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Abstract

Background: The cingulo-opercular network (CON) has been proposed to play a central role in cognitive control. The lifetime change
mechanism of its integrity and interaction with other cognitive control-related functional networks (CCRNs) is closely associated with
developing cognitive control behaviors but needs further elucidation. Methods: The resting-state functional magnetic resonance imaging
data were recorded from 207 subjects, who were divided into three age groups: age 4–20, 21–59, and 60–85 years old. For each
group, multiple indices (cross-correlation, total independence, and Granger causality) within CON and between CON and other cognitive
control-related functional networks (dorsal attention network, DAN; central executive network, CEN; default mode network, DMN) were
calculated and correlated with age to yield maps that delineated the changing pattern of CON-related interaction. Results: We found three
main results. (1) The connectivity indices within the CON and between CON and the other three CCRNs showed significant enhancement
from childhood to early adulthood (age 4–20 years), (2) mild attenuation within CON from early adulthood to middle age (age 21–59
years), and (3) significant attenuation within CON and between CON and DMN in the elder group (age 60–85 years). Conclusions: The
results indicated the prominently increased integrity of within-CON and CON-CCRNs communication, mildly weakened within-CON
communication, and significantly attenuated within-CON and CON-DMN communication, characterizing distinct changing patterns of
CON-interaction at three different stages that covered a life-long span.

Keywords: cingulo-opercular network; cognitive control related network; functional connectivity; total interdependence; granger causal-
ity; life-long change

1. Introduction
Accumulating evidence has suggested that the dorsal

anterior cingulate cortex (dACC) and bilateral anterior in-
sula/operculum (AI) may form a cingulo-opercular network
(CON) that is important for cognitive control [1–4]. A
growing number of studies have shown that the CON is also
extensively involved in attention, decision-making, moni-
toring, solving conflict, and various tasks that demand cog-
nitive control [5–8]. For example, CON showed sustained
activation across cognitively demanding tasks [9].

Chai et al. [10] found that the causal influence among
CON was associated with the demands of control during
a task. On the one hand, some researchers suggested that
CON is a monitor which collects important information
from other systems to facilitate control. Accordingly, See-
ley et al. [4] named the network a “salient network” to em-
phasize its role in integrating emotional and internal sen-
sory information and making behavioral responses to sub-
jective salience. On the other hand, more and more studies
proposed that the network may also play a central role of
control in goal-directed behavior by exerting control sig-

nals to regulate other systems [11–13]. Those systems in-
clude several well-proposed functional networks closely re-
lated to cognitive control. For example, the dorsal atten-
tion network (DAN) and central executive network (CEN)
were also found activated in many demanding tasks and
were proposed to be important for attention control and ex-
ecutive functions [14–16], while the default mode network
(DMN)which showed deactivation during demanding tasks
and was proposed to be a source of internal interference to
the cognitive control [17]. Sridharan et al. [13] proposed
a triple modulation model of the CON, in which the CON
initiates cognitive control signals hierarchically by switch-
ing activation/deactivation of the Frontal-parietal network
(FPN) and DMN. In line with this modulatory model, Chen
et al. [18] found that transcranial magnetic stimulation
(TMS) to the CON and the DAN/CEN nodes influences
their functional connectivity withDMN. Furthermore, aber-
rant interactions of the CONwith other functional networks
are thought to underlie the physiology of many psychiatric
and neurological-related disorders such as depression [19],
Insomnia [20], and autism [21]. The studies mentioned
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above highlighted the importance of the interaction between
CON and other systems in daily life.

Furthermore, researchers also demonstrated that
change in the interaction between CON and the other cogni-
tive control related systemsmight be a prominent character-
istic of the development of the brain and closely related to
the development of one’s behavior. Many studies on chil-
dren, adolescents, and young adults have shown increased
connectivity between CON and other networks when age is
increased. The evidence comes from both functional con-
nectivity (FC) analysis [22–24] and structural connectivity
analysis [23,25]. More recently, the structural covariance
also showed that the modular density of the DMN and FPN
systems showed an increasing trend with age [26]. The
studies mentioned above suggested maturing pattern of the
communication of the CON and other networks. However,
many of the previous studies primarily focused on children
and adolescents. In contrast, studies on how CON inter-
action changes in middle-aged and older adults are inade-
quate. Methodically speaking, many previous studies relied
on single connectivity indices such as cross-correlation-
based FC analysis and structural connectivity-based analy-
sis, which could not assess the directional information of the
interaction between CON and the other networks. There-
fore, how the interactions betweenCON and other cognitive
control-related networks change at different ages in lifespan
requires further comprehensive investigation, which may
provide an important clue to understanding the develop-
ment of cognitive control in humans.

To assess the question, the present study adopted mul-
tiple connectivity approaches, including classical cross-
correlation-based FC analysis, total interdependence (TI)
analysis, and Granger causality (GC) analysis, to compre-
hensively elucidate the changing pattern of the interaction
between CON and other cognitive control-related networks,
including DAN, CEN, and DMN, at different age stages
across the lifespan. The TI and the GC analysis take the
temporal mutual information into account, and the latter can
provide direction and strength of the information flow be-
tween brain regions/networks. The study may help to pro-
vide a comprehensive connectivity change model related to
CON.

2. Materials and Methods
2.1 Data Source and Participants

The dataset was acquired from the NKI/Rockland
Sample database (http://fcon_1000.projects.nitrc.org/indi/
pro/nki.html), including the imaging data recorded from
207 participants aged 4–85 years old. All participants un-
derwent semi-structured diagnostic psychiatric interviews
and completed a battery of psychiatric, cognitive, and be-
havioral assessments. All participants had no history of
taking medicine, psychiatric illness, or any brain surgery
that might affect their central neural system; they had no
serious unstable illnesses requiring medication or hospital-

ization, including hepatic, renal, gastroenterology, respi-
ratory, cardiovascular (including ischemic heart disease),
endocrinologic, neurologic, immunologic, or hematologic
disease; were not pregnant, breastfeeding, or had other con-
traindications to magnetic resonance imaging (MRI) at the
time of the study. All participants signed a written informed
consent form according to the Helsinki Declaration and sat-
isfied the criteria for MRI. The Ethics Committee of the
Department of Psychology at Renmin University of China
authorized the current analysis procedure.

2.2 MRI Data Acquisition
All participants were scanned using a 3-Tesla mag-

netic resonance scanner (B15, Siemens AG, Munich, Ger-
many). They were required to remain quiet, relaxed, and
awake during the ten-minute resting state scanning ses-
sion with their eyes closed and heads fixed using comfort-
able sponge fixators. Functional images were acquired us-
ing a single-shot T2-weighted gradient-echo-planar imag-
ing (EPI) sequence. The scanning parameters were as fol-
lows: repetition time = 2500 ms, echo time = 30 ms, flip
angle = 90°, matrix size = 64 × 64, field of view (FOV)
= 216 mm × 216 mm, slice number = 38 (axial interleave
acquisition), slice thickness = 3.0 mm, voxel size = 3.0 mm
× 3.0 mm × 3.0 mm.

