 receptors and its activity is believed to be pre-
dominantly neuroprotective [29–31]. For example, PACAP
can prevent neuronal cell death after ischemia [32] and can
promote axonal regeneration after spinal cord injury [33].
In contrast, VIP binds less efficiently to PAC1 receptors,
whereas its exhibits similar high affinities for VPAC1 and
VPAC2 receptors as PACAP [34]. The latter two receptors’
activities are thought to be mainly associated with immune
modulatory roles in the CNS as well as in peripheral organs
[35–37]. Given VIP binding preference towards VPAC re-
ceptor subtypes, this peptide has emerged as a potential anti-
inflammatory target to treat multiple sclerosis (MS) and per-
haps, other inflammatory diseases [38, 39]. For example, in
human rheumatoid arthritis (RA), VIP treatment downreg-
ulated chemokines production and interleukin-6 (IL-6) and
decreased the levels of other pro-inflammatory mediators in
RA patients [40]. Additionally, a single intracerebroventric-
ular injection of VIP was able to attenuate microglial activa-
tion and prevented neurodegeneration in animal models of
Parkinson’s disease [41].
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Fig. 1. PACAP andVIP and their downstream effects. A schematic overview of the binding of VIP and PACAP to the PAC1, VPAC1 and VPAC2 receptor
with its main down-stream effects.

1.3 VIP/PACAP system in multiple sclerosis
1.3.1 Multiple sclerosis

MS is a chronic neuroinflammatory disease of the CNS
that is characterised by episodes of demyelination within the
CNS, with consequent axonal loss and gliosis. Both genetic
vulnerability and/or exposure to certain environmental pol-
lutants or unhealthy life styles are considered risk factors for
disease development [42, 43]. The prevalence ofMS has been
increasing over the last decade with currently approximately
2.8 million people suffering from the disease worldwide [44].

There is a clear involvement of the immune system inMS,
with the infiltration of auto-reactive T cells into the CNS be-
lieved to be a major pathophysiological event in disease ae-
tiology [45]. Moreover, B cells, natural killer (NK) cells, as-
trocytes and microglia have also been shown to exacerbate
CNS inflammation, thus playing a role in both disease onset
and progression [46–48]. In fact, the heightened inflamma-
tory state of the CNS observed inMS is believed to exacerbate
the ongoing loss of myelin and axonal degeneration caused
by a myelin-targeted autoimmunity [49]. A brief overview
of current knowledge on the role of the VIP/PACAP system
in neuroinflammation and myelination in MS is highlighted
below.

1.3.2 VIP/PACAP and neuroinflammation in multiple sclerosis
Given the known neuroprotective and immunomodula-

tory roles of the VIP/PACAP system in the body, these en-
dogenous neuropeptides have been thoroughly investigated
inMS. InMSpatients, it was found that both PACAP andVIP
levels are reduced in the cerebrospinal fluid [50]. Moreover,
using global and conditional knockouts for VIP, PACAP and
their receptors, Waschek and colleagues have been able to
dissect many of the neuroprotective and immunomodula-
tory actions elicited by these peptides in acute monopha-
sic MOG33−35 experimental autoimmune encephalomyelitis

(EAE) models, a well-established mouse model of MS [51–
54]. These authors revealed that mice lacking PACAP or
VPAC2 displayed more severe and prolonged disease than
wild type controls while VIP or VPAC1 knockout mice
showed EAE resistance [53–55].

When examining the effects of VIP and PACAP at a cel-
lular level in MS models, a clear immunomodulatory influ-
ence can be observed. Extensive research has focused on the
effect of PACAP and VIP on T-cell function, but additional
effects have been reported on other immune cell popula-
tions. VIP and PACAP have been shown to regulate Th1 and
Th17 profiles, triggering the shift towards anti-inflammatory
phenotypes, whilst also assisting in the recruitment of anti-
inflammatory Th2 and Treg cells [17, 39, 51–53, 56, 57].
Additionally, PACAP−/− and VPAC2−/− mice subjected to
MOG33−35 induced EAE showed increased immune cell in-
filtration in the CNS, whereas reduced infiltration was seen
in VIP−/− and VPAC1−/− mice [51, 53–55]. In vitro anal-
yses also determined that PACAP or VIP treatment in cul-
tured cells and in EAE models resulted in reduced levels of
pro-inflammatory cytokines, chemokines, chemokine recep-
tors and inducible nitric oxide synthase (iNOS) produced by
T-cells, macrophages and microglia [39, 58–63]. This could
potentially contribute to the observed neuroprotective effect,
as a reduced inflammatorymicroenvironment is likely to pro-
mote the upregulation of cell survival genes by neurons and
glia [64]. Moreover, PACAP treatment was also shown to
suppress the function of antigen presenting cells in the EAE
model, which is an important mediator of T-cell differentia-
tion [56, 65].

