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Abstract

Background: This study aimed to reveal the detailed immune-related mechanisms underlying ischemic stroke (IS) and identify new
immune-associated biomarkers for clinical management. Methods: Differentially expressed genes (DEGs) between IS samples and nor-
mal controls were identified using the GSE16561 dataset. The feature genes of the immune cells were investigated using the GSE72642
dataset. Weighted correlation network analysis (WGCNA) was performed to reveal module genes, followed by an investigation of com-
mon DEGs and a functional enrichment analysis. Potential biomarkers were identified based on hub genes in protein-protein interaction
networks and WGCNA. Finally, GSE158312 was used for biomarker verification. Results: In total, 1230 DEGs were identified between
the IS samples and normal controls. Seven clinically significant modules were identified using WGCNA. The yellow module genes were
positively correlated with polymorphonuclear cells (PMNC), whereas the brown module genes were positively correlated with CD4+
T cells. Eight genes were selected as hub genes. These genes are mainly involved in functions such as the innate immune response.
Upregulated 7LR2 and ARG levels were significantly different between the two groups in the verification dataset. Conclusions: Our
findings suggest ARG and TLR?2 as novel biomarkers for IS. Upregulated 7LR2 might play a role in IS development by participating in
the innate immune response function.

Keywords: ischemic stroke; weighted correlation network analysis; differentially expressed genes; functional enrichment analysis;
immune cells

1. Introduction gene (DEGs) analysis related to IS suggested interleukin-8
(IL-8) as a novel target for clinical therapy [12]. Addition-
ally, some immune-associated factors, including IL family
members and T cells, participate in the development of IS,
indicating a close relationship between the immune process
and IS [13]. Thus, promising target interventions based on
potential immune cells and associated genes may promote
the development of future therapeutics for IS [14]. How-
ever, the immune-related mechanisms are still not system-
atically understood.

Ischemic stroke (IS) is a common stroke disease that
causes a large number of deaths worldwide [1]. Many
mechanisms, including inflammation, are closely related to
IS pathogenesis [2—4]. To date, there is no known treatment
or cure for this disease [5]. The lack of effective treatment
is one of the reasons for the difficulty IS poses in clinical
settings [6]. Thus, uncovering the detailed molecular mech-
anisms underlying IS is vital for effective clinical treatment.

Increasing evidence shows that the immune system in-

teracts with the central nervous system in complex ways
[7]. Importantly, some immune cells respond to stroke
in both rodents and human patients [8]. Moreover, it has
been demonstrated that peripheral immune cells can in-
filtrate into sites of secondary neurodegeneration after IS
[9]. In fact, the brain can hardly defend itself against anti-
oxidation, leading to the release of free radicals in the pro-
cess of inflammation, which directly threatens the normal
activity of brain tissue [10]. During these processes, some
inflammatory factors play important roles in disease pro-
gression and are considered key mediators of the immune
mechanism in IS [11]. A previous differentially expressed

Based on gene expression profiling GSE16561 and
pathway analysis, Barr et al. [15] investigated nine DEGs
between IS blood samples and controls as likely biomark-
ers of stroke. Based on the GSE72642 dataset, Du et
al. [16] identified several immune cells (including CD4+
T cells) that contribute to IS progression. In the current
study, we analyzed the feature genes and pathways re-
lated to immune cells in IS using an integrated analysis
of GSE16561 and GSE72642. Briefly, potential DEGs
were identified between the IS samples and normal con-
trols based on the GSE16561 dataset. The feature genes
of immune cells between IS samples and controls were
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Fig. 1. Flow chart for the current study.

investigated based on the GSE72642 dataset. Weighted
correlation network analysis (WGCNA) was performed to
identify module genes in the GSE16561 dataset, followed
by an investigation of common DEGs (co-DEGs) by in-
tersecting DEGs and module genes. The functions and
pathways enriched by the co-DEGs were further revealed.
Furthermore, potential biomarkers were identified based
on the previous hub genes. Finally, an additional pro-
file GSE158312 dataset was used to verify biomarkers. In
this way, the current study aimed to investigate the de-
tailed immune-related mechanisms underlying IS and iden-
tify new immune-associated biomarkers for clinical man-
agement. A flow chart of the current study is shown in
Fig. 1.