2.3 Data Preprocessing
Raw fMRI data were preprocessed using the DPABI

toolbox [27] in MATLAB 2013a. The First ten vol-
umes were removed to remove potentially unstable sig-
nals. The image preprocessing procedures include slice-
timing, realignment to correct head motion, spatial nor-
malizing of the individuals’ images to a standardized spa-
tial Montreal Neurological Institute (MNI) space [28], re-
sampling to the voxel size of 3.0 mm × 3.0 mm × 3.0
mm, and spatial smoothing using an 8 mm full-width at
half maximum Gaussian kernel to reduce spatial noise
[29]. Several optimized denoising procedures were used
to reduce spurious temporal signals further. We (1) im-
plemented independent components analysis to remove
nuisance components [30] using the GIFT v4.0 toolbox
(http://mialab.mrn.org/software/gift); (2) scrubbing proce-
dure to detect and correct the time points with a frame-wise-
displacement larger than 0.5 mm [31] and replace them
with temporal interpolation; (3) regressing out the global
noise, white matter signal, cerebrospinal fluid signal, and
the head motion parameters as nuisances; we performed
global signal removal because the common noise embed-
ded in the global signal may cause severe contamination
by false-positive correlation in traditional FC analysis and
severely degrade the estimation of TI and GC; (4) detrend-
ing to remove signal drift; and (5) bandpass (0.01–0.08 Hz)
filtering to acquire a stable low-fluctuating blood oxygena-
tion level dependent (BOLD) signal [10,32].
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Fig. 1. The cognitive-control-related networks were defined based on a meta-analysis. CON, including dACC, rAI, lAI; FPN,
including rFEF, lFEF, rIPS, lIPS; DMN, including MPFC, PCC, rIPL, lIPL, rLTC and lLTC; CEN, including bilateral PreCen-
tral/MFG/IFG/DLPFC.

For the total independence (TI) and GC (Granger
causality) estimations, we used the hemodynamic response
function (HRF) toolbox (http://users.ugent.be/ dmari-
naz/code.html) to perform deconvolution on the prepro-
cessed fMRI data and retrieve the signal changes at the neu-
ral level to alleviate potential confounds caused by HRF in-
homogeneity [33,34].

2.4 Region of Interests (ROIs) and the Connectivity
Mapping

We use the Neurosynth online meta-analysis tool
(https://www.neurosynth.org) to define the ROIs of four
functional networks closely related to cognitive control, in-
cluding CON, DAN, CEN, and DMN, and calculate the
connectivity within CON and between CON and the rest
four networks to elucidate how CON communicate with the
cognitive-control-related networks (For the convenience of
description, we summarized these networks as cognitive
control-related functional networks (CCRNs) in the current
study). Specifically, the results of the meta-analysis re-
garding the keyword “attention” in 1831 studies provided

a well-proposed spatial pattern (uniformity test, p < 0.01,
False discovery rate (FDR) corrected) of the task-positive
regions of CON, DAN, and CEN. On the other hand, the
results regarding the keyword “default mode” in 777 stud-
ies outlined the classical spatial pattern (uniformity test, p
< 0.01, FDR corrected) of the DMN, which is thought to be
a source of internal interference to goal-directed cognitive
control [35]. CON ROIs included dACC and bilateral ante-
rior insula (AI) [36]. DAN ROIs included bilateral frontal
eye field (FEF) and bilateral intraparietal sulcus (IPS) [37].
CEN ROIs included bilateral precentral gyrus/frontal mid-
dle gyrus/subfrontal gyrus/dorsolateral prefrontal (PreCen-
tral/MFG/IFG/DLPFC, collectively referred to as DLPFC
in the current study [14]. DMN regions included the me-
dial prefrontal cortex (MPFC), posterior cingulate cortex
(PCC), bilateral inferior parietal lobules (IPL), and lateral
temporal lobe (LTC) [38]. Please see Fig. 1 for the spatial
locations of the ROIs.

The seed time series representing each CONROI’s ac-
tivity was obtained by averaging all voxel time series in
that CON ROI (dACC, right AI, and left AI, respectively).

3

http://users.ugent.be/~dmarinaz/code.html
http://users.ugent.be/~dmarinaz/code.html
https://www.neurosynth.org
https://www.imrpress.com


Then we calculate CC, TI, and GC between the CON ROI
seed time series and each voxel of all four CCRNs (CON it-
self, DAN, CEN, and DMN) to yield a map that delineates
the interaction between the CON ROI and other regions of
CCRNs.

A common approach to demonstrate the topography
is providing the thresholded T-map of an age group using
a one-sample t-test. However, the sample size affects the
p-value threshold selection. For age groups with different
numbers of participants, setting one p-value threshold for
all three groups is not viable for comparing their topogra-
phy. Therefore, we applied a ranked mapping approach to
intuitively demonstrate the difference in connectivity maps
between the three age groups. Specifically, we ranked the
connectivity index values across all participants for each
voxel. Then we summarized that in each group, the por-
tion of participants fell into the upper half (stronger half) of
all participants. For each group, a voxel was highlighted if
the portion of strong participants it represented was larger
than 50%. Namely, the map illustrated whether a voxel in
a given age group is strong relative to the distribution of all
participants.

2.5 Fucntional Connectivity Measurement Based on
Cross-Correlation

We calculated the cross-correlation [39,40] between
time series to measure the FC between CON and the other
four networks. The Cross-correlation (CC) is the most
commonly used FC measurement describing the consis-
tent collaboration or antagonism relationship between re-
gions/networks. In the current study, the raw CC indices
were Fisher-transformed to project the values on [-∞,∞].
CC measures the point-to-point linear relationship between
two time series but neglects their non-zero lag temporal in-
terdependence [32].

2.6 Total Interdependence
Unlike the traditional CC, total interdependence (TI)

measures total temporal interdependence and accounts for
the non-zero-lag relationship existing across different lags
between time series (e.g., between x(i) and y(i+n)) [32]. TI
was defined by Gelfand and Yaglom [41] as:

TIx,y = − 1

2π

∫ π

−π

ln
(
1− C2

xy(λ)
)
dλ (1)

where Cxy(λ) is the coherence between the two random
processes, x and y, at frequency f = λ/2π.

For a given sampling frequency fs, the equation can
be converted into an implementable form as:

TIx,y = − 2

fs

N−1∑
i=1

ln
(
1− Cxy

2(i∆f)
)
∆f (2)

where∆f is the frequency resolution of the spectrum of the

time series.

Therefore, by calculating TI, we can more intuitively
and quantitatively prove the complete interdependence be-
tween two time series not captured by CC.