Taken together, these findings corroborate the idea that
VIP and PACAP play a critical role in the modulation of the
inflammatory response of the CNS both in vivo and in vitro.
However, given the diversified activities of either peptides in
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several pathological domains of the disease, there is the need
for additional research to further breakdown the differential
effects of these peptides and their receptors on the immune
system and the CNS.

1.3.3 VIP/PACAP and myelination

In addition to the established immunomodulatory and
neuroprotective effects of VIP and PACAP in the nervous
system, there is evidence to indicate that both neuropep-
tides may be critically involved in regulating certain aspects
of oligodendrocyte and Schwann cell proliferation and mat-
uration [66, 67].

Oligodendrocytes are the myelin producing cells of the
CNS and the main cell-type affected in MS. PACAP is a
known stimulator of oligodendrocyte progenitor cell prolif-
eration, although it delays oligodendrocytes maturation in
vitro [68, 69]. These findings have been substantiated using
knockout mice, where PACAP-deficiency anticipated CNS
myelination, although within a limited time window [70].
As far as these data may appear counterintuitive, the authors
suggested that the physiological and transient inhibitory role
of endogenous PACAP on myelination may serve to reduce
the secretion of factors that impede axonal development and
synapse formation by myelinating glia, and therefore, pro-
mote neuronal outgrowth over myelination, at least dur-
ing the earliest stages of CNS development, when the for-
mer process should be prioritised. In this scenario, endoge-
nous PACAP acts as a master regulator of CNS maturation.
Nonetheless, additional investigations are warranted to clar-
ify the exact involvement of PACAP/VIP receptors in rela-
tionship to CNS myelination at different developmental ages
and in adulthood, as it is possible that a developmentally reg-
ulated expression of PACAP/VIP receptors or specific recep-
tor isoforms may be at the basis of a diversified activity of the
peptides, a mechanism already proposed for cortical develop-
ment [71].

In Schwann cells, the myelin-producing cells of the PNS,
PACAP and VIP activities are more obvious. In fact, as
shown in PACAP knockout mice, genetic ablation of the
PACAP gene results in impaired axon regeneration upon fa-
cial nerve injury [72]. In vitro, PACAP or VIP treatment of
cultured Schwann cells induces the up-regulation of myelin-
related proteins, suggesting that PACAP may enhance PNS
myelination [73–75]. VIP, on the other hand, is believed to
play a more differentiating role in oligodendrocyte progeni-
tor cells in the CNS [67]. VIP/VPAC1 signaling was shown
to reduce the severity of ibotenate-induced white matter le-
sions under inflammatory conditions [76]. Moreover, there
are some indications of a myelin deficit in the CNS of VIP-
deficient mice, although more in-depth studies are needed
before this can be confirmed [67]. In the PNS, VIP adminis-
tration in the proximity of transected nerves promoted early
myelination and re-myelination of damaged nerves, and it in-
duced the expression of myelin-related proteins by Schwann
cells [77].

Thus, there are indications of a differential effect of VIP
and PACAP in regulating CNS and PNS myelination. Al-
though it is beyond the scope of this review to further dive
into the details of the role of VIP and PACAP in myelin de-
velopment, there are excellent reviews [67, 73] summarizing
some of the current knowledge in the field.
1.4 Multiple sclerosis and associated comorbidities

Recent studies have demonstrated both a higher incidence
and prevalence of comorbidities in MS patients compared
with the healthy population [78, 79]. MS comorbidities often
appear in people suffering from concurrent vascular and/or
metabolic diseases, as well as certain neurological and psy-
chiatric disorders [80–84]. Epidemiological studies in MS
patients have demonstrated that afflicted people also have a
higher chance of developing epilepsy [83], migraines [84], as
well as affective/emotional disturbances such as depression
or anxiety [79]. In view of the comorbidities often seen inMS
patients and the critical role of neuropeptides in many patho-
logical domains of these comorbidities, exploring the mecha-
nisms and the extent at which both PACAP and VIP peptides
can contribute to ameliorate the comorbidities of MS is be-
coming a hot topic. For this purpose, this review will sum-
marise literature on the role of neuropeptides, focussing on
the role of VIP and PACAP in the neurological comorbidi-
ties of MS, and how these neuropeptides could contribute to
improve the clinical presentation of MS and disease course.