2. Materials and Methods
2.1 Microarray Data

Three gene expression profiles, including the
GSE16561 [15] and GSE72642 datasets [16], were
downloaded from the Gene Expression Omnibus (GEO)
database [17]. The GSE16561 dataset contained 63
peripheral whole blood samples, including 39 IS samples
(IS group) and 24 normal samples (control group). For

>

(20 ischemic stroke vs 4 control samples)

the GSE72642 dataset, a total of 18 cell samples (three
samples for each cell type), including CD4+ T cells, CD8+
T cells, CD19+ B cells, CD56+ natural killer cells, CD14+
monocytes, and polymorphonuclear cells (PMNC), were
collected from the peripheral blood of healthy individuals.

2.2 Data Preprocessing

The processed gene expression matrix files of the
GSE16561 and GSE72642 datasets were downloaded. The
annotation files were downloaded, converted, and screened.
If multiple probes were available for the same gene, the
average value was taken as the expression value. The
raw data of the GSE158312 dataset were standardized
using the TMM algorithm in the edgeR package (ver-
sion: 3.24.3, https://www.bioconductor.org/packages/rele
ase/bioc/html/edgeR.html, Walter and Eliza Hall Institute
of Medical Research, Melbourne, Australia) [18] and con-
verted to logCPM values.

2.3 DEG Analysis

The limma package (version: 3.34.7, http://www.bi
oconductor.org/packages/release/bioc/html/limma.html,
Walter and Eliza Hall Institute of Medical Research,
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Melbourne, Australia) [19] (version: 3.34.7) was used to
analyze the DEGs between the IS and control group in
GSE16561. Then, the corresponding p values and log fold
change (FC) values of the genes were obtained. p values
were adjusted (adj. p) using the Benjamin-Hochberg
method. In addition, genes with an adj. p < 0.05 and
[logoFC| > 0.585 were selected as DEGs.

2.4 Feature Gene Investigation Based on Peripheral
Blood Cells

The limma package was used to analyze the feature
genes of each peripheral blood immune cell. Briefly, a cer-
tain cell type was compared with all other cell types, and the
top 100 upregulated genes in each cell type were selected
as the feature genes of the subtype according to a previous
study [20]. Finally, the results were visualized as a heatmap
using Pheatmap package (version 1.0.12, https://cran.r-pro
ject.org/web/packages/pheatmap/index.html) in R software
(University of Auckland, Auckland, New Zealand).

2.5 WGCNA Investigation

Based on the expression matrix of all genes, variance
analysis was used to explore the top 2000 genes with the
highest degree of variation among the samples as the input
genes, and the gene set module with the highest degree of
collaborative change was identified using WGCNA (ver-
sion 1.71, https://cran.r-project.org/web/packages/WGCN
A/index.html) [21] in R software. First, a soft threshold
of 0.85 was selected for network construction for the first
time (minModuleSize = 30; MEDissThres =0.2). Second, a
scale-free network was constructed. The module member-
ship (MM, representing the expression level of the module)
of each module was then calculated. The gene significance
(GS) of the genes in the module was further calculated. Fi-
nally, GS >0.6 and MM >0.8 were selected as cut-off val-
ues for the hub gene investigation.

2.6 Intersection Analysis Based on DEG and Module
Genes

The co-DEGs were investigated based on the inter-
section of DEGs and module genes related to both dis-
ease status and immune cells using a VENN plot. GO
and KEGG pathway enrichment analyses were performed
on these co-DEGs using DAVID software (version: 6.8,
https://david.ncifcrf.gov/, Laboratory of Human Retrovi-
rology and Immunoinformatic, Frederick, MD, USA) [22].
Finally, p < 0.05 and a count >2 were selected as cut-off
values for the current enrichment analysis.

2.7 Protein-Protein Interaction (PPI) Network and
Modules Analysis

According to the STING database (version 11.0) [23],
protein interactions were extracted and PPI pairs were in-
vestigated based on a score of 0.4. The PPI network was
constructed using Cytoscape software (version 3.6.1, http:
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/lwww.cytoscape.org, National Institute of General Medi-
cal Sciences, Bethesda, MD, USA) [24]. The node score
(hub protein) in the network was analyzed using network
topology based on CytoNCA software (Version 2.1.6, http:
//apps.cytoscape.org/apps/cytonca Central South Univer-
sity, Changsha, China) [25], with parameter set as: with-
out weight. Furthermore, MCODE (version: 1.5.1, http:
//apps.cytoscape.org/apps/MCODE, University of Toronto,
Toronto, Canada) [26] was used to screen outstanding mod-
ules from the PPI network with the following parameters:
Degree Cutoff = 2, Node Score Cutoff = 0.2, K-core = 2,
and Max. Depth = 100. GO and KEGG analyses were
performed on these selected modules using clusterProfiler
(version:3.8.1) [27] software. A p value < 0.05 and a count
>2 were selected as cut-off values.