2.7 Granger Causality

A directed network model would be meaningful to de-
scribe the information flow between CON and the other net-
works. GC analysis is an effective connectivity approach
useful in directed network modelling. Let X and Y be two
time series, if using both X ’s and Y ’s past, one can predict
Y ’s future better than merely using Y ’s past, then we say
that there is GC influence from X to Y [42]. The estimation
of GC is realized using the multi-variable auto-regressive
(MVAR) model [43–45].

Specifically, let the two stationary time series be de-
noted by Xt and Yt, each is independently represented by
the following univariate autoregressive (AR) models:

Xt =

∞∑
j=1

a1jXt−j + ε1t, var (ε1t) = Σ1

Yt =

∞∑
j=1

d1jYt−j + η1t, var (η1t) = Γ1

(3)

and jointly represented as the following bivariate AR
model:

Xt =

∞∑
j=1

a2jXt−j +

∞∑
j=1

b2jYt−j + ε2t

Yt =

∞∑
j=1

c2jXt−j +

∞∑
j=1

d2jYt−j + η2t

(4)

where Γ1 denotes the variance of the residue of the univari-
ate AR model fitting and Γ2 the covariance of the residue
matrix of the bivariate (or multivariate) AR model fitting.
Then GC of X→ Y can be defined as:

FX→Y = ln
Γ1

Γ2
(5)

According to the bayesian information criterion (BIC)
and akaike information criterion (AIC) model order estima-
tions and our previous studies [46–49], the order of the au-
toregressive model (AR) model was set to 2 in this study.
More details of the mathematical realizations were pro-
vided in our previous study [45]. GC measures directed
information flow and has been widely used in directed net-
work modeling based on multi-unit recordings, electroen-
cephalogram (EEG), and fMRI, providing insightful results
for complex interactions among large-scale networks.
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2.8 Connectivity-Age Correlation
We could generate connectivity maps of dACC-

CCRNs, rAI-CCRNs, and lAI-CCRNs for each participant
using the above connectivity measurements. Then for each
connectivity index and each CON seed ROI (say region
S), we calculate the correlation coefficient between each
CCRNs voxel value and the age across participants to yield
a map delineating the age-varying pattern of the connectiv-
ity between S and CCRNs. We start with performing the
connectivity-age correlation across all participants. Fur-
ther, from a lifespan perspective, it is expected that many
biological indices vary in a nonmonotonic fashion against
age, and taking all participants in one shot may overlook the
detailed age-related pattern. It is reasonable to divide the
participants according to their natural life stages and per-
form the correlation test in each stage. Therefore, we di-
vided the 207 participants into three groups: Group [4–20
years old] (N = 56), Group [21–59 years old] (N = 119), and
Group [60–85 years old] (N = 32). The correlation analysis
in Group [4–20 years old] helped to assess how the CON-
CCRNs interaction develops before adulthood, the analy-
sis in Group [21–59 years old] helped to assess the chang-
ing of CON-CCRNs interaction during young and middle-
aged adulthood, and the analysis in Group [60–85 years old]
helped to assess the changing of CON-CCRNs interaction
during the elder adulthood.

The connectivity-age correlation test included the fol-
lowing steps. First, we performed a z-transform to nor-
malize CC, TI, and GC maps. Second, for each CCRNs
voxel, the correlation between each indicator and the age of
participants was calculated using an age-ranked grouping
method [50–53]. Specifically, (1) participants in the cur-
rent age group were arranged in an age-descending order.
(2) Then the analysis moved from the youngest to the eldest
participant and with an increment of 1 year, and at the ith
step of age x(i), calculate the mean value of the connectivity
indices I(i) and mean age xmean(i) of the participants fall
into the span between x(i) and x(i)+3 years. (3) The corre-
lation coefficients test between I and xmean was performed
to yield the correlation coefficient R, significance value p,
and the coefficient of determination R2.

2.9 Analysis of Variance (ANOVA)
In order to explore the difference across the three

groups, we performed one-way ANOVA based on F-test
for CC, TI, and GC mapping results, respectively. Statisti-
cal significance for each ANOVA was assessed at the p <

0.05 level and corrected using False discovery rate (FDR)
multiple comparison correction. Post hoc analysis based on
the Scheffe Test was applied within the CCRN mask to re-
veal regions with significant changes in multiple indicators.

3. Result
As mentioned in the Method section, connectivity

mapping results within CCRNs were correlated with age to

yield R, R2, and p values to describe how CON-CCRNs in-
teractions change against age. For TI and GC values, which
are defined on [0, ∞], a positive/negative R intuitively in-
dicates an enhancement/attenuation of the connectivity in-
dicator. Similarly, for CC between CON and DAN/CEN,
which are all proposed as task-positive networks and with
their activities positively correlated with each other in nor-
mal conditions, the meaning of the sign of R is the same.
However, CON and DMN activities are anti-correlated in
normal conditions. Therefore, if the CC of CON-DMN is
positively/negatively correlated with age, that means the
CON-DMN anti-correlation, is attenuated/enhanced. To
keep the consistency of illuminating the enhancement and
attenuation pattern, we multiplied the original R regarding
the relationship of CON-DMN CC and age with –1 so that
positive R (after adjustment) denotes enhancement of the
connection while negative R denotes attenuation.

3.1 The Change of CON-CCRNs Interaction in All
Participants

First, we use the ranked mapping approach to demon-
strate the spatial difference of the connectivity map between
the age groups. Noted that the classical FC was measured
using cross-correlation defined on [–1, 1], negative CC val-
ues representing anti-correlated activity could rank low, but
that did not mean a weak interaction. For example, CON
and DMN show prominent anti-correlation during the rest-
ing state; whether the negative correlation between CON
and DMN BOLDs represents a strong but antagonist inter-
action or merely extremely weak coupling remains debat-
able. The aforementioned ranked mapping approach does
not fit the complicated issue of negative FC. Therefore, we
only applied the ranked mapping approach to TI and GC
(Fig. 2). The result showed that the TI and GC output
in Group [4–20 years old] had weaker connectivity within
CON, with lIPS, and with DMN, compared to the other two
groups. For GC input, CON seemed to receive more influ-
ence from DMN and IPS but less from bilateral AI.

Second, we performed ANOVA to explore the differ-
ence across the groups. No significant difference was de-
tected across the three groups (p < 0.05, FDR correction).

Third, we performed the connectivity-age correlation
across all participants. No connection indicators signifi-
cantly correlate with age at a lifetime span were found (R2

≥0.6, p < 0.001).

