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Abstract

Background: Repetitive mild traumatic brain injury (rmTBI) often occurs in individuals engaged in contact sports, particularly boxing.
This study aimed to elucidate the effects of rmTBI on phase-locking value (PLV)-based graph theory and functional network architecture
in individuals with boxing-related injuries in five frequency bands by employing resting-state electroencephalography (EEG). Methods:
Twenty-fore professional boxers and 25 matched healthy controls were recruited to perform a resting-state task, and their noninvasive
scalp EEG data were collected simultaneously. Based on the construction of PLV matrices for boxers and controls, phase synchronization
and graph-theoretic characteristics were identified in each frequency band. The significance of the calculated functional brain networks
between the two populations was analyzed using a network-based statistical (NBS) approach. Results: Compared to controls, boxers
exhibited an increasing trend in PLV synchronization and notable differences in the distribution of functional centers, especially in the
gamma frequency band. Additionally, attenuated nodal network parameters and decreased small-world measures were observed in the
theta, beta, and gamma bands, suggesting that the functional network efficiency and small-world characteristics were significantly weak-
ened in boxers. NBS analysis revealed that boxers exhibited a significant increase in network connectivity strength compared to controls
in the theta, beta, and gamma frequency bands. The functional connectivity of the significance subnetworks exhibited an asymmetric
distribution between the bilateral hemispheres, indicating that the optimized organization of information integration and segregation for
the resting-state networks was imbalanced and disarranged for boxers. Conclusions: This is the first study to investigate the underlying
deficits in PLV-based graph-theoretic characteristics and NBS-based functional networks in patients with rmTBI from the perspective
of whole-brain resting-state EEG. Joint analyses of distinctive graph-theoretic representations and asymmetrically hyperconnected sub-
networks in specific frequency bands may serve as an effective method to assess the underlying deficiencies in resting-state network
processing in patients with sports-related rmTBI.

Keywords: repetitive mild traumatic brain injury; electroencephalography; neurocognitive processing; network-based statistic; resting-
state functional networks

1. Introduction mTBI. Although the repeated blows experienced by box-
ers are sub-concussive and less severe than most mTBIs,
the cumulative effects may result in noticeably detrimental
consequences, with the condition of many participants pro-
gressing to chronic traumatic encephalopathy [9]. More-
over, the condition of some active boxers deteriorates to
the point that they develop dementia pugilistica or Parkin-
son’s disease, which are late sequelae associated with repet-
itive blows to the brain [10,11]. Therefore, the adverse ef-
fects of chronic cumulative consequences associated with
rmTBI on the neurocognitive processing of professional

boxers with active exposure warrant further exploration.

Mild traumatic brain injury (mTBI) often occurs in
athletes who participate in competitive sports [1,2], which
may result in persistent cognitive dysfunction in some pa-
tients with mTBI [3,4]. The severity of sports-related mTBI
is based on evidence that athletes with a history of mTBI
are more likely to have greater susceptibility to subsequent
repetitive mTBI (rmTBI) [5], which are more likely to occur
in individuals participating in contact and collision sports
[2,6]. Previous studies have shown that cognitive impair-
ment caused by sports-related rmTBI is even more pro-
nounced than is impairment caused by mTBI [7,8]. Boxing,

as a quintessential contact sport, has a much greater proba-
bility of causing rmTBI in both amateur and professional
boxers and can result in a unique type of sports-related

The consequences of cognitive dysfunction caused by
exposure to sports-related head impact encompass many
aspects, including executive dysfunction, attentional prob-
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lems, working memory impairment, and information pro-
cessing deficits [12—14], which are closely associated with
repetitive neurotrauma, increasing age, and cognitive re-
serve [7,15,16]. However, traditional inspection methods
such as physical examination, neuropsychological screen-
ing, and computed tomography (CT) are unlikely to yield
positive results in patients with mTBI who have mild symp-
toms of cognitive dysfunction. Fortunately, the increas-
ing application of electroencephalography (EEG) and func-
tional magnetic resonance imaging (fMRI) has shown that
these techniques can effectively reveal the mechanisms un-
derlying neurocognitive deficits caused by sports-related
head-impact exposure [13,17].

EEG provides a non-invasive neuro-
electrophysiological method to effectively evaluate
neurological function with high-precision temporal reso-
Iution in milliseconds by detecting electrophysiological
information associated with cognitive processing [18].
Therefore, EEG is particularly applicable for research
on cognitive processing dysfunction caused by mTBIL
However, one of the pivotal characteristics of mTBI is high
variability in the mechanism, pathology, and consequences
of injury among different individuals [19,20], suggesting
the significance of integrated functional analysis from the
perspective of whole-brain functional topology and neural
networks in exploring the impact of mTBI [21,22]. In a
recent study, while cognitive functions were comparable,
a greater EEG functional network dysregulation was sug-
gested in patients with mTBI during the early post-injury
phase than during the later phase [23]. Furthermore, aber-
rant changes were detected in resting-state functional brain
networks in the non-acute phase in individuals affected
by sports-related mTBI [24]. Nevertheless, regardless
of the phase of injury, previous research on functional
brain network for mTBI has reported significantly en-
hanced functional connectivity or ‘hyperconnectivity’
as a consistent features. This phenomenon is thought
to be a consequence of the tradeoff between network
metabolic cost and information communication efficiency
after mTBI [25]. The hyperconnectivity of the functional
brain network has also been demonstrated through char-
acteristic changes in resting-state EEG information flow
and effective connectivity patterns in adolescents with
mTBI [26]. Moreover, hyperconnectivity and complex
reorganization of brain network connectivity in the mTBI
population have been detected by fMRI studies, which
are considered to be the optimal allocation of maximum
information flow and the compensation mechanism
of neuro-electrophysiological disturbances to support
individuals with well-adjusted cognitive performance
[27,28]. Therefore, previous studies have indicated that
the hyperconnectivity of functional brain networks can
be considered a characteristic connectivity change for
individuals with mTBI; however, to date, few studies
have investigated the impact of rmTBI on whole-brain

functional topology and neural networks with resting-state
EEG technology, especially in all five frequency bands.

Based on previous conclusions regarding whole-brain
topology and network connectivity, the primary purpose
of this study was to evaluate the cumulative effects of
boxing-related rmTBI on phase synchronization and the
functional network architecture of boxers with rmTBI in
each frequency band by employing resting-state EEG anal-
yses. Thus, we employed the phase-locking value (PLV) to
compute phase synchronization for resting-state EEG sig-
nals. The functional network connectivity was then con-
structed based on the calculated PLV matrices. This ap-
proach efficiently discerns instantaneous changes in func-
tional brain networks without considering the influence of
voltage amplitude fluctuation [29]. Based on the computed
binary connectivity matrices, both the graph-theoretic pa-
rameters representing the functional network efficiency and
the small-world properties of brain networks can be suc-
cessfully realized for boxers and controls. Moreover, based
on the analyses of the calculated nodal degree centrality,
we distinguished the rearrangement in the distribution of
functional centers to investigate the consequences of recon-
struction in pivotal functional network components for box-
ers. Crucially, the use of a network-based statistical (NBS)
analysis allowed us to verify whether there were significant
differences in functional network connectivity between the
boxers and controls. By comparing the boxers with con-
trols, we could effectively explore whether there were sig-
nificant changes in subnetworks within specific frequency
bands. This approach aimed to investigate the cumulative
consequences of repeated head impact exposure on whole-
brain resting-state functional networks.