2. The role of PACAP and VIP neuropeptides
in the comorbidities of MS
2.1 Depression, anxiety and bipolar disorder

MS is a devastating disease that comes with physical as
well as psychological hardship, which may ultimately lead to
the development of mood disorders or facilitate its onset in
vulnerable people. One of the most prevalent comorbidi-
ties seen in MS patients is depression (23.7%), followed by
anxiety (21.9%) and bipolar disorder (BD; 5.83%) [79]. Inter-
estingly, these disorders are all associated with neurochemi-
cal evidence of CNS inflammation, supporting a pathological
linkwithMS [12, 85–88]. Moreover, depression, anxiety and
BD are all known to be influenced and triggered by stress, a
risk factor able to also affect oligodendrocyte’s health [89–93].
Here, the role of PACAP and VIP in depression, anxiety and
BD is highlighted.

Several neuropeptides such as NPY, somatostatin, galanin
and orexin, at different extents, have been implicated in the
pathology of affective disorders and have been suggested as
potential therapeutic targets [21, 94–101]. The VIP/PACAP
system has also been implicated with depression and anxiety,
although there are some conflicting findings. In some studies
using PACAP-deficient mice, PACAP gene ablation increased
depressive-like and anxiety-like behavior under stress con-
ditions [102–104], whereas in a study by Lehmann and col-
leagues it was found that PACAP−/− mice had reduced anx-
iety and did not develop depressive-like behaviors [105].
However, this study used social defeat to trigger chronic
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stress whereas the other studies either used naïve mice or
mice exposed to a milder form of stress. Thus, PACAP−/−

mice might exhibit a whole spectrum of behavioral disor-
ders, depending on the initial source of stress, type and du-
ration. In a clinical study, VIP serum levels negatively cor-
related with depression and anxiety state and positively cor-
related with brain volume of the left amygdala [106]. Simi-
larly, decreased serum levels of VIP were detected in a rat de-
pressionmodel [107]. Moreover, single nucleotide polymor-
phisms (SNPs) in the VIPR2 gene and VIP gene were found
to be associated with unipolar major depression and BD, re-
spectively [108]. In addition, a VIP injection into the CA1
region of the hippocampus of rats showing anxiety-like be-
haviors attenuated the symptoms [109], although, for unex-
plained reasons, VIP antagonist was not able to abolish VIP-
mediated behavioral improvements.

Corticosterone, one of the hormones produced by the
adrenal gland as part of the hypothalamic-pituitary-adrenal
axis (HPA-axis), is known to play a critical role in the devel-
opment of depression, anxiety and bipolar disorder [92, 110,
111]. Under stress conditions, PACAP-deficient mice exhib-
ited an attenuated corticosterone response, which occurred
irrespectively of the development of depressive-like behav-
iors [105, 112]. Moreover, PACAP injections into the amyg-
dala and bed nucleus of the stria terminalis (BNST) have been
found to reliably increase corticosterone levels and anxiety-
like behaviors in rodents [113–115]. Interestingly, under
chronic stress conditions there was a region-specific increase
of PACAP and PAC1, but not VIP and VPAC1-2 levels in the
BNST [116]. VIP has also been implicated in the control of
glucocorticoid hormones release, although in a work focused
on studying its effects in relationship to circadian rhythmic-
ity [117]. Thus, there appears to be a link between PACAP,
stress and the HPA axis, which could be relevant for the de-
velopment of certain affective disorders.

In summary, the VIP/PACAP system appears to be a key
player in the modulation of mood and other affective distur-
bances. Each peptide exerts intrinsic regulatory functions in
brain homeostasis and it is not surprising that dysfunctional
regulation of PACAP or VIP in specific brain regions or cell
populationsmay be critical for the development of conditions
such as depression, anxiety and bipolar disorder. Future re-
search is warranted to explore if targeting this neuropeptide
system can be used as an effective therapeutic strategy to treat
mood disorders.

