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Abstract

Background: Autism Spectrum Disorder (ASD) is a complex neurodevelopment disease characterized by impaired social and cognitive
abilities. Despite its prevalence, reliable biomarkers for identifying individuals with ASD are lacking. Recent studies have suggested
that alterations in the functional connectivity of the brain in ASD patients could serve as potential indicators. However, previous re-
search focused on static functional-connectivity analysis, neglecting temporal dynamics and spatial interactions. To address this gap, our
study integrated dynamic functional connectivity, local graph-theory indicators, and a feature-selection and ranking approach to identify
biomarkers for ASD diagnosis. Methods: The demographic information, as well as resting and sleeping electroencephalography (EEG)
data, were collected from 20 ASD patients and 25 controls. EEG data were pre-processed and segmented into five sub-bands (Delta,
Theta, Alpha-1, Alpha-2, and Beta). Functional-connection matrices were created by calculating coherence, and static-node-strength in-
dicators were determined for each channel. A sliding-window approach, with varying widths and moving steps, was used to scan the EEG
series; dynamic local graph-theory indicators were computed, including mean, standard deviation, median, inter-quartile range, kurtosis,
and skewness of the node strength. This resulted in 95 features (5 sub-bands x 19 channels) for each indicator. A support-vector-machine
recurrence-feature-elimination method was used to identify the most discriminative feature subset. Results: The dynamic graph-theory
indicators with a 3-s window width and 50% moving step achieved the highest classification performance, with an average accuracy of
95.2%. Notably, mean, median, and inter-quartile-range indicators in this condition reached 100% accuracy, with the least number of
selected features. The distribution of selected features showed a preference for the frontal region and the Beta sub-band. Conclusions: A
window width of 3 s and a 50% moving step emerged as optimal parameters for dynamic graph-theory analysis. Anomalies in dynamic
local graph-theory indicators in the frontal lobe and Beta sub-band may serve as valuable biomarkers for diagnosing autism spectrum
disorders.

Keywords: autism spectrum disorder; electroencephalography; feature extraction; dynamic functional connectivity; graph theory anal-
ysis; machine learning

1. Introduction Previous studies have focused on searches for funda-

The complex neurological condition known as Autism mental biomarkers of brain functional connectivity. Be-

Spectrum Disorder (ASD) can lead patients to exhibit repet- cause of its great temporal resolution and ease of use, elec-
itive and limited activities that impede their day-to-day troencephalography (EEG) is typically used in these types
functioning [1]. When Kanner [2] initially described ASD of studies. An essential characteristic of ASD, according to
in 1943, he identified two key characteristics: abnormal electronic physiology studies, is abnormal functional neural
and repetitive sensory-motor activities; and social commu- circuits [7,8]. ASD individuals retain an excessive number
nication impairments. Early detection and treatment could ~ ©f synaptic connections because they do not experience the
significantly mitigate the impact of later symptoms [3].  regular pruning of synapses during childhood [9]. It has
However, traditional diagnosis heavily relies on clinical- ~ been argued that an excess of neurons creates local func-
symptom questionnaires, increasing the risk of widespread tional over-connectivity. The statistical dependence of sig-
misdiagnosis [4,5]. The overlapping and unclear symptoms nals, such as the coherence at a certain frequency, between
of ASD make traditional identification challenging. Thus, ~ tWO brain regions, over time, is referred to as functional
it is crucial to identify biomarkers related to symptoms in ~ connectivity. EEG and magnetoencephalography (MEG)

order to assist in clinical diagnosis and to provide insight ~ ¢an be used to determine functional connectivity. By using
into the mechanisms underlying ASD [6]. millisecond temporal resolution, EEG signals reflect an ap-

proximate measure of postsynaptic pyramidal cell activity
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[10]. Although some studies produced inconsistent or even
contradictory results [10—13], the most widely accepted
finding, currently, is that patients with ASD have lower
level of long-range functional connectivity (e.g., between
frontal and parietal regions) and a higher level of short-
range connectivity (e.g., within frontal regions) [ 14]. Previ-
ous studies have mostly focused on the functional connec-
tivity of a particular pair of regions; however, two-region
connectivity is considered a low-order signal because it is
considered to contain relatively little information, and can-
not account for interactions from other regions [15]. In or-
der to overcome this limitation, the topological characteris-
tics of the entire brain functional-connection network were
proposed to be described by complex network analysis, also
known as graph-theory analysis [16,17].

The entire brain functional-connection network can
be viewed as a graph in the graph-theory approach, with
the EEG channels acting as the nodes, and the connec-
tivity strength between channel pairs acting as the edges.
An array of graph-theory indicators, which may be further
classified into global and local indicators, could character-
ize the topological characteristics of the entire brain net-
work. The global indicators include small-world, global ef-
ficiency, global degree, and so on, which describe the topo-
logical traits of the whole network; local indicators, such
as node degree (or node strength), and node efficiency, de-
scribe the function of a specific node (or a brain region
in the context of brain network) in a network [18]. Be-
cause ASD is sometimes regarded as a “disconnection syn-
drome”, graph-theory research of brain networks is espe-
cially suitable for studying ASD [19]. Preschool-aged ASD
patients showed higher node efficiency of the right lingual
gyrus and a higher node degree of the right medial frontal
gyrus, than did normal controls [20]. This suggests that
graph-theory indicators could be useful biomarkers for the
early diagnosis of ASD patients. Certain global measures,
such as average node degree, are the average of their corre-
sponding local indicators; however, the averaging process
may obliterate important information necessary for diagno-
sis. Results suggested that there was only a significant dif-
ference in local graph-theory indicators between ASD pa-
tients and controls, not in global ones [20], which meant
that some local-network topological qualities experienced
modifications, and that those changes might not be discov-
ered by global graph-theory indicators. However, it is pos-
sible to determine which features are most relevant for the
disease diagnosis in a data-driven manner by fusing local
graph theory with feature selection and ranking approaches
[21].