3.2 The Change of CON-CCRNs Interaction in Group
[2–20 Years Old]

The result showed that most of the significant connec-
tion indicators detected were positively correlated with age
in this group. The detailed spatial map of the CCRNs re-
gions showed significant (R2 ≥0.6, p < 0.001, FDR cor-
rected) correlation/anti-correlation, as shown in Figs. 3,4,
and with detailed information listed in Table 1. The re-
sults demonstrated several prominent patterns of the de-
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Fig. 2. A summary of ranked seed map. The colored regions delineate the CCRN regions that showed relatively strong connectivity
with CON seed ROIs (red, seeded by dACC; green, seeded by rAI; blue, seeded by lAI).

velopment of CON-CCRNs interactions. First, within
the CON, enhanced CC/TI among dACC and bilateral AI
and enhanced GC of dACC→ lAI/rAI and rAI→ dACC
were detected, indicating increased communication within
the CON from childhood to adulthood. Second, most
of the indicators detected between the CON and DAN
were found enhanced, such as the CC of lAI-rIPS/lIPS
and rAI-rIPS/rFEF, TI of dACC-rFEF, lAI-rIPS/lIPS, and
rAI-rIPS, and GC of lIPS→ lAI. Only a few indica-
tors regarding the CON and the left DAN nodes, includ-
ing the CC of dACC-lIPS, TI of rAI-lEFE, and GC of
rAI→ lIPS, showed attenuation. Third, all significant
connectivity indicators detected between the CON and
CEN, including the CC of dACC/rAI/lAI-rDLPFC and
lAI-lDLPFC, TI of dACC-rDLPFC, and GC of dACC→
rDLPFC/lDLFPC and lAI-lDLPFC, showed enhancement
against age. Fourth, intense enhanced connection in-
dicators found between the CON and DMN, includ-
ing the CC of dACC-PCC/lIPL/lLTC, rAI-PCC/lIPL/rIPL,
and lAI-PCC/lLTC/lIPL/rIPL/DMPFC/VMPFC/ACC, and
TI of dACC-PCC/lIPL, rAI-PCC/lLTC/lIPL/rIPL, lAI-
PCC/lLTC/lIPL/rIPL. Only TI: lAI/VMPFC/ACC and GC
VMPFC/ACC→ lAI and rAI→ PCC showed attenuation
against age. Though we set up a significant threshold of R2

≥0.6, most of the enhanced indicators we detected in Group
[4–20 years old] had R2 ≥0.8.

3.3 The Change of CON-CCRNs Interaction in Group
[21–59 Years Old]

Unlike the results of Group [4–20 years old], Group
[21–59 years old] only showed a minimal number of con-
nection indicators that showed a significant negative cor-
relation with age. That is, within CON, the TI of lAI-
dACC/rAI, and between CON and DMN, the GC of PCC→
rAI were found attenuated against age (0.6 ≤ R2 ≤ 0.8, p
< 0.001, FDR corrected, see Fig. 5 and Table 2 for more
details). The correlation is weaker than that of most indi-
cators detected in Group [4–20 years old]. No significant
positive correlations were detected between the connection
indicators and age.

3.4 The Change of CON-CCRNs Interaction in Group
[60–85 Years Old]

The results of Group [60–85 years old] (Fig. 6, Ta-
ble 3) showed an inversed pattern compared to that of Group
[4–20 years old]. Most of the connection indicators de-
tected (R2 ≥0.6, p < 0.001, FDR corrected) showed at-
tenuation against age, distributed within CON and between
CON and DMN. Within CON, the CC and TI of lAI/rAI-
dACC were found significantly attenuated. Between CON
and DMN, the CC of dACC/rAI-PCC, dACC/lAI-rIPL,
lAI-VMPFC/ACC, and dACC-DMPFC/VMPFC/ACC, TI
of dACC/AI-PCC, and GC of lAI→ lIPL were found sig-
nificantly attenuated. Only the TI of lAI-rIPS was found to
be enhanced.
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Table 1. CON-CCRNs connections significantly correlated with age in Group [4–20 years old].

Connectiviy Index_Seed ROI [Network]-ROI
MNI coordinate

Sign of R R R2 p (FDR)
x y z

TI_Seed_rAI [CON]-dACC 3 26 32 + 0.91 0.83 <0.001
TI_Seed_rAI [CON]-dACC 0 23 50 + 0.93 0.86 <0.001
CC_Seed_rAI [CON]-dACC 3 26 32 + 0.93 0.86 <0.001
CC_Seed_lAI [CON]-dACC 9 17 38 + 0.94 0.89 <0.001

TI_Seed_dACC [CON]-lAI –30 26 –4 + 0.96 0.93 <0.001
TI_Seed_rAI [CON]-lAI –39 17 –7 + 0.89 0.79 <0.001
GC_Output_Seed_dACC [CON]-lAI –36 26 5 + 0.93 0.87 <0.001
CC_Seed_dACC [CON]-lAI –36 20 –7 + 0.96 0.92 <0.001
CC_Seed_rAI [CON]-lAI –33 17 2 + 0.90 0.8 <0.001

TI_Seed_dACC [CON]-rAI 33 20 2 + 0.96 0.92 <0.001
TI_Seed_lAI [CON]-rAI 33 29 –1 + 0.97 0.94 <0.001
GC_Output_Seed_dACC [CON]-rAI 36 20 8 + 0.96 0.93 <0.001
GC_Input_Seed_dACC [CON]-rAI 39 17 –4 + 0.98 0.96 <0.001
CC_Seed_dACC [CON]-rAI 39 20 –7 + 0.97 0.94 <0.001
CC_Seed_lAI [CON]-rAI 33 29 –4 + 0.96 0.91 <0.001

TI_Seed_rAI [DAN]-lFEF –24 –7 56 - –0.91 0.82 <0.001

TI_Seed_lAI [DAN]-lIPS –30 –55 44 + 0.97 0.94 <0.001
GC_Output_Seed_rAI [DAN]-lIPS –39 –37 41 - –0.94 0.89 <0.001
GC_Input_Seed_lAI [DAN]-lIPS –42 –46 53 + 0.97 0.94 <0.001
CC_Seed_dACC [DAN]-lIPS –27 –52 50 - –0.95 0.91 <0.001
CC_Seed_lAI [DAN]-lIPS –39 –40 41 + 0.97 0.94 <0.001
CC_Seed_lAI [DAN]-lIPS –18 –67 56 + 0.96 0.92 <0.001

TI_Seed_dACC [DAN]-rFEF 33 –1 56 + 0.95 0.9 <0.001
CC_Seed_rAI [DAN]-rFEF 24 –1 56 + 0.93 0.87 <0.001

TI_Seed_rAI [DAN]-rIPS 48 –37 44 + 0.99 0.97 <0.001
TI_Seed_lAI [DAN]-rIPS 48 –37 44 + 0.97 0.95 <0.001
CC_Seed_rAI [DAN]-rIPS 48 –40 47 + 0.95 0.9 <0.001
CC_Seed_lAI [DAN]-rIPS 45 –40 47 + 0.97 0.94 <0.001