2. Materials and Methods
2.1 Participants

A total of 24 active boxers were recruited from Wuhan
Sports University, and 25 control participants were re-
cruited from surrounding universities. Eligible boxers were
required to meet the following criteria: (1) more than one
year of professional boxing experience; (2) experience par-
ticipating in provincial and national championships; and (3)
between 17 to 25 years of age. Boxers were excluded if they
met any of the following criteria: (1) a medical history of
neurological or psychiatric disease; (2) moderate or severe
traumatic brain injury or mTBI not caused by boxing (e.g.,
caused by traffic accidents, falling down, or explosions);
and (3) comorbidities and/or chronic conditions, such as
chronic liver or renal dysfunction or diabetes, known to de-
teriorate neurocognitive function. The same exclusion cri-
teria were also applied to the control participants, except
that the controls had no history of rmTBI, boxing, or other
combat sport-related experiences.

All the boxers and controls had normal or corrected-
to-normal visual acuity, hearing, and color vision. The re-
search protocol was approved by the Ethical Committee of

&% IMR Press


https://www.imrpress.com

the General Hospital of Chinese PLA Central Theater Com-
mand (Wuhan School of Clinical Medicine, Southern Med-
ical University, China) (approved number: [2020]041-1).
All participants provided informed consent prior to the pro-
cedure.

2.2 Procedure

The study procedure was performed in a quiet,
temperature-controlled, well-ventilated room. The demo-
graphic questionnaire was completed at least two days prior
to the study start, and all participants were instructed to ab-
stain from caffeine for 12 h prior to the procedure. Be-
fore EEG acquisition, each participant completed the Mini-
Mental State Examination (MMSE) to exclude those with
significant cognitive deficits, and Raven’s Standard Pro-
gressive Matrices (RSPM) were used to assess the intel-
ligence quotient (IQ). Additionally, the self-rating scales
Beck Depression Inventory—Second Edition (BDI-II) and
Fatigue Severity Scale (FSS) were used to assess the sever-
ity of depression and fatigue symptoms in each subject in
both groups.

2.3 EEG Recording

Before recording EEG signals, participants were in-
structed to sit comfortably on a wooden chair with a back-
rest and confirm the absence of any particular discomfort
with the environment to minimize the likelihood of abnor-
mal EEG activity. EEG signals were recorded through a
flexible cap fitted with 64-channel Ag/AgCl electrodes us-
ing an eegoTM amplifier (EE-224, ANT Neuro, Berlin,
Germany), and the electrode distribution was arranged
based on the international 10/20 system. Online EEG sig-
nals were bandpass-filtered at 0.01-100 Hz and collected
at a sampling rate of 500 Hz. During the recording of of-
fline signals, the AFz electrode served as the ground elec-
trode, and the reference electrode was positioned at CPz.
The impedances of the electrodes were maintained below 5
k2 during the experiment. The participants were required
to close their eyes naturally and abstain from blinking and
making any head movements during EEG data acquisition
to minimize the risk of signal artifacts. Each participant
was required to remain relaxed and awake while recording
the EEG data, avoiding thinking, calculating, recalling, and
other mental activities, and resting-state EEG signals were
collected over a five-minute period.

2.4 EEG Data Preprocessing

The EEG signals were preprocessed using the
EEGLAB toolbox (EEGLAB 13.0, https://sccn.ucsd.edu/
eeglab). The bandpass filters of the data were set to 0.5
Hz for the high-pass filter and 50 Hz for the low-pass fil-
ter, and a notch filter of 49-51 Hz was used to elimi-
nate interference from the utility power (50 Hz). The of-
fline EEG data for all channels were re-referenced to the
mean value of the bilateral mastoids. Continuous resting-
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state signals were segmented into epochs of 2000 millisec-
onds. Visual inspection was performed to identify abnor-
mal sensors with uncorrectable artifacts (unusable chan-
nels). Each unusable channel was spherically interpolated
with circumjacent channels, and a 10% interpolated ceil-
ing (six channels) was conducted for each set of EEG data.
Subsequently, eye blinks, muscle signals, and other arti-
facts were removed using independent component analysis
(ICA) within EEGLAB. The range of extreme values were
set to £60 pV for each dataset, and a visual inspection was
performed again to reject artifacts for each channel in each
epoch. The lower limit of the number of epochs was set
to 120. Finally, 149.17 4 5.43 epochs in the boxer group
and 149.76 4+ 10.09 epochs in the control group were col-
lected as the accepted artifact-free epochs for the following
analyses.

2.5 Computation of Resting-State EEG Functional
Network Connectivity

2.5.1 Phase-Locking Value (PLV)

Neural oscillations are an essential phenomenon in
the field of neuroscience, serving as an imperative way
to discern the neural processing mechanisms within the
human brain [30]. Exploring neuro-electrophysiological
synchronizations based on neural oscillations can effec-
tively reveal the cognitive processing processes of individ-
uals [31,32]. Importantly, EEG functional connectivity can
be constructed using instantaneous phase synchronization,
which has been successfully used to distinguish individual
changes in functional brain networks, regardless of poten-
tial amplitude fluctuations [29,33,34]. The PLV was intro-
duced by Lachaux et al. [35] as a method to compute phase
synchronization for EEG signals based on its excellent tem-
poral resolution and distinguished characteristics that could
reveal the correlation between different real time series,
which has served extensively to investigate EEG functional
networks under various conditions [36,37]. The PLV was
calculated using the following formula:

N
PLV = | < Y e i[oi) ~ 60D (1)
t=1

where N indicates the length of the EEG time series,
and ¢ (t) — ¢=2(t) is the phase difference between two spe-
cific EEG signals at a certain time point ¢#. This formula
represents the mean value of the difference in the instan-
taneous phase angle for two real signals within a specific
time frame, and the significance of calculating the PLV is
to quantify the change in phase synchronization across EEG
epochs. The PLV range is defined from 0 to 1, if the phase
difference approaches 0, the PLV will be approach 1, sig-
nifying a near-perfect phase locking between two EEG sig-
nals [35,36]. Conversely, a value nearing 0 indicates almost
no phase locking.
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In the present study, based on the predefined delta (1—
3), theta (4-7), alpha (8—12), beta (13-30), and gamma (30—
45) bands, the PLV was calculated separately to construct a
functional network connectivity map by employing resting-
state EEG signals of all channels for boxers and controls.
Additionally, before calculating the PLV, the current source
density (CSD) was calculated for each resting-state EEG
dataset to minimize the interference of volume conduction
and eliminate unveracious synchronous connectivity [38].

2.5.2 Functional Centrality

The significance of each functional component (net-
work node) in the activities of functional brain networks
is not equivalent; only a small number of nodes exhibit
characteristics of a functional center in information process-
ing. Nodal degree centrality is an appropriate measure for
characterizing the functional center. It is defined as the
overall weight of the network nodes connected to a spe-
cific node within the network [36,39]. The weight is cal-
culated using the PLVs and realized by the GRETNA tool-
box (GRETNA 1.2, http://www.nitrc.org/projects/gretna/)
in the present study. The network nodes were first ranked
based on the values of nodal degree centrality, and the top
5% was determined as the primary weight for each partic-
ipant. Then, the accumulated ranking weights were calcu-
lated for all the subjects in each group, and the top 10%
was selected as the functional center for each specified fre-
quency [36].