Previous research tended to treat the EEG data as
static. It was noted that the reason for the paradoxical
results from static functional-connectivity analysis might
be from not measuring instantaneous dynamic changes in
EEG connectivity [22], since EEG signals are characteristi-
cally unstable. Results from a micro-state analysis showed

that EEG shifts its states in 100 ms [23]. In order to cap-
ture the dynamic characteristics of the EEG signal, a dy-
namic Functional-Connectivity Analysis (dAFCA) was pro-
posed. In dFCA, the EEG signal is separated into numer-
ous epochs by a sliding window, and the variability among
these epochs can be computed [24]. Functional magnetic
resonance imaging (fMRI) was employed in a study of 102
normally developing control children and 105 children with
ASD [25]. According to the findings, the children with
ASD showed less variability in the fusiform gyrus-inferior
temporal gyrus connectivity, and more variability in the an-
terior cingulate cortex-medial prefrontal cortex connectiv-
ity, than did the controls. Dynamic functional connectiv-
ity is useful in the identification of several illnesses, in-
cluding ASD [26]. It may also reflect the dynamic recon-
figuration of various regions over time, which may fur-
ther reflect the brain’s flexibility and adaptability. One
study [23] employed the sliding-window method to divide
the EEG signal of ASD patients and controls into several
epochs. Then, the researchers used k-mean clustering to
divide these epochs into four states. The results showed
that, although static functional connectivity did not reveal
the difference, the pattern of the two states was significantly
different in ASD patients and controls, suggesting that use-
ful information may be present in the process of state shift in
ASD. Features from dynamic functional connectivity were
found to achieve a higher classification accuracy for diag-
nosing ASD children, validating the special benefit of dy-
namic functional connectivity in diagnosing ASD patients
[27]. The researchers did this by combining the dynamic
functional-connectivity calculation with a multiple-kernel
support vector machine model.

In the present study, we attempted to combine the ben-
efits of dynamic functional connectivity and local graph-
theory indicators. Using a data-driven method, we sought
to identify the most discriminative features for ASD di-
agnosis by utilizing feature selection and ranking tech-
niques. Furthermore, we attempted to assess the effec-
tiveness of different window widths in dynamic functional-
connectivity analysis to provide empirical information for
the best window-width selection for subsequent studies.
The workflow is depicted in Fig. 1.

2. Materials and Methods
2.1 Data Derivation

The EEG data and diagnosis details were obtained
from Zhongshan Bo’ai Hospital’s internal medical record
system, located in Zhongshan City, China. The inclusion
criteria for the ASD patient group were: (1) diagnosed
as ASD according to Diagnostic and Statistical Manual of
Mental Disorders-V (DSM-V) criteria; and (2) aged 1-6
years. Exclusion criteria for the ASD patients were: (1)
a history of epilepsy seizures; and (2) patients who had suf-
fered from other neurological, developmental diseases, or
extra-cranial injury. Controls were selected from children
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Fig. 1. The work flow of the research project. EEG, electroencephalography; SVM, support vector machine; RFE, recursive feature

elimination. The * means the process of multipling. In other words, each channal could provide 5 features, and finally obtain total 95

features (19 multipling 5 equal to 95).

who were hospitalized for non-neurological disease, e.g.,
diarrhea, in the same age range. Altogether, 20 ASD pa-
tients and 25 health controls were recruited. Informed con-
sent was obtained from the parents of all subjects involved
in the study.

2.2 EEG Data Pre-Processing

Nicolet EEG machines (Host: PN100973M ; Ampli-
fier: V32-09472364, Natus Medical Incorporated, Pleasan-
ton, CA, USA) with a 125-Hz sample rate were used to
record the resting EEG signals of the subjects when they
were sleeping. According to the international 10-20 mon-
tage system [28], a total of 19 channels (Fpl, Fp2, F7, F3,
Fz, F4, F8, T3, C3, Cz, C4, T4, TS, P3, Pz, P4, Te, Ol,
and O2) were fastened onto the patient’s scalp [29]. The
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following were the EEG pre-processing steps: (1) the av-
erage re-reference and band-pass filtering between 0.1 Hz
and 45 Hz were carried out for EEG signals, using the
“pop_eegfiltnew” function in EEGLab toolbox v.14.1.2.0
(https://scen.ucsd.edu/eeglab/index.php) [30] to remove ar-
tifacts; (2) independent component analysis (ICA) was car-
ried out to remove artifacts originating from eye and mus-
cle movement. The IClabel plug-in unit (https://labeling
.ucsd.edu/auth/login) [31] carried out the identification of
these components; (3) Manual elimination of the problem-
atic segments from the eye, muscle, or body’s gross move-
ment, that I[CA was unable to identify; (4) recheck, by
two experts, of the pre-processed EEG data, and extrac-
tion of the 100-s signal from the beginning of the pre-
processed EEG signal; and (5) EEGs were further filtered
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into 5 frequency sub-bands, Delta (0.5-4 Hz), Theta (48
Hz), Alpha-1 (8-10 Hz), Alpha-2 (10-12 Hz), Beta (12—
30 Hz) by the “pop_eegfiltnew” function in EEGLab. The
pre-processing described above was carried out in Mat-
lab v. 2019a using the EEGLab toolbox v.14.1.2.0 (https:
//scen.ucsd.edu/eeglab/index.php).

