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The long short-term memory network (LSTM) is widely used in time series data processing as a temporal recursive network. The resting-

state functional magnetic resonance data shows that not only are there temporal variations in the resting state, but there are also interactions

between brain regions. To integrate the temporal and spatial characteristics of brain regions, this paper proposes a model called feature

weighted-LSTM (FW-LSTM). The feature weight is defined by spatial characteristics calculating the frequency of connectivity of each
brain region and further integrated into the LSTM. Thus, it can comprehensively model both temporal and spatial changes in rs-fMRI
brain regions. The FW-LSTM model on the Alzheimer’s disease neuroimaging initiative (ADNI) dataset is used to extract the time-
varying characteristics of 90 brain regions for Alzheimer’s disease (AD) classification. The model performances are 77.80%, 76.41%,
and 78.81% in accuracy, sensitivity, and specificity. It outperformed the one-dimensional convolutional neural networks (1D-CNN)

model and LSTM model, which only used temporal features of brain regions.
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1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative dis-
ease with a slow onset process that worsens over time [1].
The clinical manifestation of Alzheimer’s disease is loss of
memory, while behavior and language skills can be signifi-
cantly affected. Therefore, AD often places a heavy burden
on individuals and families. According to Alzheimer’s Dis-
ease International, it is estimated that by 2050, 131.5 mil-
lion people worldwide (one in every 85 people) will have
the disease [2]. Unfortunately, to date, there are no drugs
available to treat Alzheimer’s disease. Therefore, it is cru-
cial to detect Alzheimer’s disease at the early stage, so that
the interventations can be promoted as early as possible to
slow down the progression.

With the rapid development of neuroimaging technol-
ogy, Alzheimer’s disease can be classified in a reliable man-
ner [3]. Functional magnetic resonance imaging (fMRI),
as a non-invasive neuroimaging technique, is increasingly
used in the study of the human brain. It can be divided
into task-state fMRI and resting-state fMRI (rs-fMRI). The
latter refers to the hemodynamics of the brain at rest [4].
In addition, neuroimaging techniques in the resting state
include electroencephalogram (EEG) and functional near-
infrared spectroscopy (fNIRS) [5]. Nowadays, rs-fMRI is
playing an essential role in the classification of AD [6,7].
fMRI spatially groups brain regions based on brain region
templates, obtains the average time series of each brain re-
gion, and calculates connectivity between brain regions. It
is worth noting that connectivity refers to the correlation,
covariance, or mutual information between pairwise brain

region sequences. Chen et al. [8] used the Pearson corre-
lation coefficient as a connectivity metric for Fisher Lin-
ear Discriminant Analysis (LDA)-based AD and Mild cog-
nitive impairment (MCI) classification. Challis et al. [9]
used covariance as a connectivity metric to achieve AD and
MCI classification based on the Gaussian process, logistic
regression models. It has also been suggested to construct
brain networks from connectivity matrix graphs and calcu-
late network metrics, e.g., Cui et al. [10] constructed a min-
imal spanning tree classification framework for brain func-
tional connectivity networks with the aim of AD classifica-
tion. Juetal. [11] used deep learning of brain networks and
clinically relevant textual information to classify AD. Wang
et al. [12] calculated the brain functional connectivity ma-
trix as features by selecting some brain regions, then pro-
jected the features onto a one-dimensional axis using regu-
larized linear discriminant analysis, and finally completed
the classification task using the AdaBoost classifier. Wang
et al. [13] constructed a brain network based on the brain
functional connectivity matrix, yet therefrom extracted rel-
evant features, and used the Least absolute shrinkage and
selection operator (LASSO) method for feature selection
and an extreme learning machine to achieve the classifi-
cation. Khazaee et al. [14] constructed a brain network
based on the brain functional connectivity matrix, extracted
graph-theoretic features and finally used support vector ma-
chines for classification. Jie ef al. [15] extracted features
based on global topology and local connectivity from the
graph, performed feature selection by minimum absolute
shrinkage and selection operators and finally used a multi-
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Fig. 1. The overall flow chart of this study. It includes a pre-processing data module, a training module and an evaluation module.

The raw data were pre-processed and registered to the AAL template to obtain the regions of interest time series to train and evaluate the

FW-LSTM model.

core support vector machines (SVM) for AD classification.
Khazaee et al. [16] computed integration and separation
from the graph metrics, feature selection by Fisher scoring,
and AD classification using SVM.