2.5.3 Graph Theory-Based Analysis

Graph theory-based analysis is a critical method for
exploring the topological characteristics of EEG functional
networks. This method can deepen our understanding of the
interrelationship between the integration and segregation
of functional neural clusters, offering a suitable approach
to quantify differences in electrophysiological processes
within the brain network [40—42]. The small-world archi-
tecture of the human brain, a pivotal feature of graph the-
ory discovered in neuroscience research, is characterized by
maintaining a balance between minimizing resource costs
and maximizing information flow among network compo-
nents, which can facilitate the efficient communication be-
tween network components [43,44]. In the actual calcula-
tion process, the construction of the brain network depends
on the functional connection matrix (the edge of the net-
work) constructed with functional components as nodes.
For the initial step of the present study, the PLV with spe-
cific connection values for each edge was used to construct
the functional connection matrices (primary matrices) for
predefined frequencies. Next, the binary matrices were re-
alized based on the primary matrices by employing the net-
work sparsity method. Network sparsity is defined as the ra-
tio of the actual number of functional connections to the the-
oretically largest number of functional connections, serv-
ing as a threshold for the network sparsity. Eventually, a

series of thresholds that start at 0.1 and end at 0.5 with a
step size of 0.05 was adopted to construct the binary matri-
ces and finally realize the functional networks. The anal-
yses based on graph theory for all participants were calcu-
lated using the GRETNA toolbox [45]. The characteristic
indicators include global efficiency, local efficiency, aver-
age clustering coefficient, average shortest path length, nor-
malized clustering coefficient (gamma), normalized short-
est path length (lambda), and sigma (the ratio of gamma to
lambda) [41,45].

2.5.4 Comparison of Functional Network Connectivity

The functional brain network can be constituted by
large-scale functional connectivity constructed using the
PLV matrices, and the comparison between different net-
work connections involves corrections for multiple uni-
variate significance tests. In the present study, the NBS
method was employed to address the correction issues of
multiple comparisons between networks. Derived from the
calculated underpinnings of the cluster-based thresholding
method for the statistical parametric map, and as a success-
ful way to control the family-wise error rate (FWER) when
multiple univariate tests are conducted for different net-
works [46], the NBS method is appropriate for the present
research to identify the difference in functional network
connectivity between boxers and controls.

GRETNA software was employed to realize the net-
work matrix calculations and facilitate analyses related to
NBS. These analyses compared each pairwise association
of the connectivity matrices, testing the hypothesis of box-
ers > controls or controls > boxers through independent-
samples #-tests. The specified t-value served as a reference
threshold to control the calculation results. The connection
weights above the threshold were selected as the significant
connections for the following analyses, and the permuta-
tion test was conducted to calculate the FWER-corrected p-
value for each pairwise association based on its size and to
identify the final significant components for the two popu-
lations [36,46]. Finally, the significant components of func-
tional network connectivity were visualized using the net-
work visualization tool BrainNet Viewer (BrainNet Viewer
1.6, http://www.nitrc.org/projects/bnv/) [47].

2.6 Statistical Analysis

For the functional network-related NBS analysis, we
conducted a bilateral evaluation of the connectivity matri-
ces for boxers > controls and controls > boxers. The num-
ber of calculations for the permutation test was set to 5000,
and the specified t-value for the threshold was set to 3.0.
The significance threshold of the FWER-corrected p-value
for the permutation test was set at p < 0.01. The indepen-
dent #-test and chi-square test were used to analyze differ-
ences in demographic information and corresponding char-
acteristics between boxers and controls. For all statistical
tests without additional instructions in the present study, the
statistical threshold was set at p < 0.05.
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Table 1. Demographic and neuropsychological characteristics of boxers and controls.

Parameters Boxers (n=24) Controls (n = 25) p value
Age (yrs) 20.63 + 1.50 20.84 + 1.37 0.603
Participation time (yrs) 5.04 +2.12 — —
Education (yrs) 13.29 +1.20 13.36 + 0.49 0.797
Height (cm) 178.71 +5.03 176.60 + 4.14 0.115
Weight (kg) 74.71 £ 15.41 71.52 4+ 8.68 0.374
BMI 23.24 +3.84 22.92 +2.61 0.738
Gender (M/F) 24/0 25/0 —_—
MMSE 29.04 £+ 0.62 29.28 + 0.68 0.207
BDI-II 9.13 £3.49 7.60 + 3.01 0.108
FSS 18.46 + 4.77 16.96 + 4.64 0.271
RSPM 86.46 + 7.73 87.40 4 7.38 0.665

Note: BDI-II, Beck Depression Inventory—Second Edition; BMI, body mass
index; M, male; F, female; FSS, fatigue severity scale; MMSE, mini-mental

state examination; RSPM, raven’s standard progressive matrices.

3. Results
3.1 Participant Characteristics

A total of 49 male participants were included in the
present study, including 24 boxers and 25 matched healthy
controls. The demographic and general characteristics of
both groups are illustrated in Table 1. No significant differ-
ences were found in the distribution of age and education
between the boxers and controls. For the neuropsycholog-
ical assessments, no significant differences were noted in
the MMSE and RSPM scores between the two populations,
which suggests that the homogeneity of general cognitive
functions and estimated 1Q for both groups was suitable for
classification and further analysis. In addition, the results
of the BDI-II and FSS indicate that boxers exhibit levels
of depression and fatigue symptoms comparable to those of
the controls.

3.2 Group Differences in Phase Synchronization and the
Distribution of Functional Hubs

For the comparison of phase synchronization between
boxers and controls, we constructed data matrices based on
the average PLV values in each sensor on each frequency
band for both groups, and the differences in the PLV con-
nectivity matrices between the two populations (controls
minus boxers) are displayed in Fig. 1. Fig. 1 illustrates
an upward trend in the PLV synchronization between pair-
wise associations in the boxer group for most frequencies
(delta, theta, beta, and gamma), particularly for the gamma
frequency band. Notably, the results showed a compara-
ble value of phase synchronization for the alpha frequency
band. Furthermore, we compared the inter-hemispheric dif-
ferences in PLV synchronization between boxers and con-
trols. Fig. 2 shows the results of the analysis, which indi-
cated an increasing trend in PLV values in the boxers across
all five frequency bands in both hemispheres compared to
the controls; however, the statistical results suggested that
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the difference was only significant in the left hemisphere
of the gamma band with marginal significance in the left
hemisphere of the theta band.

Regarding the functional centrality results, the distri-
butions of the functional centers that were calculated based
on the nodal degree centrality for all five frequency bands
are presented in Fig. 3. Although most of the functional
centers were distributed in the parietooccipital regions of
the brain in both populations, a noticeable difference was
observed between the two groups. In comparison to the
controls, the functional centers in boxers were distributed
more proximally to the occipital region of the brain. In ad-
dition, some overlap was noted in the distribution of func-
tional centers for each frequency band between the two pop-
ulations; notably, the gamma frequency band showed the
least amount of overlap, and the most pronounced differ-
ence between the two groups was observed in the gamma
band. The functional centers of boxers tended to be dis-
tributed in the right parietal region, while in controls, they
tended to cluster in the left temporal region. Furthermore,
both groups demonstrated asymmetry in the distribution of
functional centers, revealing striking differences between
the two groups. Specifically, boxers’ functional centers
were mainly located in the left hemisphere for the beta fre-
quency band and in the right hemisphere for the gamma
band, as compared with controls.