2.2 Psychotic disorders-focus on schizophrenia
Psychotic disorders encompass a broad range of mental

illnesses such as schizophrenia, affective psychosis, delirium
and drug-induced psychosis. Approximately 2–4% of MS pa-
tients have reported to experience psychotic episodes at some
point during the course of the disease, which is a consider-
ably higher rate than in the general population [118]. In line
withMS pathology, neuroinflammation and increased oxida-
tive stress events in the CNS are pathogenic events that are
associated with the occurrence of certain psychotic disorders

[119, 120].
Several neuropeptides have shown to activate signalling

pathways that are implicated in the genesis of psychosis.
Clear associations have been found between schizophrenia
and neuropeptide Y, neurotensin, somatostatin and oxy-
tocin and the number of psychotic episodes (reviewed in
[121, 122]). Moreover, a genetic link between neuregulin-
1 (NRG1), cholecystokinin A and schizophrenia has been
described [123–127]. Similarly, genetic polymorphisms of
genes encoding PACAP peptide or its receptors have also
been correlated with schizophrenia [128–132], although for
the former gene target (PACAP gene, aka Adcyap1), a replica-
tion study failed to reproduce the same findings [133].

There are certain indications that neuroinflammation can
lead to the development of schizophrenia and psychotic
episodes. In schizophrenia and first-time psychosis patients,
studies have reported increased levels of pro-inflammatory
cytokines and decreased levels of the anti-inflammatory
cytokine IL-2 in the CNS [134, 135]. Additionally, in-
creased microglia activation has been observed in recent-
onset schizophrenic patients [136, 137]. However, since no
comprehensive animal model exists for psychiatric diseases,
reliable strategies to study neuroinflammation at a molec-
ular level in psychiatric illnesses remains a daunting task.
Furthermore, since neuroinflammation in schizophrenia is
a relatively novel concept, the exact mechanisms through
which it could contribute to disease aetiology remain uncer-
tain. However, it would be interesting to explore if the anti-
inflammatory activities of the VIP/PACAP system could po-
tentially attenuate the CNS inflammation seen in people with
psychotic disorders.

There is a leading hypothesis featuring schizophrenia as
a neurodevelopmental disorder [138, 139]. In post mortem
brain tissue from schizophrenic patients, the pool of neural
stem cells (NSC) is reduced, suggesting decreased NSC pro-
liferative activity [140]. Moreover, schizophrenia is charac-
terised by abnormal connectivity among brain regions and
axonal abnormalities [141–143]. A noteworthy link be-
tween brain development, schizophrenia and white matter
can be seen for NRG1. NRG1 signals through disrupted-
in-schizophrenia 1 (DISC1) and interestingly, PACAP has
been found to affect DISC1 signalling as well [144]. In ad-
dition, both NRG1 and DISC1 are involved in neuronal mi-
gration, axon ensheathment and oligodendrocyte matura-
tion [145, 146], suggesting a role for PACAP in modulating
NRG1-mediated activities. Moreover, PACAP, PAC1 and
DISC1 are known to be essential components of the cellular
machinery that regulates neurite outgrowth [144, 147, 148].
PACAP stimulated NSC proliferation in mice and prevented
the reduction of NSCs in a ketamine-induced schizophrenia-
like mouse model via PAC1 receptor activation [149, 150].

Taken together, these data suggest that PACAP (and per-
haps other PACAP/VIP receptor agonists) could aid in the
treatment of schizophrenia. Based on the reported pro-
mitotic activities of PACAP in NSCs, it is reasonable to hy-
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pothesise that PACAP treatment could aid in replenishing the
depleted pool of NSCs in the brain of schizophrenic patients,
hence promoting neurogenesis. Additionally, it could reduce
the chronic CNS inflammation that seems to also contribute
to the development of psychotic disorders. Whilst additional
investigations into this topic are still needed, there is already
some indication that the beneficial actions of certain neu-
roleptic drugs can occur by mechanisms that involve restor-
ing the dysfunctional VIP/PACAP signalling in the brain
[151].

2.3 Epilepsy
Epilepsy is a chronic neurological disorder that is charac-

terised by recurring and unprovoked seizures [152]. Seizures
occur when the balance between excitatory and inhibitory
signals in the brain is disrupted [152]. Epilepsy is one of
the most common neurological disorders that is dispropor-
tionately prevalent in MS patients compared to the general
population [153]. It has been reported that the prevalence
of epilepsy is six times higher in MS patients than in the
healthy population [154]. This is not surprising, as both le-
sions, inflammation and neurotransmitter imbalances within
the CNS of people with MS may trigger such disabling ail-
ment, with evidence also suggesting that the frequency of
seizures tends to increase as the disease progresses [155].