2.8 Biomarkers Investigation

Potential biomarker genes were investigated based on
the module genes enriched in multiple pathways, hub genes
in the PPI network, and hub genes from the WGCNA
using the LASSO algorithm. The glmnet package (ver-
sion: 4.1-4, https://cran.r-project.org/web/packages/glmn
et/index.html) [28] in R software was used for a regres-
sion analysis of the potential biomarkers set to screen for
biomarkers for IS.

2.9 Verification Analysis

An additional dataset (GSE158312) was used for the
verification. The dataset contained 24 whole blood sam-
ples, including 20 IS samples and four normal samples.
All samples in the GSE158312 dataset were sequenced us-
ing the Illumina nextseq 500 (Homo sapiens). Briefly, the
expression levels of biomarkers were extracted from the
GSE16561 dataset. The expression levels of the corre-
sponding genes were identified in the GSE72642 dataset,
followed by comparison and visualization. Based on the
different groups and the expression value of each gene, the
diagnostic ROC curve of each gene was investigated using
the pROC package (version: 1.18.0, https://cran.r-project.o
rg/web/packages/pROC/index.html) [29] in R software.

3. Results
3.1 DEGs Investigation

A total of 1230 DEGs were investigated between the
IS and control groups based on the GSE16561 dataset
(Fig. 2A). The top 100 upregulated genes in each cell type
in the GSE72642 dataset were selected as feature genes.
A heatmap for these feature genes showed that the feature
genes of each cell type were highly expressed in the corre-
sponding cell types (Fig. 2B).

3.2 WGCNA Analysis

WGCNA analysis was performed on the top 2000
genes that were differentially expressed in the GSE16561
dataset at a soft threshold of 3 (Fig. 3A) and a fitting degree
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Fig. 2. Volcano plot and heatmap for differentially expressed genes (DEGs). (A) volcano plot for DEGs in GSE16561: the blue and
red node represent the down- and up-regulated genes; the red horizontal line represents p < 0.05; the red vertical line represents |loga
FC| > 1. (B) Heatmap for the top 100 feature genes in each cell of GSE72642: the different colors represent different cell types.

of 0.8. Thus, seven modules were obtained in the current
study (Fig. 3B,C). According to the relationship between
the expression values of genes in the module, the adjacency
correlation between modules and disease status was calcu-
lated and visualized using a heatmap (Fig. 3D). The result
showed that the yellow module (including 101 genes) had
the highest positive correlation with IS (r=0.64, p < 0.001),
polymorphonuclear cells (PMNC) (r=0.9, p < 0.001), and
monocyte cells (MNC) (r = 0.42, p < 0.001). Moreover,
the brown module (including 207 genes) had the highest
negative correlation with the disease, but was positively
correlated with B cells, CD4+ T cells, and CD8+ T cells
(all p < 0.05). Furthermore, with MM >0.8 and GS >0.6,
a total of five hub genes including Arginase-1 (ARGI),
C-Type Lectin Domain Family 4 Member D (CLEC4D),
HECT, C2, and WW Domain Containing E3 Ubiquitin Pro-
tein Ligase 2 (HECW?2), Toll Like Receptor 2 (TLR2), and
Lin-7 Homolog A, Crumbs Cell Polarity Complex Compo-
nent (LIN7A) were identified in the yellow module. Mean-
while, a total of six hub genes, including RCAN Family
Member 3 (RCAN3), Inhibitor of DNA Binding 3, HLH
Protein (ID3), Mal, T Cell Differentiation Protein (MAL),
CD79b Molecule (CD79B), Interleukin 7 Receptor (IL7R),
and Kruppel-like Factor 12 (KLF'12), were identified in the
brown module (Fig. 3E).

3.3 co-DEGs Analysis

The VENN plot analysis was performed on upregu-
lated DEGs vs. yellow module genes, as well as on down-
regulated DEGs vs. brown module genes. The analy-
sis identified 74 upregulated and 137 downregulated co-
DEGs that were then further investigated (Supplementary
Fig. 1). These upregulated co-DEGs were mainly as-
sembled into nine GO-biological process (BP) functions
such as the innate immune response (GO:0045087; Genes:
CLEC5A4, CLEC4E, TLR2, etc.) (Fig. 4A). No KEGG
pathway was significantly enriched in the upregulated co-

DEGs. The downregulated co-DEGs were mainly assem-
bled into 13 GO-BP functions, including immune responses
(GO:0006955; Genes: V-Set Pre-B Cell Surrogate Light
Chain 3 (VPREB3), CD79B, CD84, etc.) (Fig. 4B), as well
as into 10 KEGG pathways, including the primary immun-
odeficiency pathway (hsa05340; genes: CD40LG, CD8A,
CD19, etc.) (Fig. 4C).