TI_Seed_dACC [CEN]-IFG 48 11 20 + 0.98 0.96 <0.001

GC_Output_Seed_dACC [CEN]-lFrontal_Inf_Tri –48 20 29 + 0.94 0.89 <0.001

GC_Output_Seed_dACC [CEN]-lMFG/DLPFC –45 20 23 + 0.90 0.81 <0.001

GC_Output_Seed_lAI [CEN]-lPreCentral –42 –1 38 + 0.93 0.86 <0.001
CC_Seed_lAI [CEN]-lPreCentral –39 5 35 + 0.91 0.82 <0.001

CC_Seed_dACC [CEN]-rFrontal_Inf_Oper/rpMFG 51 5 41 + 0.96 0.91 <0.001
CC_Seed_lAI [CEN]-rFrontal_Inf_Oper/rpMFG 54 14 23 + 0.94 0.88 <0.001

GC_Output_Seed_dACC [CEN]-rFrontal_Inf_Tri 45 26 26 + 0.96 0.91 <0.001

GC_Output_Seed_dACC [CEN]-rMFG/DLPFC 45 35 23 + 0.91 0.84 <0.001

TI_Seed_dACC [CEN]-rPreCentral 48 2 38 + 0.98 0.96 <0.001
CC_Seed_rAI [CEN]-rPreCentral 51 5 38 + 0.97 0.95 <0.001
CC_Seed_lAI [CEN]-rPreCentral 45 5 38 + 0.98 0.97 <0.001

TI_Seed_dACC [DMN]-lIPL –51 –61 26 + 0.93 0.87 <0.001
TI_Seed_rAI [DMN]-lIPL –42 –64 26 + 0.90 0.81 <0.001
TI_Seed_lAI [DMN]-lIPL –42 –70 26 + 0.95 0.9 <0.001
CC_Seed_dACC [DMN]-lIPL –45 –67 35 + 0.94 0.89 <0.001
CC_Seed_rAI [DMN]-lIPL –42 –64 35 + 0.95 0.91 <0.001
CC_Seed_lAI [DMN]-lIPL –45 –64 35 + 0.97 0.94 <0.001

TI_Seed_rAI [DMN]-lLTC –66 –16 –16 + 0.90 0.82 <0.001
TI_Seed_lAI [DMN]-lLTC –66 –19 –19 + 0.91 0.83 <0.001
CC_Seed_dACC [DMN]-lLTC –63 –22 –16 + 0.96 0.92 <0.001
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Table 1. Continued.

Connectiviy Index_Seed ROI [Network]-ROI
MNI coordinate

Sign of R R R2 p (FDR)
x y z

CC_Seed_lAI [DMN]-lLTC –57 –19 –16 + 0.94 0.89 <0.001

CC_Seed_5_rAI [DMN]-MPFC –6 53 8 + 0.93 0.86 <0.001

TI_Seed_rAI [DMN]-vMPFC –3 53 –13 + 0.95 0.91 <0.001
TI_Seed_lAI [DMN]-vMPFC/ACC –9 50 8 - –0.86 0.74 <0.001
GC_Input_Seed_lAI [DMN]-vMPFC/ACC 6 41 –4 - –0.95 0.91 <0.001
CC_Seed_rAI [DMN]-vMPFC 3 50 2 + 0.95 0.9 <0.001
CC_Seed_lAI [DMN]-vMPFC –6 50 –13 + 0.97 0.94 <0.001
CC_Seed_lAI [DMN]-vMPFC 0 59 2 + 0.97 0.95 <0.001

TI_Seed_dACC [DMN]-PCC 0 –49 32 + 0.85 0.72 <0.001
TI_Seed_rAI [DMN]-PCC 0 –52 32 + 0.96 0.93 <0.001
TI_Seed_lAI [DMN]-PCC –3 –52 17 + 0.98 0.97 <0.001
GC_Output_Seed_rAI [DMN]-PCC 9 –58 20 - –0.92 0.85 <0.001
GC_Input_Seed_lAI [DMN]-PCC –3 –58 14 - –0.94 0.89 <0.001
CC_Seed_dACC [DMN]-PCC –3 –52 32 + 0.95 0.89 <0.001
CC_Seed_rAI [DMN]-PCC –6 –52 17 + 0.97 0.94 <0.001
CC_Seed_rAI [DMN]-PCC –6 –55 38 + 0.94 0.88 <0.001
CC_Seed_lAI [DMN]-PCC 6 –43 35 + 0.97 0.94 <0.001

CC_Seed_lAI [DMN]-dMPFC 3 53 17 + 0.9 0.81 <0.001

TI_Seed_rAI [DMN]-rIPL 54 –58 23 + 0.97 0.93 <0.001
TI_Seed_lAI [DMN]-rIPL 45 –58 26 + 0.88 0.78 <0.001
CC_Seed_rAI [DMN]-rIPL 51 –61 35 + 0.96 0.92 <0.001
CC_Seed_lAI [DMN]-rIPL 54 –58 38 + 0.93 0.87 <0.001
Note: The sign of “+”/“-” denotes a significant positive/negative correlation between age and connection strength. CC,
cross-correlation; TI, total interdependence; GC_Outuput, Granger causality from the CON seed ROI to others; GC_Input,
Granger causality of the CON seed ROI received from others; CON, cingulo-opercular network; DAN, dorsal attention
network; CEN, central executive network; DMN, default mode network; dACC, dorsal anterior cingulate cortex; rAI/lAI,
right/left anterior insula; lIPS/rIPS, left/right intraparietal sulcus; lFEF/rFEF, left/right frontal eye field; lIPL/rIPL, left/right
parietal lobule; lLTC/rLTC, left/right lateral temporal cortex; VMPFC, ventromedial prefrontal cortex; MPFC/ACC, medial
prefrontal/anterior cingulate cortex; PCC, posterior cingulate cortex; DMPFC, dorsomedial prefrontal cortex; IFG, infe-
rior frontal gyrus; lFrontal_Inf_Tri/rFrontal_Inf_Tri, left/right triangular inferior frontal gyrus; l/rMFG/DLPFC, left/right
middle frontal gyrus/dorsolateral prefrontal cortex; l/rPreCentral, left/right precentral gyrus; rFrontal_Inf_Oper /rpMFG,
inferior frontal gyrus of right insular operculum/posterior middle frontal gyrus.

Table 2. CON-CCRNs connections significantly correlated with age in Group [21–59 years old].

Connectiviy Index_Seed ROI [Network]-ROI
MNI coordinate

Sign of R R R2 p (FDR)
x y z

TI_Seed_lAI [CON]-rAI 33 20 –4 - –0.78 0.62 <0.001
TI_Seed_lAI [CON]-rAI 33 23 5 - –0.80 0.64 <0.001

TI_Seed_lAI [CON]-dACC 9 23 35 - –0.87 0.76 <0.001
TI_Seed_lAI [CON]-dACC –3 20 47 - –0.84 0.7 <0.001

GC_Input_Seed_rAI [DMN]-PCC 0 –40 32 - –0.83 0.68 <0.001
Conventions are the same as those in Table 1.