2.3 Calculation of Functional Connectivity

In order to investigate the linear relationship be-
tween two signals in the fixed frequency, we computed
magnitude-squared coherence, or coherence. By assuming

Leave-one-out cross
—> validation to obtain the
accuracy

4

Delete the least
important feature

!

Left features
more than 5?

Re-model the SVM
with the left features

—)

Select only top 30
important features to
re-model the SVM

Output the accuracy, and determine the optimal feaure subset
according to the highest accuracy for each indicator

that Y (t) and X (t) represent EEG signals in two brain re-
gions or regions of interest (ROIs), first Y (t) and X (t) were
converted from the time domain to the frequency domain
using a fast Fourier transform:

T-1

F(f)y =" aftle ™ (1)

t=0

Then, for each frequency point f, power spectral den-
sities Sz () and Sy (f) and their cross power spectral den-
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Fig. 4. The changing process of classification performance along with the recurrence and the ROC curves for the optimal feature

subset in 50% moving step, and different window width conditions. (a—c) Changing process of accuracy along with the number of

features under window width of 1 s, 3 s, and 5 s. (d—f) Changing process of AUC along with the number of features under window
width of 1's, 3 s, and 5 s. (g—1) The ROC based on the selected optimal feature subset under the window width of 1 s, 3 s and 5s. The
vertical line means the location where the accuracy peaks. STD, standard deviation; IQR, inter-quartile range; ROC, receiver operating

characteristic; AUC, area under the curve.

sity Sz (f) were estimated; finally, the coherence function
K.y (f) at that frequency point / was further calculated as
follows:

52 ()50 (1) @

Kxy(f) =

A connection matrix could be formed once all of the
functional connectivity had been computed for each pair
of ROIs. It is important to apply a threshold, in order to
eliminate low-connectivity edges that are driven by noise.
A high threshold would produce an over-sparse connection
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network, whereas a low threshold would construct a regu-
lar lattice network. Determining the appropriate threshold
is an arbitrary and contentious task. In light of this, we se-
lected an intermediate criterion of 0.8, which preserved the
top 20% of the graph’s edges, in accordance with other re-
search [32], to preserve this delicate balance.

2.4 Calculation of Static Graph-Theory Indicators

As in previous research [33], node strength was used
in the present study as a static graph-theory metric for each
ROI. The node strength, which represents a node’s over-
all capacity to convey information throughout the network,
characterizes a node’s connectivity strength with all other
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Fig. 5. The changing process of performance measures and ROC curve in 100% moving step and different window-width condi-

tion. (a—c) Changing process of accuracy along with changing of the number of features under window widths of 1 s, 3 s, and 5 s. (d—f)

Changing process of AUC along with changing of the number of features under window widths of 1 s, 3 s, and 5 s. (g—1) The ROC under

the window width of 1's, 3 s and 5 s. The vertical line is the location at which the accuracy peaks.

nodes. A brain area that exhibits a high node strength is
considered significant in the brain network and may be re-
garded as a hub of connectivity. This brain network would
sustain more harm if that hub were destroyed. The ex-
amination of anomalies in the connections and interactions
among different brain regions were facilitated by this indi-
cator [34]. The following is the formula used to obtain the
node strength for node I in the graph G:

nodal Z Wi (3)
i£jEG

Where the w;; represents the weight of the edge link-
ing the node j to node i.

Each subject could obtain 5 (frequency sub-band num-
ber) x 19 (EEG channel number) = 95 features in node
strength, for modeling.

All the node strengths were calculated using the
“igraph” package v.1.3.5 [35] in R (v.2.3.2, Foundation for
Statistical Computing, Vienna, Austria).

2.5 Calculation of Dynamic Graph-Theory Indicators

A sequence of functional-connectivity matrices can be
obtained over time by using a sliding window, which can
then be used to compute further dynamic graph-theory in-
dicators. The movement step was set to be 50% or 100%
of the window width, and the window width was set as 1
s, 3 s, or 5's. We described the dynamic features along the
extracted windows using six types of dynamic indicators:
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mean, standard deviation, median, kurtosis, inter-quartile
range, and skewness of the node strength [29]. Similar
to the static node-strength indicator, each subject’s 5 (fre-
quency sub-band number) x 19 (EEG channel number) =
95 characteristics could be generated for each of the six dy-
namic graph-theory indicators. Fig. 2 depicts the process of
feature extraction for both static and dynamic indicators.

2.6 Classification and Feature Selection by SVM-RFE

In the present study, support vector machine-recursive
feature elimination (SVM-RFE) was used to conduct simul-
taneous feature reduction, ranking, and classification, be-
cause the number of features was greater than the number
of subjects. The objective was to rank the importance of
features and extract the most important ones to form the
optimal feature subset.

Because of its great efficiency, SVM-RFE is a popular
feature-selection method that uses the support vector ma-
chine’s (SVM) classification performance as the standard
[36]. SVM-RFE is a quick heuristic search approach that
requires a straightforward process and relatively little com-
putation. The feature-ranking and selection process hap-
pens nearly concurrently with model creation.

The foundation of SVM-RFE is the SVM classifica-
tion algorithm, which looks for a hyperplane that fully di-
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vides samples into positive and negative classes. The sam-
ple set can be expressed as follows: The m = sample size,
xi = a d-dimension vector of features, and y = the label of
that sample.