According to the papers abovementioned, the mission
of AD classification was accomplished, while the correct
average rate is 88.42%. However, they only used connec-
tivity between brain regions (spatial features) to construct
the brain network, without fully considering the dynamic
changes in the region of interest. Such changes are obtained
from the regionally averaged time series in fMRI, which
would result in the lack of asynchronous information in the
temporal dimension. Conversely, modeling that only con-
siders temporal changes in brain region features would ig-
nore the spatial features between brain regions. The LSTM
model is able to deal with the temporal memory, which
can extract the temporal change features of brain regions
well. But it cannot realizes the interactions between brain
regions. Considering both cases, we hereby put forward a
feature-weighted LSTM network using temporal and spa-
tial features for integrated modeling.

2. Materials and methodology
2.1 Subjects

Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset (http://adni.loni.usc.edu/) began operations in 2004
to work towards the early detection and tracking of AD. The
data used in this paper are rs-fMRI data from ADNI, 189 in
total. Subjects were AD and Normal control (CN) accord-
ing to the diagnostic criteria for ADNI [17]. Table 1 shows
the demographic information.

Table 1. Demographic information.

AD NC
Num 91 98
Age (mean £ SD) 73.5+ 7.6 752+ 64
Sex (F/M) 52/39 57/41

Eduction/year (mean + SD) 15.4 + 2.6 16.7 £ 2.1

AD, Alzheimer’s disease; NC, Normal control; SD, standard
deviation; M, Male; F, Female.

2.2 Data collection and pre-processing

Scanning images were acquired on a 3.0 Tesla MRI
scanner from Philips Medical Systems (CommunityCare
Inc., Latham, NY, USA). The acquisition parameters in-
cluded: pulse sequence = GR, TR =3000 ms, TE = 30 ms,
matrix = 64 x 64, slice thickness = 3.3 mm, slice number =
48, flip angle = 80°.

In this study, the Data Processing & Analysis for
Brain Imaging (DPABI) toolbox was used to perform the
pre-processing of rs-fMRI [18]. The main pre-processing
steps include: removal of the first 10 acquired Magnetic
Resonance Imaging (MRI) volumes for each subject; slice
time correction; head motion correction; spatial normaliza-
tion (nonlinear alignment of images to Echo Plane Imaging
(EPI) templates in standard space by affine transformation);
smooth (smooth kernel size is 6 mm x 6 mm X 6 mm); de-
trend; regression covariance (head movement parameters
generated during head movement correction, whole-brain
signal, white matter signal and cerebrospinal fluid signal)
and filter (0.01-0.08 HZ).

After a standard pre-processing process for rs-fMRI,
the brain was segmented into 90 regions of interest align-
ing well with the Automated Anatomical Labeling (AAL)
template [19]. Finally, the average time series of the 90 re-
gions of interest were obtained for each subject.
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2.3 Research procedure

The model takes the time series of 90 brain regions
as input and further predicts whether it is AD or not. The
overall flow chart proposed is shown in Fig. 1. The basic
process is as follows: rs-fMRI data are registered with the
AAL template after pre-processing to obtain the time series
of 90 brain regions, the Pearson correlation between each
two brain regions is calculated to obtain the static functional
connectivity matrix; the static functional connectivity ma-
trix is assessed for feature importance by random forest, a
threshold is set, and brain regions with feature importance
greater than the threshold are selected. Next, brain region
frequencies are counted and normalized to the weight ma-
trix in the FW-LSTM model; finally, the model is trained
and evaluated.

2.4 Static functional connection matrix

The correlation coefficient of pairwise brain regions
is calculated as the static functional connectivity of brain
regions. To obtain the correlation coefficient for pairwise
brain regions, this paper uses the Pearson correlation coef-
ficient, calculated as

cov (15,7;)

p(Ri7Rj): (1)

UTi : O-’I‘j

In Eqn. 1, R; denotes the i-th brain region, r; repre-
sents the time series corresponding to R;, cov(r;,r;) de-
notes the covariate between 7; and r;, and o, denotes the
standard deviation of the time series r.

The static functional connectivity matrix is obtained
for each subject by calculating the correlation coefficient
for pairwise brain regions. Finally, the static functional
connectivity matrix is transformed into normally distributed
Z values by Fisher’s-Z transformation.