3.4 PPI Network and Modules Investigation

The PPI network analysis was performed on the 74 up-
regulated and 137 downregulated co-DEGs. In total, 157
interactions and 94 nodes were identified in the current net-
work (Fig. 5). The top 20 nodes, including TLR2, were
considered hub genes in this study. A total of four modules
(modules 1-4) were further extracted from the PPI network.
The KEGG pathway enrichment analysis showed that only
genes in modules 1 and 2 were enriched in these pathways
(Table 1). Therefore, these two modules were used for fur-
ther investigation.

3.5 Biomarkers Analysis

A total of 31 genes, including the WGCNA hub genes,
the PPI network hub genes, and the two PPI module genes,
were selected for the exploration of biomarkers. Based on
the LASSO algorithm, eight genes, including 7LR2 and
ARGI, were identified as potential biomarkers. Impor-
tantly, these eight genes were also included in the top 20
genes in the PPI network. The genes, including 7LR2 and
ARGI, were also identified as key module genes in the
WGCNA analysis.

3.6 Verification Analysis Based on Biomarkers

The verification analysis was performed on se-
lected key module genes based on the additional dataset
GSE158312 (Fig. 6). The results showed that only 7LR2
and ARGI were significantly differentially expressed be-
tween the IS and control groups in the GSE72642 dataset
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(Fig. 7). Detailed results of the ROC curve analysis for
TLR2 and ARG are shown in Supplementary Fig. 2. The
AUC values for TLR2 and ARG in GSE158312 were 0.863
and 0.887, respectively, and those for 7LR2 and ARGI
in GSE16561 were 0.876 and 0.937. The ROC analysis
yielded good prediction results for 7ZLR2 and ARG! in IS.

4. Discussion

Although the immune response and associated genes
play important roles in the development of IS, the poten-
tial biomarkers and associated molecular mechanisms for IS
progression are still unclear [30]. Our bioinformatics anal-
ysis revealed 1230 DEGs between the IS and the control
group. The WGCNA analysis showed that yellow module
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genes were positively correlated with PMNC, while brown
module genes were positively correlated with CD4+ T cells.
A total of 74 upregulated and 137 downregulated co-DEGs
were further investigated based on the intersection of the
DEGs and module genes; these co-DEGs, such as TLR2,
were mainly involved in functions such as the innate im-
mune response. Moreover, our integrated analysis investi-
gated eight potential biomarkers, and two genes, 7LR2 and
ARG, were significantly differentially expressed between
the IS and control groups in the verification dataset.

ARG has been shown to be a novel biomarker of vas-
cular and immune responses, and is closed associated with
IS recovery [31]. In an animal model, ARG promoted mi-
croglia/macrophage efferocytosis and inflammation resolu-
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tion in mice with stroke [32]. ARG/ is highly expressed in
humans, especially in neutrophils [33]. A previous study
indicated that ARGI is overexpressed in the blood of pa-
tients with IS [15]. Based on bioinformatics analysis, Zhu
et al. [34] reported that the expression of genes including
ARG and Kruppel-like factor 12 (KLF12) differed between
IS samples and normal samples, which might contribute to
the development of IS. Notably, CB-1158, an ARG! in-
hibitor, has been shown to elicit immune suppression and
immune-mediated antitumor responses [35,36]. Given that
immune responses play a key role in IS, the design of a new
ARG inhibitor may be useful for IS treatment. Moreover,
TLR? plays an important role in the immune response, es-
pecially in relation to lipoproteins and lipopeptides [37]. It
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Table 1. The KEGG pathway enrichment on genes in modules.