4. Discussion

The current study adopted a multi-connectivity
indicator-based network analysis approach to explore the
lifelong changes in functional and effective connectiv-
ity within CON and between CON and several cogni-
tive control-related functional networks (DAN, DMN, and

CEN) from age 4–85 years. We found three major results.
(1) The connectivity indices within the CON and between
CON and the other three CCRNs showed significant en-
hancement from childhood to early adulthood (age 4–20
years), (2) mild attenuation within CON from early adult-
hood to middle age (age 21–59 years), and (3) significant
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Fig. 3. CCRNs connectivity changed against age in Group [4–20 years old]. The colored CCRN regions show significant correlations
(R2 ≥0.6, p < 0.001, cluster size >20 voxels) between the connectivity indices with age in Group [4–20 years old]. The color schema
is the same as that in Fig. 2.
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Fig. 4. Examples of the scatter plot of the connectivity index correlated with age in Group [4–20 years old].

attenuation within CON and between CON and DMN in
the elder group (age 60–85 years). The main pattern of the
changes is schematically summarized in Fig. 7. The cur-
rent study aimed to characterize the changing pattern of the
interactions between CON and several well-proposed func-
tional networks (including CON itself) that are closely as-
sociated with cognitive control at different stages of life.

4.1 CON-CCRN Connectivity Change across Different
Age Stages

Although the ranked mapping result showed some
trend of change across different age groups, the ANOVA
results did not reveal significant change between the age
groups. Four points may explain why no significant re-

sults were disclosed using ANOVA: (1) The Group [4–20
years old] and Group [59–85 years old] belong to the two
populations that were experiencing significant changes in
their brain functional connectivity. For example, the Group
[4–20 years old] covered participants from preschoolers,
schoolchildren, preteens, teenagers, and even early young
adults. It was not surprising that the variance of the connec-
tivity indicators contributed by the developmental effect in
this group was large. Similarly, the Group [59–85 years
old] might also have a large variance contributed by ag-
ing. (2) The individual difference in functional connectivity
also contributed much to the variance besides the age in all
three groups. (3) The variance caused by the two effects
mentioned above blurred the boundary of two neighboring
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Fig. 5. CCRNs connectivity changed against age in Group [21–59 years old]. (A) CCRNs regions show significant correlations (R2

≥0.6, p < 0.001, cluster size >20 voxels) between the connectivity indices with age in Group [21–59 years old]. (B) demonstrates
examples of the scatter plot of the connectivity index correlated with age. The color schema is the same as that in Fig. 3.

groups, making detecting group differences difficult. (4)
If the change was not monotonic, it was possible that few
significant changes could be detected across groups. For
example, if the connectivity increased with age in Group
[4–20 years old] but decreased with age in Group [59–85
years old], the connectivity might show no change across
the two groups. In summary, for the dataset analyzed in the
current study, compared with correlation analysis, ANOVA
might not capture the detailed alteration pattern across the
groups. The null results of ANOVA indicated that dividing
the participants into age groups and analyzing how CON-
CCRN interaction changes with age within each Group is
necessary.

4.2 CON-CCRN Connectivity Change at a Lifetime Scale

Although the results of including all participants in
the connectivity-age correlation analysis were insignificant,
they also showed that it was necessary to divide the par-
ticipants into different age stages, calculate the correlation
within each stage, and summarize the changing pattern of a
lifetime. A few points are worth discussing here:

(1) Including participants of all age groups, the num-
ber of samples increased, and the p-value might decrease.
However, when examining the correlation with age, both
R and R2 showed a significant decline, which showed that
on a lifelong scale, the changes of most connectivity indi-
cators were probably not linear, and each age stage has its
change pattern, which demands the analysis strategy of ex-
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Fig. 6. CCRNs connectivity changed against age in Group [60–85 years old]. (A) CCRNs regions show significant correlations (R2

≥0.6, p < 0.001, cluster size >20 voxels) between the connectivity indices with age in Group [60–85 years old]. (B) demonstrates
examples of the scatter plot of the connectivity index correlated with age. The color schema is the same as that in Fig. 3.
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Table 3. CON-CCRNs connections significantly correlated with age in Group [60–85 years old].

Connectiviy Index_Seed ROI [Network]-ROI
MNI coordinate

Sign of R R R2 p (FDR)
x y z

TI_Seed_lAI [CON]-dACC –6 20 41 - –0.91 0.82 <0.001
CC_Seed_lAI [CON]-dACC –3 14 44 - –0.91 0.83 <0.001

TI_Seed_dACC [CON]-lAI –27 26 –1 - –0.94 0.87 <0.001
TI_Seed_rAI [CON]-lAI –39 20 2 - –0.98 0.96 <0.001
CC_Seed_rAI [CON]-lAI –45 17 –1 - –0.97 0.93 <0.001

TI_Seed_lAI [DAN]-rIPS 36 –46 50 + 0.90 0.81 <0.001

CC_Seed_dACC [DMN]-ACC/MPFC –6 47 11 - –0.84 0.71 <0.001

CC_Seed_lAI [DMN]-ACC/vMPFC 6 41 –1 - –0.90 0.81 <0.001

CC_Seed_dACC [DMN]-dMPFC –3 47 32 - –0.90 0.81 <0.001
CC_Seed_dACC [DMN]-dMPFC 3 50 32 - –0.90 0.80 <0.001
CC_Seed_dACC [DMN]-dMPFC 3 56 14 - –0.91 0.82 <0.001
GC_Output_Seed_lAI [DMN]-lIPL –42 –76 29 - –0.94 0.88 <0.001

CC_Seed_dACC [DMN]-vMPFC –6 50 –7 - –0.92 0.84 <0.001
CC_Seed_lAI [DMN]-vMPFC 6 53 –7 - –0.90 0.81 <0.001

CC_Seed_dACC [DMN]-MPFC 3 47 26 - –0.91 0.82 <0.001
CC_Seed_dACC [DMN]-MPFC 0 56 –4 - –0.92 0.85 <0.001

TI_Seed_dACC [DMN]-PCC 0 –55 29 - –0.94 0.88 <0.001
TI_Seed_rAI [DMN]-PCC –3 –49 17 - –0.94 0.89 <0.001
CC_Seed_dACC [DMN]-PCC –3 –49 20 - –0.96 0.92 <0.001
CC_Seed_rAI [DMN]-PCC 9 –58 26 - –0.93 0.86 <0.001

CC_Seed_dACC [DMN]-rIPL 42 –58 32 - –0.85 0.72 <0.001
CC_Seed_dACC [DMN]-rIPL 51 –67 35 - –0.85 0.71 <0.001
CC_Seed_lAI [DMN]-rIPL 54 –64 35 - –0.88 0.77 <0.001
Conventions are the same as those in Table 2.

amining within age groups. Our results also explained this
point. For example, Group [21–59 years old] had the largest
sample number (N = 119) and the largest age span, but the
number of brain regions with changed connectivity signif-
icantly correlated with age was minimum, indicating that
the connection between CON and CCRN regions is stable,
and generally does not change significantly with age. When
analyzing the whole cohort, participants aged 21–59 might
be dominant in the sample size and age span. Therefore, it
was likely that the details of network connection change of
the other two age groups would be lost.