2.5 Feature importance assessment

This paper uses the random forest (RF) algorithm for
feature importance assessment of static functional connec-
tivity matrices. RF is an integrated learning method based
on decision trees, proposed by Breiman [20] in 2001. RF
can analyze data with large dimensionality and compute
variable importance scores, meanwhile keeps high predic-
tion accuracy and tolerance to outliers and noises [21].

Feature importance assessment refers to the contribu-
tion made by each feature on each tree in the random forest.
A feature’s importance result is calculated by comparison of
its contribution with the average one. Specific to the classi-
fication task in AD is assessing the contribution of connec-
tivity into brain regions. The contribution of a feature can
be measured using the Gini coefficient or the out-of-bag co-
efficient as an evaluation indicator.

In this paper, the Gini index is used to evaluate the
contribution of characteristics. For example, suppose there
are m features: Fy, Fs, ..., F,,, and calculate for each fea-
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ture F; of the Gini index score VIM ; and the Gini index
is calculated as

|| IK]
GI,, = Zk:1 Zk,# PPy =1~ Zk:l P2
2
In Eqn. 2, the GI,,, denotes the node m of the Gini
index, the K denotes the number of categories in the sample
set, k' denotes a category, and P, indicates the proportion
of category k in a node m.
The importance of features I at the node m is the
amount of change in the Gini index before and after the
branching of the node m, calculated as

VIMy, = Gl,, — (GI, + GI,) 3)

In Eqn. 3, the GI; denotes the Gini index of the left
node after branching, and GI, denotes the Gini index of
the right node after branching.

If the node where the feature F; appears in the decision
tree ¢ is in the set M, then the importance of F} in the tree ¢
as

VIMi; =Y VIMn, )

Let there be a total of random forest n trees, then
VIM; =3 VIM; (5)

Finally, the importance scores obtained for the vari-
ables are normalized, then

VIM,

TS, VI ©

VIM;

In Eqn. 6, c is the total number of trees.

2.6 Frequency of brain areas

The importance of features is calculated using random
forests on a static functional connectivity matrix, followed
by setting thresholds to select appropriate features. In this
paper, a threshold (0) is set to select the features. Selecting
the functional connectivity of brain regions with importance
scores greater than ¢ for the variables mentioned in the pre-
vious section and counting the number of occurrences of
each brain region in the selected features can be expressed
as

+1, score (R;,R;) >

Cul (R;) = { 0 else (7

2.7 FW-LSTM

LSTM is a temporal recurrent neural network, which
is well suited for processing time-series data. Blood oxygen
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Fig. 2. Structure of the FW-LSTM unit. The weight terms include W, W;, Wcand W, which can be specifically divided into W,
Wi Win, Wiz, Wen, Won, Wog. The normalization of Cul (R;) in the FW-LSTM model is combined with the corresponding weight

matrix Wy, Wiz, Weg, Wog.

level dependent (BOLD) fMRI signal data is time-series
data, where the signal at the current moment is closely re-
lated to the signal in the past and future. The LSTM is
mainly used to select valid information and the learning
of long-term dependencies through forgetting gates, input
gates and output gates. Therefore, this paper proposes the
FW-LSTM model that uses temporal and spatial features for
integrated modeling. Fig. 2 shows the FW-LSTM model.

In the model, the forget gate is used to determine what
information should be discarded from the cell state. It can
be expressed as

fi=0Wy-[he_1, X¢] + by) (¥

In Eqn. 8, the input at the current moment is X; with
the output of the previous moment /;_; through the activa-
tion function (sigmoid), the output is given a value between
0 and 1, representing whether it should be forgotten, with
0 indicating complete forgetting and 1 indicating complete
remembering.

The input gate is used to memorize a selection of new
information into the cell state C'; , which can be expressed
as

ir =0 (W [he—1, X¢] + b;)

C, = tanh (W, - [hy—1, X] + b)
Cy= fy x Cy_q +144 X ét

)

In Eqn. 9, ¢; represents the degree of information
memorization obtained by the current moment X, and
the previous moment’s output h;_; through the sigmoid
function. C; denotes the new cell state, obtained by pass-
ing the input X, and the previous moment’s output h;_;
through a tanh activation function. C; is the updated cell
state, selected by the forgetting gate to forget the previous
moment’s cell state C;_; part of it, and then the input gate
selects to add the new cell state C, to complete the process.