3.3 Graph-Theoretic Analysis

A functional network was constructed based on the
calculated PLV matrices using the network sparsity method
to analyze the targeted graph-theoretic characteristics for
each frequency band. The comparative results of the topo-
logical measures are presented in Fig. 4. Regarding global
efficiency, the boxers exhibited a significant reduction
compared to controls for partial sparsity in the theta fre-
quency band, while for local efficiency, the boxers exhib-
ited a significant decrease compared to the controls in the
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Fig. 1. The differences of the phase locking value (PLV) connectivity matrixes between boxers and controls in delta, theta, alpha,

beta, and gamma frequency bands (controls minus boxers).
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Fig. 2. The inter-hemispheric differences in PLV synchronization between boxers and controls in each frequency band. Error bars

represent the standard error. rmTBI, repetitive mild traumatic brain injury; NS, no significant difference.

beta and gamma frequency bands. For average clustering
coefficients, the boxers showed a significant increase com-
pared to the controls in the theta frequency band. Addition-
ally, for the average shortest path length, the boxers exhib-
ited a significant elongation compared to the controls within
a certain sparsity range in the theta band.

Furthermore, we explored the measures of small-
world characteristics for the two populations; the results are
presented in Fig. 5. For the mean normalized clustering co-
efficient gamma (y, which was defined as the ratio of the av-
erage clustering coefficient of real networks to the average
clustering coefficient of matched random networks), box-
ers exhibited significantly lower values than controls across

most sparsity levels in the beta frequency band and within
partial sparsity in the gamma frequency band. For the mean
normalized shortest path length lambda (), which was de-
fined as the ratio of the average shortest path length of real
networks to the average shortest path length of matched ran-
dom networks), boxers showed significant increases com-
pared with controls within partial sparsity in theta frequency
band and significant decreases within partial sparsity in beta
and gamma frequency bands. For the small-world char-
acteristic sigma (o, which was defined as the ratio of the
mean normalized clustering coefficient gamma to the mean
normalized shortest path length lambda), the boxers ex-
hibited significantly decreased values compared to controls
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Fig. 3. The distributions of the functional centers that calculated based on the nodal degree centrality for boxers and controls in

each frequency band.

within partial sparsity in beta frequency band. In this study,
we detected no significant differences in any of the graph-
theoretic characteristics between the two populations in the
delta and alpha frequency bands.

3.4 Group Differences of Functional Network Connectivity

By utilizing the NBS method within GRETNA soft-
ware, we detected differences in the functional network
connectivity matrices between boxers and controls for each
frequency band, and the subnetworks with significant dif-
ferences are presented in Fig. 6. Although we conducted
bilateral analyses of the network matrices for boxers > con-
trols and boxers < controls, the results demonstrated that
significant differences in functional network connectivity
existed only in the contrast of boxers > controls for partial
frequency bands. Specifically, the boxers exhibited greater
network connectivity strength than the controls for the sig-
nificance subnetworks in theta, beta, and gamma frequency
bands, especially for the beta frequency band, which con-
tains the densest network edges for the significance subnet-
works within the three frequency bands. These data indi-
cate that the boxers showed strikingly enhanced functional
network architecture compared to the controls in specific
frequency bands. Moreover, our results suggest that the dif-
ferential connections were mainly distributed between the
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bilateral frontal regions, between the bilateral parietooccip-
ital regions, and long-range connections between the frontal
and parietooccipital regions for the three frequency bands,
especially the beta and gamma frequency bands. Another
finding was the asymmetric distribution of significant con-
nections, which indicated that the left hemisphere exhibited
more enhanced functional network connectivity in the theta,
beta, and gamma frequency bands, especially in the beta
and gamma bands, compared to the right hemisphere. In
summary, these identified subnetworks revealed that boxers
had significantly intensified functional brain activity com-
pared to controls for both long-distance and local connec-
tions in the theta, beta, and gamma frequency bands. No
functional network connections with significant differences
were detected in the delta and alpha frequency bands, and
no significant subnetworks were found when comparing
boxers with controls.

4. Discussion

The initial aim of the present study was to evaluate the
cumulative effect of boxing-related rmTBI on PLV-based
graph theory and functional network architecture by em-
ploying resting-state EEG. Further, based on the calculated
connectivity matrices of PLV synchronization and related
methods, this study investigated the abnormalities in the
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Fig. 4. The comparisons of graph-theoretic parameters of the PLV-based functional brain networks between boxers and controls

in each frequency band. The green asterisks suggest that the significant differences are found in specific characteristic (*p < 0.05, FDR

(false discovery rate) corrected) (Error bars represent the standard error).

distribution of functional hubs, graph-theoretic characteris-
tics, and functional network connectivity for boxers in each
frequency band. This exploratory investigation indicated
that despite showing comparable neuropsychological per-
formance, boxers exhibited an increasing trend in PLV syn-
chronization across most frequencies compared to controls,
especially for the left hemisphere of the gamma frequency
band. Striking differences were found in the distribution of
functional centers between boxers and controls, particularly
for the gamma frequency band. In the graph-theoretic anal-
ysis, compared with controls, boxers exhibited attenuated
nodal network metrics and decreased small-world measures
in the theta, beta, and gamma frequency bands, suggesting
that functional network efficiency and small-world charac-
teristics within specific frequency bands were significantly

weakened in boxers. For the functional brain network, by
employing the NBS test framework, the analysis demon-
strated that significant differences in functional connectiv-
ity between the two populations existed only in the contrast
of boxers > controls. Boxers exhibited enhanced network
connectivity strength compared to controls for the signif-
icance subnetworks in theta, beta, and gamma frequency
bands, and asymmetric distributions of the significance
connections were revealed, especially for beta and gamma
frequency bands. In brief, boxers showed strikingly weak-
ened characteristics of PLV-based graph-theoretic measures
and differential performance of functional network connec-
tivity in specific frequency bands when performing resting-
state EEG, indicating that the boxers had potential abnor-
malities in functional network processing.
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Fig. 5. The comparisons of small-world characteristics of the PLV-based functional brain networks between boxers and controls

in each frequency band. The green asterisks suggest that the significant differences are found in specific characteristic (*p < 0.05, FDR

corrected) (Error bars represent the standard error).

The functional centrality represented by the functional
centers is considered a pivotal characteristic within an in-
terconnected network system, and serves as the integration
hub of information flow in a specific functional brain net-
work [48,49]. Based on this characteristic, aberrant con-
figurations of the functional centers would significantly
affect related functional components that connect with it
and would have extensive impacts on the functionality of
the global network. Thus, the present study investigated
the distributions of functional centers calculated by PLV-
derived nodal degree centrality to characterize the network
centrality for the boxer population and found that, com-
pared with controls, boxers’ functional centers were dis-
tributed more closely to the occipital regions in all five fre-
quency bands. Further the inter-hemispheric distribution
of functional centers between the two populations showed
striking differences in the beta and gamma frequency bands.
Previous studies have demonstrated that the aberrant distri-
bution of functional centers could negatively affect the effi-
cient operation of brain network functions [39] and signifi-
cantly weaken the cognitive processing of patients with TBI
[49]. Therefore, the altered configuration of functional cen-
ters and specific distribution within certain frequency bands
may provide insights into the neuro-electrophysiological
consequences of rmTBI and inform potential pathophysi-
ological indicators for clinical practice.