As mentioned, an imbalance in neuronal activity is a criti-
cal neurochemical feature of seizure episodes [152]. It is well-
documented that neuropeptides can contribute to reset this
imbalance, including PACAP andVIP [156, 157]. Despite the
emerging evidence, to date only one neuropeptide-based hor-
mone, adrenocorticotropic hormone (ACTH), is currently
being tested in clinical trials for the treatment of seizures in a
rare disease that affects infants (West syndrome), whereas in-
vestigations on the efficacy of other neuropeptides in epilepsy
has been limited to preclinical studies [152, 158].

PACAP and VIP are released during high neuronal fir-
ing activity [159, 160]. VIP exerts an overall excitatory effect
on synaptic transmission, which is mediated by VPAC1 and
VPAC2 receptors [161, 162]. In hippocampal surgical sam-
ples of patients suffering from human temporal lobe epilepsy,
both VPAC1 and VPAC2 receptors were shown to be up-
regulated [15] and up-regulation of VPAC receptor subtypes
has been associated with increased neuronal survival [161].
These data support the idea that hippocampal VPAC recep-
tors are increased as a homeostatic mechanism to prevent ex-
cessive neuronal damage/death caused by epileptic episodes.

Research into the role of PACAP in epilepsy has been cen-
tred on its ability to modulate microglia and glutamate trans-
mission [163–165]. The expression of PACAP increases af-
ter kainic acid-induced seizures in rats, withmany suggesting
that this seizure-induced increase in PACAP may help to re-
duce excitotoxicity and promote overall neuroprotection to
protect the CNS from damage [163]. Specifically, PACAP
acts onmicroglia to promote the release of anti-inflammatory
factors that polarise microglia towards an anti-inflammatory
phenotype, whilst concurrently increasing the expression of

glutamate transporters that promote glutamate re-uptake, re-
sulting in two parallel protective mechanisms [166, 167].

Magnetic resonance imaging and pathological studies
have proposed that cortical inflammation, demyelination and
greymatter damage inMSpatientsmay be responsible for the
onset and development of epileptic seizures [155]. However,
epilepsy is an active process, so it is difficult to determine if
any aspect of MS pathology may specifically promote or trig-
ger seizure episodes, especially given that MS patients often
present with unique pathogenic profiles and distributions of
lesion within the CNS. This should be considered as a further
incentive to investmore in researching the efficacy of PACAP
and VIP as therapeutic targets for epilepsy and MS, as both
conditions are often comorbid and targeting these peptides
or their receptors may prove to be effective in ameliorating
epilepsy associated to MS.

2.4 Stroke
Stroke is the leading cause of adult disability, with one in

four people globally experiencing a stroke event in their life-
time [168]. Stroke occurs when there is a long-lasting in-
terruption or severe reduction of cerebral blood flow, which
triggers a cascade of pathological events including excitotox-
icity, oxidative stress, blood brain barrier (BBB) leakage and
neuronal cell death [169]. Inflammatory processes, including
the autoimmune activities ofMS are thought to contribute to
endothelial dysfunction and atherosclerosis, which may pro-
mote the development of micro- and macro-vascular alter-
ations that culminate in ischaemic or hemorrhagic stroke. As
such, it should not be surprising that compared with the gen-
eral population, people with MS are at increased risk of ex-
periencing a stroke, and if they do, they tend to suffer more
severe symptoms [170].

It has been shown that administration of PACAP in ani-
mal models of stroke is neuroprotective and causes a reduc-
tion of both neurological deficits and the degree of pathologi-
cal change of the CNS tissue of the ischaemic brain area [26].
There is an increase in inflammation post-stroke [13, 171],
and PACAP and VIP are well-known anti-inflammatory
agents in the CNS [10]. Both peptides are expressed in dif-
ferent types of immune cells, including microglia and astro-
cytes [37, 172]. Masmoudi-Kouki et al. [173] suggested that
the neurotrophic and neuroprotective effects of PACAP and
VIP can be partly accounted for by their activities on astro-
cytes. This idea is supported by the increase in astrocytic
PACAP and PAC1 expression immediately following cere-
bral ischemia [174]. Additionally, exposure of cultured as-
trocytes to PACAP was found to be capable of up-regulating
glutamate uptake via PAC1-mediated signalling, suggesting
that the PACAP-PAC1 axis can reduce post-stroke excitotox-
icity caused by excessive glutamate release [167].