D = {(z1,51),(22,92) -, (T, Ym)}

“)
z; € Ry, € {+1,-1}
The hyperplane w can be formulated as:
wl +b=0 (5)
wlz; +b>+1,y; = +1
T, e (6)
wr;+b< -1y, =—1

Finally, for the jth feature, the importance of that fea-
ture can be calculated as the square of that coefficient in w,
namely:

=wij=12,....d (7)
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After acquisition of each feature’s importance and rat-
ing, the SVM-RFE was used to determine which feature
subset had the best classification accuracy. The following
is the process for the SVM-RFE: (1) features were arranged
according to the coefficient size of each feature, as deter-
mined by formulation (7); (2) the SVM model was estab-
lished, preserving all of the features, and the average ac-
curacy of the test set was determined using leave-one-out
cross-validation (LOOCV); (3) the least important feature
was eliminated, and the step (2) was repeated to obtain the
average accuracy on the test set, until the program reached
the end condition; (4) the feature subset that had the high-
est average accuracy in test set was extracted. The subset
with the fewest features would be chosen if the accuracy of
the multiple feature subsets was the same. (5) To further
characterize the classification performance for the selected
feature subset, further classification measures (steps 8—12,
below) would be computed. Fig. 3 depicts the SVM-RFE
workflow.

Accuracy = TPyIN (3)
TP+TN+ FP+ FN

Sensitivity = TPj—ﬂi-ipFN )

Specificity = % (10)

Presicion = Tijs—ipFP (11)

Recall = % (12)

TP: True positive; TN: True negative; FP: False posi-
tive; FN: False negative.

We only included the top 30 significant features in the
recurrence so as to minimize the amount of computation re-
quired. The least significant characteristic would be elim-
inated in each repetition until the subset contained just the
top five significant features. SVM-RFE was run using self-
edited code in Matlab v. 2019a (MathWorks, Natick, MA,
USA). The SVM model was established using the “fitcsvm”
function, and the parameter was left at its default value of
Cc=1.0.

3. Results
3.1 Analysis of Demographic Data

The median age of the ASD group and the control
group were 37.5 months and 32.0 months, respectively,
and showed no difference (o = p < 0.05) according to the
Wilcoxon rank-sum test (p = 0.192). The proportions of
males were 20% and 28% for the ASD group and con-
trol group, respectively, which showed no difference by
Fisher’s exact probability test (p = 0.730). Of 20 ASD chil-
dren, 19 reported an Aberrant Behavior Checklist (ABC)
total score; the median was 88 (83.50, 118.5).

3.2 Comparison of Classification Performance with
Different Window Widths and Moving Steps

Table 1 displays the performance metrics for the static
node strength and its six derivative dynamic local graph-
theory indicators, under window-width conditions of 1 s, 3
s, and 5 s, with a 50% moving step. Table 2 presents the
results of a significance test conducted using the Wilcoxon
signed rank test to compare the accuracy and number of se-
lected features of average dynamic graph theory with its
static counterpart. Fig. 4 depicts the changing process of
accuracy and area under the curve (AUC) along with chang-
ing of the number of features, and the Receiver Operating
Characteristic (ROC) curve for the optimal feature subset.

According to Tables 1,2 data, the average classifica-
tion accuracy of dynamic graph-theory indicators, under
window widths of 1 and 5 s, was 0.859 and 0.870, re-
spectively, and was lower than that of the static equivalent,
0.933. When the width was 3 s, however, the average accu-
racy was 0.952, which was greater than the static counter-
part (0.933). Among the indicators, the mean, median, and
inter-quartile range of node strength even reached the accu-
racy and AUC equal to 1.000. The significance test for the
average accuracy of these 6 dynamic indicators in 3-s win-
dows indicated that there were no significant differences
with their static equivalents (p = 0.525). This may have
been because the kurtosis and skewness indicators showed
comparably lower classification accuracy (0.889 and 0.844,
respectively). But as we could see, in the selected optimal
feature subset, 6 dynamic indicators required an average
of 15.5 features in the 3-s window-width condition. This
was the lowest number of features required, compared to
the 1-s (22.5) and 5-s (17.3) window-width conditions, and
it was also significantly lower than the number of features
required in the static condition (22, p = 0.036).

Fig. 4 shows the classification performance for six dif-
ferent types of dynamic indicators, represented by broken
lines of different colors. The black line represents the static
node strength indicator, and the vertical line indicates the
location where this indicator reached its maximum accu-
racy. Regardless of the number of characteristics (X-axis),
we can observe that the accuracy of the red line (Mean),
green line (STD), dark blue line (Median), and purple line
(IQR) was typically higher than that of the black line un-
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Table 1. Performance measures for static node strength indicator and its 6 derivative dynamic graph theory indicators under

moving step as 50%.