The dynamic functional connectivity of neural infor-
mation flow in the brain exhibits the characteristic proper-
ties of small-world network organization, which presents an
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appropriate balance between functional segregation (local
clustering connectivity among contiguous nodes denotes re-
gional specialization) and functional integration (short path
lengths among all nodes within the brain denote global
integration) [50,51]. Small-world architecture contributes
to a systematic organization that can ensure efficient op-
eration and economical communication at both regional
and global levels of the functional brain network [43], and
graph-theoretical measures could be considered an effec-
tive method to realize the small-world-related topological
characteristics of resting-state brain networks [52,53]. In
fact, anomalous changes in graph-theoretical parameters
have been detected in multiple conditions, which in turn
affect neurological functions and cognitive processing for
those affected [36,53-55]. The results of the present study
demonstrated that, compared with controls, boxers showed
degenerated nodal network metrics and small-world mea-
sures in specific frequency bands, which may contribute to
the negative effects of boxing-related rmTBI on cognitive
processing.

The properties of global efficiency and local effi-
ciency give rise to a measurable organization with sys-
tematic intercommunication at both global and local lev-
els. The average shortest path length characterizes the opti-
mal distance consumption of a given information transmis-
sion system between different functional nodes in the net-
work. Thus, the combination of the aforementioned indi-
cators can effectively represent the transmission efficiency
of neural signals in the resting-state functional network
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Fig. 6. The significant differences of the NBS (network-based statistic) -based functional brain networks between boxers and

controls in theta, beta, and gamma frequency bands. The significance subnetworks exhibit greater network connectivity strength in

boxers compared to controls (p < 0.05, FWER corrected). FWER, family-wise error rate.

[40,41,53]. In the present study, the strikingly weakened
changes in global and local efficiency combined with pro-
longed average shortest path lengths demonstrated that the
functional network of the boxers was attenuated with high-
consumption resting-state functional connectivity. Conse-
quently, the capability of neural signal transmission and in-
formation processing would be degenerated at both global
and regional scales in the functional network of the box-
ing population. Correspondingly, the significant reduc-
tion in functional network efficiency for information trans-
mission represented by the topological measurement pa-
rameters was in line with the long-term functional conse-
quences of graph-theoretical analyses in individuals with
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mTBI [44] and the changes in the chronic phase for indi-
viduals with more severe conditions [56]. Numerous stud-
ies have demonstrated that the effects of mTBI can lead to
a significant impairment in cognitive processing capacity
[4,23,28,57]. Pertinently, as a distinctive type of mTBI,
rmTBI could give rise to cumulative effects of brain injury,
which would contribute to salient deterioration of cognitive
function and senile-like neural degeneration [10,57-59]. In
contrast, our results have demonstrated that the resting-state
network based on calculated PLV matrices for both two
populations exhibited small-world characteristics in each
included frequency band; however, some crucial small-
world parameters of functional networks, including the di-
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minished mean normalized clustering coefficient ~, pro-
longed mean normalized shortest path length A\, and weak-
ened small-world characteristic o were detected to be sig-
nificantly degenerated in the boxing population in specific
frequency bands (especially in the beta frequency band),
suggesting that the healthy and cost-efficient network ar-
chitecture was disorganized and replaced by a more ineffi-
cient network structure. Coincidently, the weakened nodal
network metrics and small-world measures detected in the
present study were also congruent with the results of com-
parable studies on Alzheimer’s disease and senile-like neu-
ral degeneration [58,60,61]. Thus, it can be inferred that
the inefficient functional information flow and degenerative
small-world properties caused by rmTBI may accelerate the
decline of nodal network efficiency and the aging process
of cognitive processing in the boxing population.

In a comparison of two intricate functional brain net-
works, no single edge or connection with significant dif-
ferences could be explained independently. Instead, only
the significant edges or connections that were detected and
interconnected to construct an integrated subnetwork or a
collective subcomponent could be explained scientifically.
Fortunately, NBS has been shown to be an appropriate sta-
tistical approach to address the FWER issue for the compar-
ison between different functional networks and to realize
an interconnected and statistically significant subnetwork
[46]. Based on the NBS approach, our analyses revealed
that the boxers showed strikingly enhanced connectivity
strength for the significance subnetworks compared to con-
trols, and the consequences of enhanced functional network
connectivity were demonstrated by previous studies in pa-
tients with mTBI and more serious conditions [26,62]. In
addition, the hyperconnectivity of the functional network in
patients with mTBI was corroborated by findings of fMRI-
based NBS analysis and resting-state magnetoencephalog-
raphy studies [27,63]. Pertinently, previous studies have re-
vealed that mTBI could lead to diffuse damage to the white
matter axonal fibers of the brain [64,65], and identical dam-
age to the white matter tracts has been detected in the brain
of patients with boxing-related rmTBI [66—68]. This find-
ing was confirmed to be associated with the enhancement of
aggressive behaviors and anger dyscontrol [69,70]. Addi-
tionally, this was consistent with the professional character-
istics of boxing. Thus, the hyperconnectivity of functional
networks may be regarded as a compensatory mechanism
against the disruption of white matter structural integrity in
individuals with rmTBI [27]. Moreover, the present study
suggests that the significantly enhanced subnetworks of the
boxer population were not symmetrically distributed. In-
stead, the hyperconnected subnetworks were dominated by
the left hemisphere, and long-range connections were pre-
dominant, which is in line with the conclusions of previ-
ous research on individuals with mTBI [63]. The optimal
performance of brain functions depends on the orchestrated
operation of local and long-range functional areas by inter-
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connected network components. This interplay can form a
cohesive cognitive function and modulate the execution of
an individual’s behavior [71]. The presence of asymmet-
rically hyperconnected subnetworks suggest that the opti-
mized organization of integration and segregation for the
functional brain networks was disarranged, negatively im-
pacting the efficient communication of neural information
in boxers. Furthermore, because an overwhelming majority
of boxers are right-hand dominant, greater exposure to re-
peated head impacts on the left hemisphere may contribute
to the asymmetry of the hyperconnected subnetworks to a
certain extent [72].

The NBS analyses indicated that the boxers had
greater connectivity strength for the significance subnet-
works than did the controls in the theta, beta, and gamma
frequency bands, especially the beta band. Specifically, the
beta frequency band has been confirmed by previous stud-
ies to mainly originate from the cortical areas, basal ganglia,
and cortico-basal ganglia network composed of intercon-
nected white matter tracks [73,74]. Moreover, the cortical
areas and white matter microstructure of the brain are vul-
nerable and sensitive to the damage caused by both mTBI
and rmTBI [67,68,75]. Therefore, we can conclude that the
damage to the white matter tracks within cortico-basal gan-
glia network caused by rmTBI is the critical reason for the
significant impact on beta frequency activities in this study,
and significant enhancement of functional networks based
on beta frequency oscillations may be a vital network char-
acteristic of individuals with rmTBI. Cognitive functions
represented by beta frequency oscillations had been demon-
strated to be mainly involved in working memory and exec-
utive control [73,76]. Meanwhile, our previous study con-
firmed that abnormal working memory retrieval process-
ing caused by boxing-related rmTBI was significantly re-
lated to beta frequency activity [57]. Importantly, studies
have shown that the significantly enhanced functional con-
nectivity in the beta frequency band was also a crucial os-
cillatory feature of Parkinson’s disease [77,78]. This un-
derscores a potential causal relationship between boxing
and Parkinson’s disease [11,79]. Consequently, the cur-
rent study confirmed the degenerative neurophysiological
effects of boxing-related rmTBI on sufferers from the per-
spective of EEG functional networks, and this effect may
potentially affect the sufferers’ cognitive function and long-
term outcomes.