(2) Existing studies have shown that the trend of brain
connection changes in the three age groups is very incon-
sistent. The meaning of using linear correlation to explore
possible general change patterns at a lifetime scale from a
data-driven perspective needs to be clarified.

(3) Although the results were insignificant regarding
the criteria we applied in the current study, providing the so-
called “null results” were still helpful. In the current study,
it is reasonable to start with a correlation analysis across the
whole cohort. The “negative results” of the whole cohort
correlation analysis, like the “negative results” of ANOVA,
provided insight into the reason for performing correlation
analysis within each age group and enhanced themotivation

of the analysis strategy applied in the current study.

4.3 The Integration and Disintegration of CON at
Different Age Stages

Two of the main results of the current study were that
the connections between the CON regions (dACC and bilat-
eral AI) showed significant enhancement against age before
adulthood but showed attenuation during aging in adult-
hood. The former suggested increased integration between
nodes within CON, indicating a typical pattern of CON de-
velopment at the age of 4–20 years, which is consistent with
the previous study [54]. According to previous research
[55], this integration may be related to the central regula-
tory role of CON among the large-scale functional networks
[4,12,13,56,57]. The result also showed that the connectiv-
ity enhancement of dACC-lAI/rAI is more prominent than
that of lAI-rAI, indicating a core position of dACC in the
development of the hierarchy of CON node, which was in
line with our previous findings that dACC is on a higher
level thanAI in control [52,53]. On the other hand, inGroup
[4–20 years old], the enhancement of dACC-rAI connec-
tions seemed to be more significant than those of the other
connections in CON. For example, the R2 of the correlation
between rAI→ dACC and age reached 0.96, the largest R2
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Fig. 7. A schematic summary of the significantly enhanced/attenuatedCON-CCRNs connection indicators in different age groups.
(A) Change pattern in Group [4–20 years old]. (B) Change pattern in Group [21–59 years old]. (C) Change pattern in Group [60–85
years old]. The weights of the connections are proportional to the number of indicators that were significantly correlated with age.

among the connections within CON. This result supports
the view of the Triple Network Regulation Model that the
rAI is central to the dynamic regulation of functional net-
works [13,58]. It is worth noting that the ventral AI area
showed significantly enhanced FC. In contrast, dorsal AI
showed enhanced GC. This discrepant pattern was consis-
tent with previous findings that ventral AI is more associ-
ated with emotional processing, and the dorsal side is more
associated with higher-order cognitive processes [58–60].
These results suggest that the dorsal and ventral of AI un-
dergo functional differentiation and integration into differ-
ent subnetworks during development.

In both Groups with ages over 20, we observed atten-
uation of TI of dACC-lAI and rAI-lAI. The attenuation is
mild and only showed in TI indicators when participants
are younger than 60 (Group [21–59 years old]). For par-
ticipants over 60 (Group [60–85 years old]), the attenua-
tion became more significant in both CC and TI indicators.
The mild attenuation from early adulthood to late middle
age may reflect an early sign of the decline of CON. The
more severe attenuation in participants over 60 reflects the
consequence of the early decline. It is worth noting that
the connection indicators between dACC and rAI, though
prominently enhanced before 20 years old, did not show
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significant change during aging. This result indicated that
the interaction between dACC and rAI might be a binding
signature of developing the cognitive control functions in
younger participants and maintaining them in the older par-
ticipants under normal conditions. The varying pattern of
dACC-rAI interaction implies that its abnormal alteration
may be associated with a mental illness involving impaired
cognitive control [61]. This needs further investigation be-
yond the normal population.

4.4 Enhanced Integration between CON and CEN, and
DAN in Development

Task-positive networks such as CON, DAN, and CEN
play a crucial role in the performance of cognitive tasks.
Dosenbach et al. [56] suggested that the CON served as
the regulatory core of the task-positive network, monitor-
ing the CEN and DAN, which were involved in specific
task trials. The present study found that the coupling be-
tween CON and DAN/CEN increased with age during de-
velopment, which is consistent with some previous find-
ings which demonstrated a gradual increase in FC tween
CON and the DAN/CEN [23,62] from childhood to adult-
hood. This enhancement has been proposed to be critical for
cognitive control maturity [24]. In addition, GC indicators
further revealed the stronger influence of rAI→ lDLPFC,
dACC→ r/lDLPFC, and lIPS→ lAI but weakened the in-
fluence of rAI→ lIPS. Sridharan et al. [13] argued that the
rAI, as the main site of stimulus reception/response, is first
activated upon receipt of external stimuli and subsequently
generates priming to activate the dACC, lAI to trigger hier-
archical control. DLPFC and IPS are involved in top-down
control of cognitive control signals at the sub-trial level of
the task. The present study only found GC influence of
lAI/dACC→ DLPFC but not the rAI→ DLPFC, and en-
hanced interaction between the lAI and IPS but a weakened
interaction between the right AI and IPS during develop-
ment, whichmay indirectly support the hypothesis that right
AI regarding initiation.

Taken together, the enhanced coupling, total interde-
pendence, and directional GC influence between CON and
DAN/CEN before adulthood delineated a procedure of de-
velopmental maturation characterized by the integration of
the so-called task-positive networks, including CON, DAN,
and CEN.

4.5 Stable Pattern of CON-CCRNs Interaction from Early
Adulthood to Middle Age

In Group [21–59 years old], only a small number of
connection indicators correlated with age. The scatter plot
of most connection indices did not show a significant pat-
tern of increasing or decreasing or nonlinear trends against
age, despite this Group containing the largest number of
participants (n = 119) in the current study. The result in-
dicated that most of the CON-CCRNs connections do not
change significantly or systematically against age and en-

ter a stable stage after adolescence. The negative results of
most connections may be a sign of matured CON-CCRNs
integration and are in line with the proposed trend of cogni-
tive control in humans [55,63,64]. On the other hand, dis-
entangled CON-CCRNs interaction may impair emotional
and cognitive functions. For example, previous research
has reported altered connections of CON-CCRNs in psy-
chiatric disorders such as depression [65], anxiety [66], and
Alzheimer’s disease [67]. This stable stage could also be
critical to maintaining normal functions in adulthood.