Type of indicator ~ Name of indicator Accuracy Sensitivity Specificity Precision Recall AUC Number of features

in optimal subset

Static Strength 0.933 0.8500 1.000 1.000  0.893 0.944 22
Mean 0.822 0.700 0.920 0.875 0.793 0.946 26
STD 0.822 0.750 0.920 0.875 0.808 0.884 23
. . Median 0.867 0.800 0.920 0.889  0.852 0.938 18
1 s window width and
. IQR 0.889 0.850 0.960 0917 0.885 0.916 21
50% moving step .
Kurtosis 0.800 0.650 0.920 0.867 0.767 0.910 20
Skewness 0.956 0.900 1.000 1.000  0.926 0.992 27
Average 0.859 0.775 0.940 0.904 0.839 0.931 22.5
Mean 1.000 1.000 1.000 1.000 1.000 1.000 14
STD 0.978 1.000 0.960 0.952  1.000 0.960 12
. . Median 1.000 1.000 1.000 1.000  1.000 1.000 11
3 s window width and
. IQR 1.000 1.000 1.000 1.000  1.000 1.000 20
50% moving step .
Kurtosis 0.889 0.850 1.000 1.000 0.885 0.934 20
Skewness 0.844 0.800 1.000 1.000  0.840 0.950 16
Average 0.952 0.942 0.993 0.992 0954 0.974 15.5
Mean 0.889 0.800 0.960 0.941 0.857 0.936 17
STD 0.933 1.000 0.920 0.905 1.000 0.948 22
. . Median 0.867 0.800 0.960 0.934 0.852 0.922 14
5 s window width and
. IQR 0.889 0.800 1.000 1.000 0.857 0.980 29
50% moving step .
Kurtosis 0.867 0.850 0.900 0.8824 0.880 0.896 11
Skewness 0.778 0.700 0.920 0.8571 0.778 0.870 11
Average 0.870 0.825 0.943 0.920 0.871 0.925 17.3

STD, standard deviation; IQR, inter-quartile range; AUC

, area under the curve.

Table 2. Results of Wilcoxon signed rank test for the average accuracy and number of selected features between static and

dynamic conditions when the moving step is 50%.

Window width Static accuracy ~ Average dynamic Y4 Static number of Average dynamic )4
accuracy features number of features

Is 0.933 0.859 0.059 22 225 0.999

3s 0.933 0.952 0.525 22 15.5 0.036*

5s 0.933 0.870 0.057 22 17.3 0.176

* means p <0.05.

der the 3-s window-width condition. However, the verti-
cal lines of the six dynamic indicators were all positioned
to the left of the black vertical line, indicating that these
indicators could achieve the best accuracy with the fewest
features. Fig. 4g—i depicts the ROC based on the optimal-
feature subset selected, and we can see that the ROC of 6
dynamic graph-theory indicators were higher than the black
ROC line in the 3-s window-width condition. In the 1-s and
5-s window-width conditions, we could not see the advan-
tages for 6 dynamic graph-theory indicators, because the
colored lines crossed the black line, and were not always
higher than the black line.

The above analytical process was repeated under the
condition of 100% moving step, which meant that there was
no overlap between two adjacent windows. The results are
displayed in Tables 3,4, and Fig. 5.

Table 3 shows that although all conditions were below
the static condition accuracy (0.933), the average accuracy

&% IMR Press

of dynamic graph-theory indicators under the 3-s window
width remained the greatest (0.930) when compared to the
1-s (0.863) and 5-s (0.851) conditions. The average accu-
racy in 1-s window width was significantly lower than its
static counterpart (p = 0.036), whereas the number of se-
lected features was higher than that in static condition (p =
0.036) (Table 4).

Fig. 5 shows that, in most cases, the accuracy and
AUC of the mean (red line) and kurtosis (orange line) were
slightly higher than the static node strength (black line) un-
der the 3-s window width condition. However, under the
1-s and 5-s window-width conditions, we were unable to
discern any clear advantages of the dynamic indicators over
their static counterparts.

Table 5 and Fig. 6 generalized the overall classifica-
tion ability measures across all scenarios in order to com-
pare the classification abilities of the six dynamic graph-
theory indicators. Tables 5,6 show that the IQR indicator
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Table 3. Performance measures for static strength indicator and its 6 derivative dynamic graph-theory indicators under moving

step of 100%.

Type of indicator

Name of indicator Accuracy Sensitivity Specificity Precision Recall AUC Number of features

in optimal subset

Static Strength 0.933 0.8500 1.000 1.000  0.893 0.944 22
Mean 0.844 0.800 0.960 0.933 0.846 0.926 15
STD 0.844 0.800 0.920 0.882 0.846 0.904 20
. . Median 0.888 0.850 0.960 0.941 0.884 0.934 17
1 s window width and
. IQR 0.866 0.900 0.920 0.866 0913 0.896 15
100% moving step .
Kurtosis 0911 0.900 0.920 0.900 0.920 0.910 19
Skewness 0.822 0.800 1.000 1.000 0.840 0.910 21
Average 0.863 0.842 0.947 0.920 0.875 0.913 17.8
Mean 0.933 0.900 0.960 0.947  0.923 0.964 13
STD 0.933 0.950 0.920 0.905 0.958 0.966 29
. . Median 0.933 0.900 0.960 0.947  0.923 0.948 29
3 s window width and
. IQR 0.956 0.900 1.000 1.000  0.926 0.994 29
100% moving step .
Kurtosis 0911 0.800 1.000 1.000 0.862 0.990 16
Skewness 0911 0.900 0.960 0.944  0.920 0.955 28
Average 0.930 0.892 0.967 0.957 0919 0.970 24.0
Mean 0.866 0.800 0.960 0.933 0.851 0.866 14
STD 0.844 0.700 0.960 0.933  0.800 0.844 22
. . Median 0.888 0.850 0.960 0.941 0.884 0.888 26
5 s window width and
. IQR 0.933 0.900 1.000 1.000  0.920 0.933 14
100% moving step .
Kurtosis 0.822 0.700 0.960 0.875 0.793 0.822 11
Skewness 0.755 0.700 0.880 0.800 0.769 0.755 8
Average 0.851 0.775 0.953 0913 0.836 0.851 15.8

Table 4. Results of Wilcoxon signed rank test for the average accuracy and number of selected features between static and

dynamic conditions when the moving step is 100%.