The output gate output to the current output value of
the LSTM through a fraction of the cell state h; , which can
be expressed as

or =0 Wy - [hi—1, Xs] + bo) (10)
hy = O X tanh (C})

In Eqn. 10, Oy is calculated from h;_; and X, via sig-
moid function, which is used to measure the output to be O;
how much output value there is.

In the model of this paper, the weight terms include
ths foa Wiha Wixa Wchs Woha Wo:}c- Where fos Wiza
Wew, Wos dimension is (90, unit_num), which is acting on
the input X at the current moment of the model. And Wy,
Win, Wen, Wop, dimensions are (unit_num, unit_num) and
are acting on the output h,_; at the previous moment.

Therefore, we only adjust the four weight matrices
acting on the input X, that is, the weights of the input
time series of 90 brain regions. The four weight matrices
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Fig. 3. The importance of the features of the static functional connectivity matrix. The brain region index represents numbering in

the AAL template. The small colored blocks in the diagram represent the feature importance of each pair of brain region connections.

Wiz, Wiz, Weg, and W, are adjusted using the normal-
ized Cul (R;)(n_Cul (R;)) for the respective importance
of the 90 brain regions. The modifications are as follows.

Wa =Wy x n_ Cul(
Wiz = Wiz x n_ Cul (
Wey = Wey X n_ Cul (
Woe = Wee X n_ Cul (

A dropout layer follows the LSTM module with a loss
rate of 0.5 and a dense layer with several neurons of 10.
The dense layer extracts the fMRI time-varying features and
finally uses the sigmoid function for the AD and Normal
control (NC) binary classification task.

3. Experimental results and analysis
3.1 Feature importance

The obtained static functional connectivity matrix is
evaluated for feature importance. The static functional con-
nectivity matrix is a matrix of 90 x 90, where the upper
right triangular matrix is symmetrical with the lower-left
triangular matrix, and the upper right triangular matrix is

&% IMR Press

taken as the feature (i.e., 4005 dimensions) to evaluate its
importance.

When the data is fed into the random forest, the grid-
SearchCV is chosen to find the best parameters. The max-
imum number of iterations of the weak learner is searched
in the range of [100, 150], which is finally determined to be
131, and the maximum number of features of the selected
feature subset is searched in the range of [10, 100], which is
finally determined to be 56. In order to avoid the chance of
the results, the average of the ten feature importance assess-
ment results is chosen as the feature importance assessment
result.

As Fig. 3 shows, the feature of greatest importance is
the functional connection between brain area 24 and 43, i.e.,
superior frontal gyrus (medial) and calcarine fissure and
surrounding cortex; the second-ranked feature is the func-
tional connection between brain area 36 and 47, i.e., pos-
terior cingulate gyrus and lingual gyrus; the third-ranked
feature is the functional connection between brain area 56
and 86, i.e., fusiform gyrus and middle temporal gyrus.
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3.2 Frequency of brain areas

We compare the impact of the selected features on AD
classification at different thresholds to select the most ap-
propriate one. We use features larger than the threshold to
classify AD again, and the classifier choose random forest.
Here, we divide the dataset into a training set and a test set
in the ratio of 4:1, and execute the model five times to ac-
quire the accuracy evaluation metric. During the execution,
the training set and the test set are randomly selected each
time, Fig. 4 shows the results of the experiment. Moreover,
we test the importance obtained from an average of 5 ex-
periments with an accuracy of 65.04%.
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Fig. 4. Classification accuracy at different thresholds. We
compared the accuracy of the model under eight different thresh-
olds. It becomes obvious that the classification accuracy is highest
at the threshold values of 0.003, 0.002, 0.001.

Now, we choose a threshold value of 0.001 for the
subsequent experiment. A total of 303 functional connec-
tions to brain regions are obtained based on the calculated
characteristic importance of the connections between brain
regions and the threshold settings. The number of occur-
rences for each brain region is counted. The results are
demonstrated in Fig. 5 (Ref. [22]).

3.3 FW-LSTM model training

The FW-LSTM model is implemented by Python 3.6
(Python Inc., Netherlands), while the deep learning devel-
opment platform is the Keras framework (v2.1.6, Google
Inc., USA) for Tensorflow (v1.7.0, Google Inc., USA). The
development environment consists of Windows 10 as the
operating system, Inter(R) Core(TM) 17-8565 CPU as the
processor, and Nvidia GeForce MX250 (Nvidia Inc., USA)
as the graphics card.