In a study, treatment with VIP has shown to reduce brain
damage and to promote neurogenesis following ischemic in-
jury in the rat brain [175], although it should be highlighted
that most of the neuroprotective effects reported for exper-
imental stroke are related to PACAP and not VIP. Indeed,
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studies in PACAP knockout mice suggest that the peptide
prevents post-ischemic neuronal cell death [176, 177]. In an-
imal models of stroke, intranasal administration of PACAP
reduced infarct volume and improved functional recovery
[178]. Additionally, PACAP-dependent polarisation of mi-
croglia towards an anti-inflammatory phenotype resulted in
improved functional recovery in mice post-ischemic mice
[179].

These studies provide evidence that both PACAP and
VIP have potential therapeutic validity for the treatment of
stroke, and may find application to aid in the recovery of
neuronal injury post-stroke due to their neuroprotective and
anti-inflammatory functions.

2.5 Neuropathic pain
Neuropathic pain is defined as pain caused by a damage or

disease to the somatosensory nervous system [180]. WHO
defines MS as one of the main CNS diseases responsible for
the development of central neuropathic pain, followed by
traumatic causes and other conditions such as spinal cord in-
jury, traumatic brain injury and stroke, with neuropathic pain
reported by about 86% of MS patients [181]. Neuropeptides
are key regulators of peripheral nociception and contribute
to the mechanisms regulating central sensitisation to pain.
In many cases, chronic inflammation, ion channel imbalance
and a lack of inhibition in the dorsal horn of the spinal cord
partake inmaintaining pain sensation [182]. PACAP andVIP
are expressed across key anatomical regions/structures that
are important in somatosensory processing and the transmis-
sion of pain signals [183]. In the PNS, these includes the dor-
sal root ganglia and peripheral nerves, whereas in the CNS,
these peptides are detected in regions that process pain sen-
sation and the associated emotional load, including the tha-
lamus, periaqueductal grey (PAG), parabrachial nucleus and
amygdala [22, 184, 185]. Despite the anatomical relevance of
PACAP and VIP in neuropathic pain pathways, their distinct
roles in the pathophysiology of neuropathic pain remains to
be clarified. Studies using PACAP knockout mice have indi-
cated that the peptide plays an excitatory role in pain trans-
mission, as knockout animals do not develop symptoms of
neuropathy after a spinal nerve transection, although they re-
tain normal nociceptive responses [186]. These findings have
been supported by subsequent studies showing that PACAP
up-regulation in the dorsal horn is necessary for spinal sen-
sitation and the development of neuropathic pain [187].

There is evidence to indicate that intrathecal injections of
PACAP in mice cause both hyperalgesia and allodynia, two
common symptoms of neuropathy [188]. In another study,
intrathecal PACAP caused prolonged allodynia that was as-
sociated with sustained astrocytic activation [189]. Admin-
istration of a PAC1 receptor antagonist inhibited PACAP-
and nerve injury-induced allodynia, suggesting a crucial role
of PACAP-PAC1 interaction in the induction of neuropathic
pain [190].

The overlap between pain and inflammatory signalling
has been extensively studied and reviewed [189]. Addition-

ally, an association between axonal regeneration and pain
has been hypothesised, with evidence suggesting that acceler-
ated regeneration may ameliorate pain of nerve origin [182].
PACAP and VIP have well-described roles in promoting ax-
onal regeneration after peripheral nerve injury [34, 191]. For
example, RNA sequencing data revealed the ADCYAP1, the
gene encoding for the PACAPpeptide, was themost differen-
tially expressed gene associated with post-surgical nerve re-
generation in patients with carpal tunnel syndrome [192].

Most studies have suggested PACAP has a dominant role
in pain pathophysiology compared to VIP. However, Dick-
inson and collaborators identified distinct regulatory roles of
spinal PAC1 and VPAC receptor subtypes in animals with
experimentally-induced neuropathy [193], also implicating
the VIP-VPAC axis as a further contributor to pain-related
regulatory responses. Centrally, PACAP activity in the amyg-
dala has been linked with the emotional expression of pain
[185], whereas VIP expression in the PAG has been corre-
lated with the development of co-morbid behaviors in nerve-
injured rats [22]. Nonetheless, taken together these data
pinpoint the critical role of the PACAP/VIP system in per-
petuating both spinal and supraspinal pathways that are in-
volved in the transmission of pain originating from periph-
eral nerve damage as well as its emotional components. With
this inmind, it is conceivable that strategies aimed at blocking
PACAP/VIP signalingmay be beneficial inmitigating neuro-
pathic pain, a disabling comorbid event associated with MS.