This study has some limitations. First, the spatial res-
olution provided by the 62-channel non-invasive resting-
state EEG was limited; although the CSD method was
employed to minimize the related interference, the com-
bination of structural image of fMRI in future research
may effectively deal with this issue. Second, the precise
quantification of boxing-related rmTBI in individual box-
ers was deficient in this study, and insufficient quantifi-
cation may attenuate the accumulated effects of boxing-
related rmTBI to some extent, even though the years of en-
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gagement in boxing applied in this work were perceived as a
general measure of injury in studies of the same population
[72,80]. Third, this study lacks diverse markers (e.g., blood
biomarkers) that supporting the presence of neurodegen-
erative damage in boxers, which are critical for establish-
ing causal associations between distinguished functional
network and effects of rmTBI. Finally, the present study
failed to include different populations with rmTBI, and the
impacts on functional brain networks found in this study
can only be attributed to the cumulative effects of boxing-
related rmTBI, therefore, the interpretation and clinical ap-
plication of the effects within the present study should be
approached with caution, and we look forward to conduct-
ing studies using present method in diverse populations
with rmTBI (e.g., football or rugby players) and patients
with neurodegenerative diseases to confirm our conclu-
sions. Hence, future studies should consider these limita-
tions when conducting in-depth explorations of the correla-
tions between boxing-related rmTBI and resting-state func-
tional brain networks.

5. Conclusions

We used whole-brain resting-state EEG and innova-
tively investigated the cumulative effects of boxing-related
rmTBI on PLV synchronization, graph-theoretic character-
istics, and NBS-based functional networks in boxers in five
frequency bands. We found that, compared to controls, the
boxers exhibited an increasing trend in PLV synchroniza-
tion and notable differences in the distribution of functional
centers. Moreover, attenuated graph-theoretic metrics indi-
cated that the boxers had significantly weakened functional
network efficiency and small-world characteristics in spe-
cific frequency bands. Importantly, the hyperconnectivity
and asymmetric distribution of the NBS-based subnetworks
suggested that the information processing and optimal con-
figuration of integration and segregation of the functional
brain networks were disrupted in boxers. This may nega-
tively affect the efficient communication and dynamic op-
eration of neural information in the brains of boxers with
rmTBI. Consequently, the distinctive graph-theoretic con-
sequences and aberrant processing patterns of the resting-
state functional network resulting from the cumulative ef-
fects of repeated brain impacts may serve as electrophysio-
logical characteristics of patients with rmTBI.

Abbreviations

BDI-II, Beck Depression Inventory—Second Edition;
CT, computed tomography; EEG, electroencephalography;
fMRI, functional magnetic resonance imaging; FSS, fa-
tigue severity scale; MMSE, mini-mental state examina-
tion; MRI, magnetic resonance imaging; mTBI, mild trau-
matic brain injury; NBS, network-based statistic; PLV,
phase-locking value; rmTBI, repetitive mild traumatic brain

injury.

12

Availability of Data and Materials

The datasets used and analyzed during the current
study are available from the corresponding author on rea-
sonable request.

Author Contributions

SKW, JS, GZX, DKZ and FZ designed the research
study. SKW, ZHF and SCW performed the research. SKW
and SCW analyzed the EEG data. DKZ and WZQ pro-
vided help in improving the processing code. SKW and
ZHF wrote the manuscript. All authors contributed to edi-
torial changes in the manuscript. All authors read and ap-
proved the final manuscript. All authors have participated
sufficiently in the work and agreed to be accountable for all
aspects of the work.

Ethics Approval and Consent to Participate

The research protocol was approved by the Ethical
Committee of the General Hospital of Chinese PLA Central
Theater Command (Wuhan School of Clinical Medicine,
Southern Medical University, China) (approved number:
[2020]041-1). All participants provided informed consent
prior to the procedure.

Acknowledgment

We thank the Department of Psychology, southern
medical university, and the authors would like to express
our gratitude to Wuhan Sports University and Prof Jun Tu
for contributions to participant recruitment.

Funding

This research was supported by the doctoral startup
fund of the second affiliated hospital of Fujian medical uni-
versity (BS202316), and the Chinese PLA technology in-
novation project (CLB18J042).

Conflict of Interest

The authors declare no conflict of interest.

References

[1] Moore RD, Lepine J, Ellemberg D. The independent influence of
concussive and sub-concussive impacts on soccer players’ neu-
rophysiological and neuropsychological function. International
Journal of Psychophysiology: Official Journal of the Interna-
tional Organization of Psychophysiology. 2017; 112: 22-30.

[2] Zuckerman SL, Kerr ZY, Yengo-Kahn A, Wasserman E, Cov-
assin T, Solomon GS. Epidemiology of Sports-Related Concus-
sion in NCAA Athletes From 20092010 to 2013-2014: Inci-
dence, Recurrence, and Mechanisms. The American Journal of
Sports Medicine. 2015; 43: 2654-2662.

[3] Brush CJ, Ehmann PJ, Olson RL, Bixby WR, Alderman BL.
Do sport-related concussions result in long-term cognitive im-
pairment? A review of event-related potential research. Interna-
tional Journal of Psychophysiology: Official Journal of the In-
ternational Organization of Psychophysiology. 2018; 132: 124—
134.

&% IMR Press


https://www.imrpress.com

(4]

[3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

Ruiter KI, Boshra R, Doughty M, Noseworthy M, Connolly JF.
Disruption of function: Neurophysiological markers of cogni-
tive deficits in retired football players. Clinical Neurophysiol-
ogy: Official Journal of the International Federation of Clinical
Neurophysiology. 2019; 130: 111-121.

Guskiewicz KM, McCrea M, Marshall SW, Cantu RC, Randolph
C, Barr W, et al. Cumulative effects associated with recurrent
concussion in collegiate football players: the NCAA Concussion
Study. JAMA. 2003; 290: 2549-2555.

Vanltallie TB. Traumatic brain injury (TBI) in collision sports:
Possible mechanisms of transformation into chronic traumatic
encephalopathy (CTE). Metabolism: Clinical and Experimental.
2019; 100S: 153943.

De Beaumont L, Brisson B, Lassonde M, Jolicoeur P. Long-term
electrophysiological changes in athletes with a history of multi-
ple concussions. Brain Injury. 2007; 21: 631-644.

Montenigro PH, Alosco ML, Martin BM, Daneshvar DH, Mez
J, Chaisson CE, ef al. Cumulative Head Impact Exposure Pre-
dicts Later-Life Depression, Apathy, Executive Dysfunction,
and Cognitive Impairment in Former High School and College
Football Players. Journal of Neurotrauma. 2017; 34: 328-340.
McCrory P, Zazryn T, Cameron P. The evidence for chronic
traumatic encephalopathy in boxing. Sports Medicine (Auck-
land, N.Z.). 2007; 37: 467-476.