Window width Static accuracy — Average dynamic )4 Static number of Average dynamic p
accuracy features number of features

Is 0.933 0.863 0.036* 22 17.8 0.036*

3s 0.933 0.930 0.052 22 24.0 0.591

5s 0.933 0.851 0.059 22 15.8 0.104

* means p <0.05.

Table 5. Overall performance measures across all conditions for 6 dynamic indicators.

Dynamic Feature Accuracy Sensitivity Specificity Precision Recall AUC Number of features in

optimal subset

Mean 0.892 0.833 0.960 0.938  0.878 0.940 16.5
STD 0.892 0.867 0.933 0.909 0.902 0.918 21.3
Median 0.907 0.867 0.960 0.942  0.899 0.938 19.2
IQR 0.922 0.892 0.980 0964 0917 0.953 21.3
Kurtosis 0.867 0.792 0.950 0.921 0.851 0.910 16.2
Skewness 0.844 0.800 0.960 0.934  0.846 0.905 18.5

outperformed the others, with an average accuracy of 0.922.
The median indicator was next, with an average accuracy of
0.907.

3.3 Feature Ranking, Selection and Visualization

The greatest results were obtained with a window
width of 3 s and a movement step of 50%. Therefore,
we investigated further by examining feature rankings and
the distribution of particular features on scalp regions and
frequency sub-bands. Table 6 presents the feature rank-
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ings and weights for 6 indicators of dynamic graph the-
ory, in this condition. Features in the Beta and Alpha2
frequency sub-bands held the bulk of the top places, indi-
cating that features in the high-frequency sub-bands had a
greater contribution to the classification of individuals with
ASD. In terms of mean, median, and IQR (all three indica-
tors achieving 100% categorization), Beta-F3, Beta-F3, and
Beta-Fp1 were the most significant features.

The proportion distribution of chosen characteristics
across 6 dynamic graph-theory indicators in 5 frequency
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Table 6. Performance measures for 6 dynamic graph-theory indicators under the condition of 3-s window width and 50%

moving step.

Mean STD Median IQR Kurtosis Skewness
Selected ~ Weight  Selected  Weight  Selected  Weight  Selected  Weight  Selected ~ Weight  Selected ~ Weight
Features (n Features (n = Features (n = Features (n = Features (n = Features (n =
=14) 12) 11) 20) 20) 16)

Beta-F3 0.338  Alpha2-P§  0.631 Beta-F3 0320  Beta-Fpl  0.977 Beta-Fz 1.841 Beta-C3 0.887
Alphal-T7 0.268 Alpha2-Cz  0.550 Alphal-T7 0.155 Beta-P7 0.873 Beta-Fpl 1.316 Theta-F3 0.791
Beta-F4 0.202  Alpha2-P7 0.523  Alpha2-P7 0.154 Beta-C3 0.694 Alpha2-Fp2 0.880 Alphal-Pz  0.680
Alphal-P7 0.159 Alphal-F4 0.401 Alpha2-F3  0.113 Beta-02 0.608  Beta-Fp2  0.861 Beta-Fz 0.670
Alpha2-P7 0.147 Alpha2-Fpl 0.366 Alphal-Cz  0.111 Beta-Fz 0.526 Beta-P8 0.845 Alpha2-T8  0.530
Alpha2-T7 0.134 Beta-Fz 0.353 Beta-Cz 0.105 Beta-O1 0.480  Theta-F8  0.798  Theta-Fz  0.470
Alphal-Cz 0.125  Theta-P8  0.307 Beta-C3 0.089  Theta-Fz  0.480 Beta-P4 0.797  Alpha2-C4  0.460
Alpha2-F3 0.116 Theta-T8 0.287 Alpha2-Cz 0.087 Alphal-F4 0.479 Theta-C3 0.744  Alpha2-Fz 0.451
Alpha2-Cz 0.106  Alpha2-P3  0.284  Theta-O1  0.084  Alpha2-P7 0.379 Beta-P7 0.633  Theta-F7  0.411
Beta-P7 0.103  Alpha2-C3  0.278  Delta-Cz ~ 0.083  Beta-Fp2  0.349  Delta-C3 0.567 Beta-Cz 0.385
Alpha2-T8 0.094 Alphal-T7 0.276  Alphal-P7 0.083  Alpha2-T8 0.339  Theta-Fz  0.560 Alpha2-P4  0.381
Alphal-T8 0.087 Alpha2-F4 0.271 - - Delta-Pz ~ 0.326 Beta-Cz 0.536  Alpha2-F3  0.352
Theta-Pz 0.073 - - - - Alpha2-P3 0325  Alpha2-Fz  0.530 Delta-02 0.344
Theta-O1  0.071 - - - - Alphal-F3 0323 Alphal-Fpl 0.512  Theta-C4  0.342
- - - - - - Alpha2-F4 0317  Theta-C4  0.331  Delta-P8  0.334
- - - - - - Alpha2-P8 0314 Alpha2-P4 0.317  Theta-Pz  0.302
- - - - - - Beta-F8 0.302  Alpha2-F4 0.302 - -

- - - - - - Alphal-T7  0.281 Beta-C3 0.264 - -

- - - - - - Alpha2-Fp2 0.279 Beta-F7 0.244 - -

- - - - - - Alpha2-T7 0.252  Theta-F4  0.242 - -

Table 7. The proportion distribution of scalp region and frequency sub-band for selected features under the condition of 3-s

window width and 50% moving step.