2.6 Migraine
Migraine is a complex and debilitating headache disorder

that affects one in seven people worldwide [194]. Despite
clinically manifesting as recurrent attacks of headache, mi-
graines are associated with a range of symptoms (i.e., nau-
sea, vomiting, and extreme sensitivity to light and sound) and
are linked to other conditions like depression, anxiety, sleep
disorders, chronic fatigue and cognitive dysfunction [195].
The role of neuropeptides in migraine in an active area of
research. The most studied neuropeptide in relation to mi-
graine is CGRP [196]. CGRP administration has been shown
to induce migraine-like headaches that are indistinguishable
from spontaneous migraine attacks [197, 198]. This has led
to the discovery and use of CGRP antagonists that are effec-
tive in treating migraine symptoms [198].

PACAP has been shown to act in a similar way to CGRP,
with infusion of PACAP inducing headaches in healthy vol-
unteers [199]. Similarly, plasma levels of CGRP and PACAP
are elevated following a migraine attack [200]. Interest in
PACAP has a therapeutic target for migraine, stems from the
discovery that PACAP-induced migraine did not results in
an increase in CGRP, suggesting an alternate route of mi-
graine initiation [201]. Human provocation studies have
provided the most robust evidence describing the involve-
ment of PACAP in migraine [201]. Intravenous administra-
tion of PACAP produced immediate headache in healthy par-
ticipants, and delayed migraine in migraine sufferers [203].
Additionally, PACAP induced pronounced dilations of extra-
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cranial arteries [202]. This dilation was further confirmed
using magnetic resonance angiography that caused dilation
of the middle meningeal artery in participants who reported
migraine after PACAP infusion [203].

Despite sharing similar anatomical distribution and va-
sodilation properties to PACAP, the role of VIP in migraine
remains controversial. Previously, it was suggested that VIP
was unable to induce migraine [188]. Additionally, Bertels
and colleagues, investigated the impact of PACAP and VIP
on functional brain connectivity using functional magnetic
resonance imaging, and revealed that PACAP, but not VIP,
altered connectivity that coincided with the development of
migraine in migraine patients [201]. However, recent stud-
ies have reported contrasting findings. Pellesi and colleagues,
demonstrated that a 2-hour infusion of VIP could induce mi-
graine attacks in 71%of patientswithmigraineswithout aura,
similarly to PACAP [204]. They revealed that this induction
was caused by dilation of cranial arteries that was mediated
by VPAC1 and VPAC2 receptors, contradicting previous no-
tions that migraine was induced via PAC1 receptor activa-
tion [204]. This could explain why novel therapeutics tar-
geting PAC1 have had low efficacy in preventing migraine
attacks in clinical trials [201, 205, 206]. Therefore, more re-
search is needed to elucidate the specific role of each recep-
tor in migraine induction andmaintenance. For example, re-
cent studies have proposed a link between mast cell degran-
ulation and migraine pathology in PACAP-induced attacks,
however the receptormediating this effect has not been iden-
tified [207]. Chronic inflammation has been shown to pro-
mote the maintenance of pain states. As such, both migraine
and neuropathic pain demonstrate the delicate balance of tar-
geting PACAP and VIP in neurological disease due to their
pleiotropic functions and global expression.

3. PACAP and VIP as a broad-spectrum
therapy forMS and its associated
comorbidities

The broad beneficial functions of PACAP and VIP in the
CNS make them ideal neuroprotective agents, capable of
promoting neuronal survival, function and protect neurons
against inflammation. These peptides can be useful in a myr-
iad of neurological diseases. In addition, as highlighted in this
review, the VIP/PACAP system is clearly implicated in ame-
liorating several neurological comorbidities associated with
MS (Fig. 2).

As highlighted in this review, in MS the VIP/PACAP sys-
tem has shown to partly counteract autoimmunity. The neu-
ropeptide system causes a shift from autoreactive T cells to
anti-inflammatory state of T-cells by promoting the recruit-
ment of anti-inflammatory Th2 and Treg cells as well as sev-
eral other immunomodulatory effects (see 1.3.2; reviewed in
[57, 208]). During the active stages of the disease, the MS
brain shows signs of white matter inflammation in lesioned
areas, which is believed to cause not only myelin damage,
but also oligodendrocyte cell loss [49]. As discussed above,

an increased inflammatory milieu in the CNS is also a major
trigger of the comorbidities associated with MS. Strikingly,
CNS white matter pathology has recently been suggested as
a contributing factor to disease pathology in schizophrenia,
epilepsy and stroke [89, 137, 209–215]. Thus, despite the
different clinical presentations and domains of some of the
pathologies discussed in this review, the underlying similari-
ties at a molecular level highlight a potential link with a dys-
functional VIP/PACAP system and identify it as a valid target
for therapeutic intervention that could span these disorders.