Moudle Description p value Count Gene
modulel Axon guidance 442 x107° 3 EPHAI/EPHA4/EPHB4
module2 Primary immunodeficiency 1.13x 107° 3 CD8A/CD19/CD40LG
module2 Malaria 1.64 x 1073 2 TLR2/CD40LG
module2 Inflammatory bowel disease 2.75 %1073 2 TLR2/IL234
module2  Cytokine-cytokine receptor interaction ~ 4.77 x 103 3 CD40LG/IL234/CCR4
module2 Rheumatoid arthritis 5.55%x 1073 2 TLR2/IL23A4
module2 Endocrine resistance 6.15x 1073 2 GPERI/MMP9
module2 Hematopoietic cell lineage 6.27 x 1073 2 CD8A4/CD19
module2 T cell receptor signaling pathway 6.90 x 1073 2 CD8A/CD40LG
module2 Toxoplasmosis 7.97 x 1073 2 TLR2/CD40LG
module2 Estrogen signaling pathway 1.19 x 1072 2 GPERI/MMP9
module2 Cell adhesion molecules 1.38 x 1072 2 CD8A/CD40LG
module2 Hepatitis B 1.62 x 1072 2 TLR2/MMP9
module2 Tuberculosis 1.97 x 1072 2 TLR2/IL234
module2 Epstein-Barr virus infection 2.45 %1072 2 TLR2/CD19
module2 Proteoglycans in cancer 2.52 x 1072 2 TLR2/MMP9Y
Notes: KEGG, Kyoto Encyclopedia of Genes and Genomes.
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was first found to be an important mediator of the immune
system, and is expressed in the brain after injury [38]. A
previous study showed that TLR2 contributes to tissue dam-
age when combined with the biological function of endoge-
nous molecules during IS [39]. In addition, TLR2 has been
shown to participate in the cerebral ischemia/reperfusion-
induced inflammatory response [40], and salvianolic acid A
(SAA) canreduce cerebral ischemia/reperfusion induced by
the inhibition of the activation of TLR2 [41]. The inflam-
matory response has been recognized as a crucial element in
the development of IS; therefore, the development of effec-
tive drugs that can effectively modulate the inflammatory
response by targeting TLR2 activation may be a potential
therapeutic strategy for IS. In this study, upregulated ARG/
and TLR2 were identified as hub genes. Meanwhile, a ver-
ification analysis based on additional datasets showed that
ARG and TLR?2 were significantly differentially expressed
between the IS and the control group. Thus, we suggest
ARG and TLR?2 as novel biomarkers or therapeutic targets
for IS.

TLR2 has been shown to activate different down-
stream inflammatory functions and signaling pathways,
which alternatively play a role in endogenous neuroprotec-
tion [42]. The innate immune response is a downstream
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function induced by TLR family members [43]. This in-
nate immune system is closely related to the occurrence
and development of IS, and is, to a certain extent, related
to ischemic tolerance [44]. A previous live imaging study
showed that 7LR?2 participates in sterile inflammation and
infection via the innate immune response in neonates [45].
In the current study, TLR2 was significantly upregulated
in the IS group compared to the control group, and the en-
richment analysis showed that 7LR2 was involved in the in-
nate immune response. Thus, we speculate that upregulated
TLR? participates in the progression of IS via participating
in the innate immune response function.

PMNC are attractive effector cells for antibody-
directed immunotherapy [46]. The increase in PMNC acti-
vated by the differential expression of certain genes, such as
interleukin 1, plays a role in the progression of human can-
cer [47]. A close relationship between PMNC and stroke
development has been revealed in animal models [48]. A
previous study indicated that PMNC activation contributes
to the systemic inflammatory response in IS [49]. The pre-
dictive value, pathophysiological consequences, and utility
of PMNC as therapeutic targets in IS have been reported
in a previous study [50]. A previous genomic profile anal-
ysis of human peripheral blood showed that PMNC and T
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cells are both closely associated with the development of IS
[16]. CD4+ T cells play an important role in the invasion
of B cells [51]. Li et al. [52] indicated that neutrophils are
promising targets for IS therapies based on WGCNA anal-
ysis, and may become important biological targets in drug
screening and drug design. In the current study, WGCNA
analysis showed that yellow module genes were positively
correlated with PMNC, whereas brown module genes were
positively correlated with CD4+ T cells. The upregulated
and downregulated co-DEGs were mainly assembled in the
yellow and brown modules, respectively. Thus, we specu-
late that in the progression of IS, overexpressed genes are
closely associated with PMNC, while downregulated genes
are closely related to the relative decrease in CD4+ T cells.

However, the current study has some limitations, such
as the small sample size and lack of clinical verification.
Thus, further verification analyses based on larger sample
sizes are required.

5. Conclusions

ARG and TLR2 may serve as novel biomarkers of IS.
Meanwhile, upregulated 7LR2 seems to be involved in the
progression of IS by participating in the innate immune re-
sponse. Moreover, we found that during the progression of
IS, upregulated genes were closely related to the enrichment
of PMNC, while downregulated genes were closely related
to the relative decrease in CD4+ T cells. This study lays a
foundation for gene-targeted therapy of IS in the future.
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