Forstl H, Haass C, Hemmer B, Meyer B, Halle M. Boxing-acute
complications and late sequelae: from concussion to dementia.
Deutsches Arzteblatt International. 2010; 107: 835-839.
Lolekha P, Phanthumchinda K, Bhidayasiri R. Prevalence and
risk factors of Parkinson’s disease in retired Thai traditional box-
ers. Movement Disorders: Official Journal of the Movement
Disorder Society. 2010; 25: 1895-1901.

Ayala N, Heath M. Executive Dysfunction after a Sport-Related
Concussion Is Independent of Task-Based Symptom Burden.
Journal of Neurotrauma. 2020; 37: 2558-2568.

Kim GH, Kang I, Jeong H, Park S, Hong H, Kim J, ef al. Low
Prefrontal GABA Levels Are Associated With Poor Cognitive
Functions in Professional Boxers. Frontiers in Human Neuro-
science. 2019; 13: 193.

Moore DR, Pindus DM, Raine LB, Drollette ES, Scudder MR,
Ellemberg D, et al. The persistent influence of concussion on at-
tention, executive control and neuroelectric function in preado-
lescent children. International Journal of Psychophysiology: Of-
ficial Journal of the International Organization of Psychophysi-
ology. 2016; 99: 85-95.

Fraser EE, Downing MG, Biernacki K, McKenzie DP, Ponsford
JL. Cognitive Reserve and Age Predict Cognitive Recovery after
Mild to Severe Traumatic Brain Injury. Journal of Neurotrauma.
2019; 36: 2753-2761.

Stenberg J, Haberg AK, Follestad T, Olsen A, Iverson GL, Terry
DP, et al. Cognitive Reserve Moderates Cognitive Outcome Af-
ter Mild Traumatic Brain Injury. Archives of Physical Medicine
and Rehabilitation. 2020; 101: 72-80.

Ruiter KI, Boshra R, DeMatteo C, Noseworthy M, Connolly JF.
Neurophysiological markers of cognitive deficits and recovery
in concussed adolescents. Brain Research. 2020; 1746: 146998.
Biasiucci A, Franceschiello B, Murray MM. Electroencephalog-
raphy. Current Biology: CB. 2019; 29: R80-RS8S5.

Rosenbaum SB, Lipton ML. Embracing chaos: the scope and
importance of clinical and pathological heterogeneity in mTBI.
Brain Imaging and Behavior. 2012; 6: 255-282.

Coyle HL, Ponsford J, Hoy KE. Understanding individual vari-
ability in symptoms and recovery following mTBI: A role for
TMS-EEG? Neuroscience and Biobehavioral Reviews. 2018;
92: 140-149.

Medaglia JD. Functional Neuroimaging in Traumatic Brain In-
jury: From Nodes to Networks. Frontiers in Neurology. 2017,

&% IMR Press

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

8: 407.

Chen A, Zhang Z, Cao C, Lu J, Wu S, Ma S, et al. Altered At-
tention Network in Paratroopers Exposed to Repetitive Subcon-
cussion: Evidence Based on Behavioral and Event-Related Po-
tential Results. Journal of Neurotrauma. 2021; 38: 3306-3314.
Buhagiar F, Fitzgerald M, Bell J, Hellewell S, Moore S, Pestell
CF. Post-Concussion Symptoms, Cognition and Brain Connec-
tivity in an Australian Undergraduate Population: A Quantita-
tive Electroencephalography Study. Journal of Integrative Neu-
roscience. 2023; 22: 50.

Virji-Babul N, Hilderman CGE, Makan N, Liu A, Smith-
Forrester J, Franks C, et al. Changes in functional brain networks
following sports-related concussion in adolescents. Journal of
Neurotrauma. 2014; 31: 1914-1919.

Hillary FG, Grafman JH. Injured Brains and Adaptive Networks:
The Benefits and Costs of Hyperconnectivity. Trends in Cogni-
tive Sciences. 2017; 21: 385-401.

Hristopulos DT, Babul A, Babul S, Brucar LR, Virji-Babul N.
Disrupted Information Flow in Resting-State in Adolescents
With Sports Related Concussion. Frontiers in Human Neuro-
science. 2019; 13: 419.

Iraji A, Chen H, Wiseman N, Welch RD, O’Neil BJ, Haacke EM,
et al. Compensation through Functional Hyperconnectivity: A
Longitudinal Connectome Assessment of Mild Traumatic Brain
Injury. Neural Plasticity. 2016; 2016: 4072402.

Parsons N, Irimia A, Amgalan A, Ugon J, Morgan K, Shelyag
S, et al. Structural-functional connectivity bandwidth predicts
processing speed in mild traumatic brain Injury: A multiplex
network analysis. Neurolmage. Clinical. 2023; 38: 103428.
Fell J, Axmacher N. The role of phase synchronization in mem-
ory processes. Nature Reviews. Neuroscience. 2011; 12: 105-
118.

Doelling KB, Assaneo MF. Neural oscillations are a start toward
understanding brain activity rather than the end. PLoS Biology.
2021; 19: €3001234.

Duprez J, Stokkermans M, Drijvers L, Cohen MX. Synchroniza-
tion between Keyboard Typing and Neural Oscillations. Journal
of Cognitive Neuroscience. 2021; 33: 887-901.

Verbeke P, Ergo K, De Loof E, Verguts T. Learning to Synchro-
nize: Midfrontal Theta Dynamics during Rule Switching. The
Journal of Neuroscience: the Official Journal of the Society for
Neuroscience. 2021; 41: 1516-1528.

Briels CT, Schoonhoven DN, Stam CJ, de Waal H, Scheltens P,
Gouw AA. Reproducibility of EEG functional connectivity in
Alzheimer’s disease. Alzheimer’s Research & Therapy. 2020;
12: 68.

Monroe DC, Cecchi NJ, Gerges P, Phreaner J, Hicks JW, Small
SL. A Dose Relationship Between Brain Functional Connectiv-
ity and Cumulative Head Impact Exposure in Collegiate Water
Polo Players. Frontiers in Neurology. 2020; 11: 218.

Lachaux JP, Rodriguez E, Martinerie J, Varela FJ. Measuring
phase synchrony in brain signals. Human Brain Mapping. 1999;
8: 194-208.

Tan B, Yan J, Zhang J, Jin Z, Li L. Aberrant Whole-
Brain Resting-State Functional Connectivity Architecture in
Obsessive-Compulsive Disorder: An EEG Study. IEEE Trans-
actions on Neural Systems and Rehabilitation Engineering: a
Publication of the IEEE Engineering in Medicine and Biology
Society. 2022; 30: 1887-1897.

Dasdemir Y, Yildirim E, Yildirim S. Analysis of functional brain
connections for positive-negative emotions using phase locking
value. Cognitive Neurodynamics. 2017; 11: 487-500.

Tenke CE, Kayser J. Surface Laplacians (SL) and phase prop-
erties of EEG rhythms: Simulated generators in a volume-
conduction model. International Journal of Psychophysiology:
Official Journal of the International Organization of Psy-

13


https://www.imrpress.com

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

14

chophysiology. 2015; 97: 285-298.

Koh MJ, Seol J, Kang JI, Kim BS, Namkoong K, Chang JW,
et al. Altered resting-state functional connectivity in patients
with obsessive-compulsive disorder: A magnetoencephalogra-
phy study. International Journal of Psychophysiology: Official
Journal of the International Organization of Psychophysiology.
2018; 123: 80-87.