Scalp region  Proportion (%)  Relative Weighed Weighed relative ~ Frequency  Proportion (%) Weighed
importance  proportion (%) importance sub-band proportion (%)
Parietal lobe 26.263 0.998 24.659 0.937 Alpha-1 14.141 10.124
Frontal lobe 36.364 0.987 46.153 1.253 Alpha-2 33.333 27.298
Temporal lobe 11.111 1.056 6.9450 0.660 Beta 28.283 40.739
Occipital lobe 7.071 0.672 49120 0.467 Delta 6.061 4.899
Central lobe 19.192 1.215 17.331 1.097 Theta 18.182 16.939

sub-bands is provided in Table 7. The results indicated that,
with an unweighted proportion of 28%, and a weighted pro-
portion of 40%, the features from the Beta sub-band had the
dominant position. Similar to this, we investigated the dis-
tribution of particular traits on 5 regions of the scalp: pari-
etal (P3, Pz, P4, P7, P8), temporal (T4, T5), occipital (O1,
and O2), central (C3, Cz, C4), frontal (Fpl, Fp2, F7, F3,
Fz, F4, F8), and parietal (P3, Pz, P4, P7, P8). It was evident
that the frontal-area features that were chosen had the high-
est weighted proportion (46.153%) and unweighted propor-
tion (36.364%). We also determined the relative relevance
for the scalp region, taking into account that each region
had a different number of channels. This was done by di-
viding the channel proportion (k/19, where k is the number
of channels in a region). For instance, the frontal region’s
unweighted relative relevance was 0.987, when 0.364 was
divided by 7/19. Table 7 shows that, even after accounting
for channel percentage, the weighted relative relevance of
characteristics from the frontal region remained the highest
(1.253).
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4. Discussion

4.1 Influence of Different Window Widths and Moving
Steps on Classification Performance

The results showed that dynamic graph-theory indica-
tors performed best when the window width and moving
step were adjusted to 3 s and 50%, respectively. Some of
them actually approached 100% accuracy.

The window-width setting in dynamic functional-
connectivity analysis is still debatable and mostly depen-
dent on researchers’ personal preferences. Previous re-
search on dynamic functional connectivity demonstrated
that although an excessively wide window width would ob-
scure the information pertaining to dynamic transient shift-
ing, an excessively small window width would raise the
possibility of adding artifacts and lowering the frequency
resolution [24]. Accordingly, it appears that a satisfactory
compromise between frequency resolution and the capac-
ity to capture variability was struck in the present study,
since the 3-s window width yielded the maximum accuracy.
The performance of the 3-s window-width dynamic graph-
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theory indicators marginally declined when the moving step
was set to 100%, but it was still better than the 1-s and 5-s
settings, which may provide additional support for choos-
ing 3-s as the window width.

Another benefit in terms of preventing over-fitting
was that we found that the number of selected features was
lowest in the 3-s window-width and 50% moving-step con-
ditions. One suggestion has been that when there are more
features than subjects, over-fitting is more likely to happen
[37]. The experimental results of Guyon et al. [36] demon-
strated that the SVM algorithm benefits from feature reduc-
tion, even if SVM uses regularization approaches to par-
tially avoid the over-fitting problem. Reducing the number
of characteristics in the model enhances its interpretability
while also reducing the possibility of overfitting. A model
with fewer features is likewise simpler, requires less storage
space, takes less time to compute, and possibly improves
the model’s accuracy, because it contains fewer false posi-
tives. Features with higher interpretability and lower com-
putation costs can offer a better understanding of the rela-
tionship between the input and output features, which is ad-
vantageous in situations in which resource efficiency is cru-
cial [38,39]. In summary, the 3-s window-width and 50%
moving-step conditions allowed for the best classification
performance with the fewest features needed. This find-
ing should aid future research that uses dynamic functional-
connectivity analysis regarding window-width and moving-
step selection.

4.2 Comparison between 6 Dynamic Local Graph-Theory
Indicators and Preference of Frontal Region and
Beta-Sub-Band-Selected Features

The IQR, an indicator that characterizes the disper-
sion and variance of the data distribution, had the high-
est accuracy among the 6 dynamic graph-theory indica-
tors. This suggests that the value representing the vari-
ability of node strength had a significant ability to differ-
entiate ASD patients from the control group. Only dFCA
showed a significant difference in the study [40], suggest-
ing that the functional-connectivity variability described by
dFCA may offer distinct temporal information. The vari-
ability of functional connectivity reflects the instability of
the information-transfer process within and between re-
gions, and the flexibility of reconfiguration of one region
with remaining regions [41].