This idea is further substantiated by the overlapping pos-
itive effects of the VIP/PACAP system in MS and its co-
morbidities. The multiple actions of this neuropeptide sys-
tem could mean that various downstream pathways are
likely to be targeted. We predict that targeting this system
could potentially ameliorate MS symptoms both by protect-
ing oligodendrocytes, likely through a reduction of the pro-
inflammatory CNS microenvironment, while also positively
affecting comorbid conditions arising as the disease pro-
gresses. For example, for those MS patients who also experi-
ence strokes, targeting the VIP/PACAP system could stimu-
late neuroprotection and neurogenesis, inhibit apoptosis and
promote axon regeneration, while also triggering an anti-
inflammatory phenotype of activated glial cells, which could
help preventing oligodendrocyte cell death [10, 216, 217].

PACAP and VIP have been tested in clinical trials as ther-
apeutics for peripheral disorders such as arthritis [218], in
which when injected intraperitoneally, the peptides reduced
the incidence and severity of the disease, even when admin-
istered in the late stages [40]. Moreover, since data from the
aforementioned migraine studies show that stimulating the
VIP/PACAP system can lead to an increased incidence of mi-
graines, several clinical trials are currently exploring the op-
tion of blocking VIP/PACAP activity in the brain to help mi-
graine patients. Outside of the brain, there has been some
success in using a VPAC2 agonist in asthma patients because
of its bronchodilatory effects [219]. Of note, a recent study
described the prospect of two well-known broad-spectrum
antibiotics as potential compounds to target the PAC1 re-
ceptor. Doxycycline and Minocycline were shown to act as
positive allosteric modulators of PAC1, stimulating axonal
regeneration activities in cultured Schwann cells [191, 220].
These findings highlight that targeting the VIP/PACAP sys-
tem is a feasible therapeutic approach for treating a spectrum
of pathological conditions.

To achieve potential beneficial effects of PACAP and VIP
in the CNS, passage through the blood brain barrier (BBB)
must be improved. To overcome this issue, recently Yu and
colleagues generated a VIP-TAT construct with enhanced ef-
ficiency to cross the BBB, which showed increased neuropro-
tection compared with VIP alone in an 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkin-
son’s disease [221, 222]. Therefore, in view of the current ad-
vances in biotechnology, it is reasonable to anticipate more
research into PACAP and VIP and more opportunities for
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Fig. 2. Immunomodulation andneuroprotection functions of PACAP andVIP inmultiple sclerosis andneurological comorbidities. Both PACAP
and VIP are promising neuropeptides that can aid in MS and the associated neurological comorbidities of MS through the potent immunomodulatory actions
and neuroprotective effects of both these peptides.

these peptides to be used as therapeutics for neurological and
cognitive diseases.

However, it is important to recognize that targeting the
VIP/PACAP system can come with its downsides. Since
PACAP and VIP are pleiotropic molecules and can target dif-
ferent cell types within the CNS and periphery, it would re-
quire specialised administration strategies to deliver the pep-
tides so that they can target the desired cell population or
CNS region. Adeno-associated viruses and/or other vectors
to deliver personalised gene therapy approaches are becom-
ing closer to achieving the targeted administration of thera-
peutics to the brain via systemic route [223]. This could limit
potential off-target effects by limiting the availability of pep-
tides to, for example, the PAC1 receptor in cardiac cells [223].

Altogether, despite some yet to control side effects, the
plethora of positive effects of both VIP and PACAP in the
CNS justify the ongoing efforts to target this neuropeptide
system using synthetic analogues or other technologies, with
the aim to identify drug candidates with tropism towards se-
lected CNS regions/tissues. This could result in an effective
disease-modifying therapy able to improveMS disease course
and prevent the development of most of the associated co-
morbidities.

4. Conclusion & future directions
The VIP/PACAP system appears to have protective ben-

efits in MS and most of its associated neurological comor-
bidities, making it an attractive therapeutic target to pursue
(Fig. 2). With the recent advancements inCNS-targeted drug
administration, there is more flexibility in treatment options
as new ways of overcoming the challenge of delivering drugs
that pass through the BBB or that impede rapid degradation
are being developed. As such, future research can now ex-
plore the potential of PACAP and/or VIP as targets for the
treatment of a range of neurological diseases that involve in-
flammation and consequently, neurodegeneration.
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