In this paper, the extracted time series of brain regions
are input into the FW-LSTM model for temporal feature ex-
traction and classification. The experimental data are time-
series data with a dimension of 90 x 130. The small amount
of data could easily lead to overfitting the model, so we
performed data segmentation. The 130-time points are seg-
mented, and 10-time points are treated as one data, imply-
ing a dimensionality of 90 x 10. Finally, a five-fold cross-

validation strategy is used to evaluate the model.

3.4 Analysis of results

To evaluate the effectiveness of the FW-LSTM model
for temporal feature extraction in this paper and to compare
it with other models, the performance of the model is evalu-
ated using accuracy (Acc), sensitivity (Sen), and specificity
(Spe).

Acc: Time-varying features are extracted for classifi-
cation using the FW-LSTM model. Acc represents the pro-
portion of correctly classified samples to the total samples
(i.e., the full test set) and can be expressed as

TP+ TN

A =
“TTPYFNLTN+FP

(12)

In Eqn. 12, TP (True Positive) denotes positive cases
correctly classified by the model; TN (True Negative) de-
notes negative cases correctly classified by the model; FN
(False Negative) denotes positive cases misclassified as
negative by the model, and FP (False Positive) denotes neg-
ative cases misclassified as positive by the model.

Sen: indicates the number of positive cases correctly
predicted by the model as a proportion of positive cases and
can be expressed as

_ _ TP
Sen = rpirn (13)

Spe: indicates the number of negative cases correctly
predicted by the model as a proportion of negative cases and
can be expressed as

Spe = Frnrrp (14)

Sensitivity and specificity are often used to measure
the diagnostic outcome of a disease, with higher sensitiv-
ity resulting in a lower rate of missed diagnoses and higher
specificity resulting in a higher rate of confirmed diagnoses.

ROC curve: Receiver operating characteristic curve, a
composite indicator of a continuous variable of sensitivity
and specificity. On the ROC curve, if the corner is closer
to the upper left, the better the result. AUC (Area under
ROC curve) is a metric used to measure how good a clas-
sification model is, with a larger AUC representing better
performance.

In the FW-LSTM model, we make changes to the four
parameters that act on the input to the model: Wy, Wi,
Wee, and W,,,.. We modify each of these four parameters,
and the experimental results are shown in Table 2. Finally,
we combine multiple parameters to view the effect. The
experimental results are as follows.

In Table 2, for modifying individual parameters, we
can see that in terms of accuracy and specificity, the best
results can be obtained by modifying the Wy,. In terms of
sensitivity, the best results can be obtained by modifying the
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Fig. 5. Frequency map of brain areas. The brain networks are visualized with the BrainNet Viewer [22]. Because the brain area labels
are so dense, only brain area labels with a frequency greater than 12 are expressed in this figure. Left superior occipital gyrus (SOG.L)
appear 15 times, right superior frontal gyrus, medial orbital (ORBsupmed.R) appear 15 times, right thalamus (THA.R) appear 14 times,
right calcarine fissure and surrounding cortex (CAL.R) appear 14 times, right superior frontal gyrus, dorsolateral (SFGdor.R) appear 14
times, left calcarine fissure and surrounding cortex (CAL.L) appear 13 times, left superior frontal gyrus, medial orbital (ORBsupmed.L)

appear 13 times.

Table 2. Model comparison 1.

Method Modify Acc Sen Spe
Wig 67.56% 67.66% 67.46%
Wia 73.01% 72.81% 73.22%
Wea 72.76% 72.97% 72.54%
Woa 70.41% 69.22% 71.69%
Wie, Wea 77.80% 76.41% 78.81%
Wia, Wea, Wor 77.72% 79.38%  75.93%
FW-LSTM Wiy, Wig, Wea, Wor  76.59%  7531%  77.97%

Wee. Modifying the Wy, in terms of accuracy compared
to modifying the W;,, the W, and the W, increased by
5.45,0.25 and 2.6 percentage points, respectively; modify-
ing the Wy, in specificity compared to modifying the W,
the W, and the W, increased by 5.76, 0.68 and 1.53 per-
centage points, respectively. Modifying the W, in speci-
ficity compared to modifying the W;,, the W;,, and the
W, 1s improved by 5.31, 0.16, and 3.75 percentage points,
respectively.
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We can see that the effect of modifying the model with
one parameter seems unsatisfactory. However, the effect of
modifying multiple parameters is much better. Apparently,
modifying the Wy, and the W, results in the highest accu-
racy and specificity; modifying the Wy, the W, and the
W, in sensitivity can give the best results. Fig. 6 depicts
the respective ROC curves.