Consistent with earlier research, the distribution anal-
ysis of a subset of features revealed a clear advantage of
the frontal area. The frontal region was commonly iden-
tified as the aberrant portion using EEG or fMRI data in
earlier research. The medial prefrontal cortex (mPFC) was
identified as a hub of dysconnectivity in a study [42] that
used lag-phase synchronization to construct functional con-
nectivity on the cortical level, using a standardized low-
resolution brain electromagnetic-tomography method. The
mPFC plays an important role in the social cognition pro-
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cess. Similarly, several previous investigations identified
aberrant functional connectivity in the default-mode net-
work (DMN) in ASD patients [43—45]. Higher resting-
state fronto-parietal-network (FPN)-DMN dynamics were
linked to lower cognitive flexibility, according to one arti-
cle [46]. According to Chen et al. [47], frontal-temporal
connections in ASD connectivity demonstrated larger sig-
nal fluctuations. That suggested that increased variability
of connection between these two regions could hinder the
processing of social and cognitive information. The above
results suggested that the there is an increased variability
of functional connectivity between frontal region and other
regions in ASD patients. However, reports of the opposite
outcome also surfaced. Findings of Chen et al. [43] indi-
cated that mPFC-insula connection variability was lower in
ASD patients. Chen ef al. [43] noted that the insula served
as a core region of the salience network (SN), which sup-
presses executive function in the absence of external input,
by strengthening its functional connectivity to the mPFC
to preserve an internally focused state. However, in order
to be alert for any modifications from the outside, the SN
would sometimes alter the network configurations. Accord-
ingly, a decreased variability in mPFC-insula connections
could explain why ASD patients exhibit more internally di-
rected cognition and respond less to the external world [43].
In summary, our findings indicated that the dynamic graph-
theory indicators of node strength of the frontal region had
the greatest significance in the diagnosis of ASD, suggest-
ing that there are abnormal interactions between the frontal
and other brain regions. These results may also reflect de-
creased and increased variability of the functional connec-
tivity of the frontal region with other regions simultane-
ously, as well as an overall abnormality in the variability
of topological characteristics in the frontal region.

We found that the Beta sub-band was the most sig-
nificant of 5 frequency sub-bands (unweighted propor-
tion 28.283%; weighted proportion 40.739%), indicating
that high-frequency sub-bands may contain more informa-
tion about the abnormality in ASD. The most significant
features for mean, median, and IQR (these 3 indicators
achieved 100% classification) were Beta-F3, Beta-F3, and
Beta-Fpl. Beta-frequency coherence is believed to be re-
lated to cognitive and attentional functions [48,49], and typ-
ically occurs in frontal and central region. Boersma et al.
[50] observed that children with ASD have connection de-
crease in 51 ROI pairs, mainly in the Beta frequency. Ad-
ditionally, they found that patients with ASD had signif-
icantly lower clustering coefficients and whole-brain av-
erage connection strengths in the Beta band than did con-
trols. Research has indicated that people with ASD are less
likely to be able to recruit Beta-band synchronization in
large-scale networks, which could be a factor in the cogni-
tive impairments that are common in ASD [51]. When the
aforementioned information was combined with the find-
ings of our feature-selection study, it became apparent that
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the aberrant variability of functional connectivity in the
Beta sub-band may have the greatest impact on ASD di-
agnosis.

4.3 Comparison with Similar Research and Novelty of Our
Research

In a previous study [52], scientists classified ASD us-
ing the SVM algorithm, based on variables derived from
brain functional connectivity across various frequency sub-
bands obtained from fMRI. The best accuracy, according to
the results, was 0.792. The Slow-4 (0.027-0.073 Hz) sub-
band was found to include the majority of the discrimina-
tive features, and they found abnormal connections between
the default mode network, the fronto-parietal network, and
the cingulo-opercular network. Other research [53] clas-
sified children with ASD using the SVM model and used
EEG to create a functional-connectivity network by par-
tial correlation. They obtained the maximum accuracy at
0.800. When it came to dFCA, Price and his colleagues
[27] extracted features from static and dynamic functional
connectivity alternately, to match the multi-kernel support
vector machine (MK-SVM) algorithm, and discovered that
the dynamic feature could obtain a greater accuracy (0.900).
Nevertheless, these studies only used the original functional
connectivity as features to fit the model, and the ranking of
feature importance was not involved. In order to differenti-
ate ASD patients from normals, one study [54] used an en-
semble classification model in conjunction with the SVM-
RFE, and discovered that the posterior cingulate gyrus and
precuneus had the highest ranking in terms of connection.
Other researchers [55] used 5 global graph-theory indica-
tors to attain an accuracy of 0.958 in their research using
graph theory for the diagnosis of ASD. Another study [21]
used a feature priority ranking by computing the node de-
gree to fit the SVM model. The default mode network
demonstrated a comparatively high network degree and dis-
criminative capacity, and they were able to get 0.958 accu-
racy. In contrast to the previous research, ours has the ad-
vantage of combining indicators from local graph theory,
dynamic functional connectivity, and ranking of future im-
portance, all at once. This allowed us to make use of the
dynamics information from dFCA and rank the selected fea-
tures to identify the most significant ones, offering a fresh
viewpoint on ASD diagnosis.

4.4 Limitations

There are several limitations to our investigation.
First, because a 19-channel EEG was used, source recon-
struction could not be performed to find the EEG signals at
the brain level. In order to improve this, we advise that fu-
ture research employs EEG recording devices with greater
spatial resolution in order to gather proof of convergence
between fMRI and EEG. Second, the cross-sectional-data
type affected the possibility of clarifying the mechanisms
underlying ASD. We anticipate that future research will in-
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corporate longitudinal follow-up EEG to compile data from
the development track, in order to improve classification
performance and to offer an alternative viewpoint for eval-
uating the course of the disorder. Third, there is a need for
external validation and an increase in sample size. We in-
tend to perform our study on a bigger external-validation
dataset in the future.

5. Conclusions

Our research showed that dynamic local graph-theory
indicators yielded the greatest classification performance
and required fewer features in the optimal feature subset,
when we used a 3-second window width and a 50% moving
step. The outcomes of the feature-selection process demon-
strated a distinct advantage for the frontal region and the
Beta band. This suggested that the frontal-region dynamics
underwent modifications in its functional-connectivity in-
teractions with other regions, particularly in the Beta sub-
band. These findings provide novel insights into explo-
ration of biomarkers for the diagnosis of ASD.
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