4.6 CON-DMN Communication Change Against Age

The enhancement during the development and the at-
tenuation of CON-DMN connection indicators were the
most noticeable results we observed in the current study
(Fig. 7). DMN is well-known as a task-negative network
constantly deactivated when an individual performs cog-
nitively demanding tasks and shows more active signal
changewhen the task is absent [38,68–71]. DMN is thought
to be associated with mind wandering and free thinking
and the source of internal interference to the external goal-
directed task performance [38,52]. The regulation of DMN
during a task is important for many behaviors that demand
cognitive control, such as attention [52,72], working mem-
ory [73,74], meditation [69], etc. The attenuated deactiva-
tion of DMN during cognitive tasks has been reported con-
stantly in elders, patients with mild cognitive impairment
(MCI) [75], patients with Alzheimer’s Disease [76], Chil-
dren with attention deficit, and other developmental prob-
lems [77,78]. Previous studies have suggested that effective
CON-DMN communication is crucial for successfully reg-
ulating DMN activity during cognitive control [52,79]. The
antagonistic relationship (measured using anti-correlation
[40]) between CON and DMN activity is a sign of effective
communication both during the task and during the resting
state.

In the current study, the CC indicator showed en-
hanced anti-correlation between CON-DMN in Group [4–
20 years old], indicating increased communication from
childhood to adulthood. Consistently, the TI of CON-DMN
also showed enhancement against age in Group [4–20 years
old], which confirmed the increased CON-DMN communi-
cation. This developing pattern of CON-DMN interaction
may suggest a balance of internal and information process-
ing and be related to the functional development and im-
provement of individual functional networks to cope with
more complex cognitive tasks when children and adoles-
cents grow up [76,80].

On the other hand, the results in Group [60–85 years
old] showed significant attenuation of the CON-DMN in-
teraction in elder participants. For example, the anti-
correlation measured in CC between many CON and DMN
nodes was significantly weakened against age. Consis-
tently, for dACC and rAI, two major nodes of CON, and
PCC, a representative hub of DMN, the TI of dACC/rAI-
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PCC were also significantly weakened when participants’
age became older. The result showed a pattern contrary
to that in the children and young group. This attenuation
in CON-DMN interaction may underlie the neural basis of
the decline in cognitive function during aging [81]. The
attenuation was not observed in the connection indicators
of CON-DAN/CEN, indicating that cognitive decline dur-
ing aging is mainly related to the disrupted communication
between CON and DMN instead of those between the task-
positive CCRNs [81]. The attenuation was not observed
in the connection indicators of CON-DAN/CEN, indicating
that cognitive decline during aging is mainly related to the
disrupted communication between CON and DMN instead
of those between the task-positive CCRNs.

4.7 Considerations and Limitations

Although there are many studies on the change of
functional connectivity with age, only a small number of
studies [22] focused on how the connectivity of CON and
CCRNs changes in a lifetime and support the proposed core
control network theory [9]. However, the previous research
has the following limitations. (1) It was only based on a
single FC indicator using cross-correlation and could not
provide directional information. (2) It performed correla-
tion analysis across participants of all ages and only exam-
ined the relationship of linear, monotonic changes, ignoring
that the change of CON-CCRN communication in a lifetime
could be nonmonotonic.

Therefore, as an essential core cognitive control net-
work, the changing communication pattern between CON
and other CCRNs needs to be clarified. This study can be
regarded as a follow-up study of the previous work examin-
ing the interaction within CON and between CON and other
CCRNs, delineating how the interactions changes in differ-
ent stages of life by dividing the samples into three different
age groups and performing analysis in each group. From the
perspective of analytical methods, the current study applied
a comprehensive analysis based on multiple connection in-
dicators, including classic FC and time-dependent TI and
GC, where GCmay also provide directional information on
the interaction. The approaches applied in the current study
help overcome the above-mentioned limitations of the pre-
vious study, providing further details of CON-CCRN com-
munication change. The current analysis of the three differ-
ent age stages clearly demonstrated that CON-CCRNs in-
teraction change in a nonmonotonic fashion during the life-
time and the change pattern of each age stage has its own
characteristics.

The current study divided the participant into three age
groups. The selection of the separating point of the age
may affect the result of the connectivity-age joint analy-
sis. The definition of “young”, “middle-aged”, and “old”
may vary in different contexts. The maturing of the brain
also showed brain-regional differences and individual dif-
ferences. Therefore, finding absolute separating points fit-

ting for all conditions is nontrivial and unnecessary. The
age of 20 is commonly used to separate mature individu-
als from immature in daily life, and age 60 is an empirical
point that people start recognizing as “old”. We tried using
the age of 18, 22, 55, or 65, but the results did not change
much. Most of the patterns were preserved, indicating that
the results were not sensitive to the selection of the empiri-
cal separating point.

In this study, we used global signal regression to alle-
viate the contamination of common noise embedded in the
global signal. However, it is worth noting that global sig-
nal removal is a common practice in resting-state and task
fMRI research, and there are both for and against it. Some
people think it may confound the results if the global sig-
nal is strongly modulated by the task or other experimental
factors [82–84]. Others suggest that it is conducive to ob-
serving localized neuronal effects that can be obscured by
various global noise factors [85–89]. We proposed whether
global signal regression should be performed depending on
specific situations, such as different datasets and method-
ological considerations.

The current study has some limitations. First, it only
conducted correlation analysis across participants of differ-
ent ages. The results may be affected by individual dif-
ferences across the participants. Because of the limita-
tion of the dataset, each participant accounted for a sin-
gle time point (the age when scanned), and it is hard to
acquire continuous life-long longitudinal MRI data. We
could not examine how the CON-CCRNs interaction devel-
ops and changes within an individual on a life-time level.
Second, the current study focused on the linear relation-
ship between connectivity and age; we adopted a classic
and intuitive correlation method but could not explore the
potential non-linear, complex relationship between connec-
tivity and age. More sophisticated methods for detecting
the non-linear trend may be needed in future studies better
to delineate potential complex changes in the connection in-
dicators. The current study only focused on the interaction
between CON and several well-defined CCRNs. However,
it is worth noting that using a data-driven approach across
parcels defined by an atlas may provide insightful results
that show overall brain connectivity development.

5. Conclusions
The study characterizes the changing pattern of the in-

teractions between CON and several well-proposed func-
tional networks (including CON itself, DAN, CEN, and
DMN) closely associated with cognitive control at dif-
ferent stages of life. The results indicated the promi-
nently increased integrity of within-CON andCON-CCRNs
communication, mildly weakened within-CON communi-
cation, and significantly attenuated within-CON and CON-
DMNcommunication, characterizing distinct changing pat-
terns of CON-interaction at three different stages that cov-
ered a life-long span.
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