Taking these indicators together, modifying the Wy,
and the W, is the best. Therefore, our FW-LSTM model
used modifications of these two parameters.

We chose Random Forest to classify and the static
functional connectivity matrix as features to compare the
accuracy, specificity and sensitivity obtained using only
spatial features. 1D-CNN can be well applied to tempo-
ral sequence analysis. Thereby, we use it as a compari-
son model. The 1D-CNN model we use contains two 1-
dimensional convolutional layers, followed by a dropout
layer, then a pooling layer, then a fully connected layer,
before reaching the output layer for prediction. For this
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Fig. 6. ROC curves were obtained. As seen from modifying
individual parameter, modifying the W, has the worst result and
modifying W., gives the best result. The area under the curve
of the classifier obtained by modifying the Wy,, Wiz, Wes, and
Woz 18 0.7975, 0.7443, 0.8081, 0.7814, respectively. As can be
seen from modifying multiple parameters, it is not clear which
classifier is the best. The area under the curve of the classifier
obtained by modifying W, and W, is 0.8338, modifying Wy,
Wow, and We, is 0.8452, modifying Wy, Wi, Wez, and Wo, is
0.8279.

model, we used 16 feature maps with a kernel of size 3. We
used the efficient Adam algorithm to optimize the network,
using the binary crossentropy for classification as the loss
function. For the other comparison model, the LSTM, we
used the same training configuration as the FW-LSTM. For
each of the comparison models, we used a five-fold cross-
validation strategy and repeating five-fold cross-validation
assignments from resampling the data five times at random.

The model comparison in Table 3 shows that the FW-
LSTM model proposed in this paper outperforms the ran-
dom forest, 1D-CNN and LSTM models in terms of accu-
racy, sensitivity and specificity. Compared with the ran-
dom forest, the FW-LSTM model proposed in this paper
has 12.5 percentage points better accuracy, 22.49 percent-
age points better sensitivity and 10.19 percentage points in
specificity; Compared with the 1D-CNN model, the FW-
LSTM model proposed in this paper has improved 10.61
percentage points in accuracy, 10.01 percentage points in
sensitivity and 11.02 percentage points in specificity; com-
pared with the LSTM model, the FW-LSTM model pro-
posed in this paper has improved 7.35 percentage points
in accuracy and 5.48 percentage points in sensitivity and
9.16 percentage points in specificity. Next, we look at the
respective ROC curves of the FW-LSTM, 1D-CNN, and

Table 3. Model comparison 2.

Models Acc Sen Spe
Random Forest  65.71%  55.41%  68.12%
1D-CNN 67.60% 67.89%  67.29%
LSTM 70.86%  72.42%  69.15%
FW-LSTM 7821%  77.90%  78.31%
LSTM models in Fig. 7.
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Fig. 7. These models obtained ROC curves. We can clearly
see from the ROC curves that the FW-LSTM model has the best
performance, followed by the LSTM model and finally the 1D-
CNN model. The area under the curve for the FW-LSTM model,
LSTM model, and 1D-CNN model is 0.8338, 0.7671, 0.6654, re-

spectively.

4. Discussion

In this paper, FW-LSTM model is introduced for
the time-varying characteristics unique to fMRI data in
Alzheimer’s and the interactions between the 90 brain re-
gions. First, the Pearson correlation between pairwise brain
regions is calculated, i.e., the static functional connectiv-
ity matrix is calculated; then, the feature importance of the
static functional connectivity matrix is calculated, and those
features with feature importance greater than a threshold are
counted to obtain the brain region frequencies. Finally, the
weight matrices in the FW-LSTM unit are combined to ex-
tract time-varying features for classification based on the
values of the frequency of brain areas.
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5. Conclusions

The experimental results prove that our model can ex-
tract time-varying features from 90 brain regions, which is
of great significance for the classification of AD. During the
diagnosis of AD, rs-fMRI should not only consider either
time-varying characteristics or spatial characteristic. In our
experiments, not only we can classify AD, but also tell from
the frequency ranking of brain areas that the main brain ar-
eas contributing to the classification are Superior occipital
gyrus and Superior frontal gyrus, medial orbital. Regard-
less, our work is not flawless: the dataset is small; only
static correlation is considered; model performance still has
room to be improved.
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