Shenoy Handiru V, Alivar A, Hoxha A, Saleh S, Suvise-
shamuthu ES, Yue GH, et al. Graph-theoretical analysis of EEG
functional connectivity during balance perturbation in traumatic
brain injury: A pilot study. Human Brain Mapping. 2021; 42:
4427-4447.

Bullmore E, Sporns O. Complex brain networks: graph theo-
retical analysis of structural and functional systems. Nature Re-
views. Neuroscience. 2009; 10: 186—-198.

Caeyenberghs K, Verhelst H, Clemente A, Wilson PH. Mapping
the functional connectome in traumatic brain injury: What can
graph metrics tell us? Neurolmage. 2017; 160: 113-123.
Bassett DS, Bullmore ET. Small-World Brain Networks Revis-
ited. The Neuroscientist: a Review Journal Bringing Neurobiol-
ogy, Neurology and Psychiatry. 2017; 23: 499-516.

Churchill NW, Hutchison MG, Graham SJ, Schweizer TA.
Long-term changes in the small-world organization of brain net-
works after concussion. Scientific Reports. 2021; 11: 6862.
Wang J, Wang X, Xia M, Liao X, Evans A, He Y. GRETNA: a
graph theoretical network analysis toolbox for imaging connec-
tomics. Frontiers in Human Neuroscience. 2015; 9: 386.
Zalesky A, Fornito A, Bullmore ET. Network-based statistic:
identifying differences in brain networks. Neurolmage. 2010;
53: 1197-1207.

Xia M, Wang J, He Y. BrainNet Viewer: a network visualization
tool for human brain connectomics. PloS One. 2013; 8: €68910.
Crossley NA, Mechelli A, Scott J, Carletti F, Fox PT, McGuire
P, et al. The hubs of the human connectome are generally im-
plicated in the anatomy of brain disorders. Brain: a Journal of
Neurology. 2014; 137: 2382-2395.

Fagerholm ED, Hellyer PJ, Scott G, Leech R, Sharp DJ. Discon-
nection of network hubs and cognitive impairment after trau-
matic brain injury. Brain: a Journal of Neurology. 2015; 138:
1696—1709.

Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’
networks. Nature. 1998; 393: 440-442.

Bullmore E, Sporns O. The economy of brain network organi-
zation. Nature Reviews. Neuroscience. 2012; 13: 336-349.
Yang S, Hwang HS, Zhu BH, Chen J, Enkhzaya G, Wang ZJ,
et al. Evaluating the Alterations Induced by Virtual Reality in
Cerebral Small-World Networks Using Graph Theory Analysis
with Electroencephalography. Brain Sciences. 2022; 12: 1630.
Hallquist MN, Hillary FG. Graph theory approaches to func-
tional network organization in brain disorders: A critique for
a brave new small-world. Network Neuroscience (Cambridge,
Mass.). 2018; 3: 1-26.

Zhao Z, Cheng Y, Li Z, Yu Y. Altered Small-World Networks
in First-Episode Schizophrenia Patients during Cool Executive
Function Task. Behavioural Neurology. 2018; 2018: 2191208.
Chouhan T, Black MH, Girdler S, Bolte S, Tan T, Guan C. Al-
tered task induced functional brain networks and small-world
properties in autism. Frontiers in Psychiatry. 2023; 13: 1039820.
Han K, Chapman SB, Krawczyk DC. Disrupted Intrinsic Con-
nectivity among Default, Dorsal Attention, and Frontoparietal
Control Networks in Individuals with Chronic Traumatic Brain
Injury. Journal of the International Neuropsychological Society:
JINS. 2016; 22: 263-279.

Wu S, Chen A, Cao C, Ma S, Feng Y, Wang S, ef al. Repeated
Subconcussive Exposure Alters Low-Frequency Neural Oscilla-
tion in Memory Retrieval Processing. Journal of Neurotrauma.

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

2022; 39: 398-410.

Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P. Small-
world networks and functional connectivity in Alzheimer’s dis-
ease. Cerebral Cortex (New York, N.Y.: 1991).2007; 17: 92-99.
Achard S, Bullmore E. Efficiency and cost of economical brain
functional networks. PLoS Computational Biology. 2007; 3:
el7.

Miraglia F, Vecchio F, Marra C, Quaranta D, Alu F, Peroni B, et
al. Small World Index in Default Mode Network Predicts Pro-
gression from Mild Cognitive Impairment to Dementia. Interna-
tional Journal of Neural Systems. 2020; 30: 2050004.

Javaid H, Kumarnsit E, Chatpun S. Age-Related Alterations in
EEG Network Connectivity in Healthy Aging. Brain Sciences.
2022; 12: 218.

Bailey NW, Rogasch NC, Hoy KE, Maller JJ, Segrave RA, Sul-
livan CM, et al. Increased gamma connectivity during working
memory retention following traumatic brain injury. Brain Injury.
2017; 31: 379-389.

Dimitriadis SI, Zouridakis G, Rezaie R, Babajani-Feremi A,
Papanicolaou AC. Functional connectivity changes detected
with magnetoencephalography after mild traumatic brain injury.
Neurolmage. Clinical. 2015; 9: 519-531.

Yin B, Li DD, Huang H, Gu CH, Bai GH, Hu LX, et al. Lon-
gitudinal Changes in Diffusion Tensor Imaging Following Mild
Traumatic Brain Injury and Correlation With Outcome. Frontiers
in Neural Circuits. 2019; 13: 28.

Hellewell SC, Nguyen VPB, Jayasena RN, Welton T, Grieve
SM. Characteristic patterns of white matter tract injury in sport-
related concussion: An image based meta-analysis. Neurolm-
age. Clinical. 2020; 26: 102253.

Wilde EA, Hunter JV, Li X, Amador C, Hanten G, Newsome
MR, et al. Chronic Effects of Boxing: Diffusion Tensor Imag-
ing and Cognitive Findings. Journal of Neurotrauma. 2016; 33:
672-680.

Ware AL, Wilde EA, Newsome MR, Moretti P, Abildskov T,
Vogt GS, et al. A preliminary investigation of corpus callosum
subregion white matter vulnerability and relation to chronic out-
come in boxers. Brain Imaging and Behavior. 2020; 14: 772—
786.

Herweh C, Hess K, Meyding-Lamadé U, Bartsch AJ, Stippich C,
Jost J, et al. Reduced white matter integrity in amateur boxers.
Neuroradiology. 2016; 58: 911-920.

Waller R, Dotterer HL, Murray L, Maxwell AM, Hyde LW.
White-matter tract abnormalities and antisocial behavior: A sys-
tematic review of diffusion tensor imaging studies across devel-
opment. Neurolmage. Clinical. 2017; 14: 201-215.

Dailey NS, Smith R, Bajaj S, Alkozei A, Gottschlich MK,
Raikes AC, et al. Elevated Aggression and Reduced White Mat-
ter Integrity in Mild Traumatic Brain Injury: A DTI Study. Fron-
tiers in Behavioral Neuroscience. 2018; 12: 118.

Thiebaut de Schotten M, Forkel SJ. The emergent properties of
the connected brain. Science (New York, N.Y.). 2022; 378: 505—
510.

Di Russo F, Spinelli D. Sport is not always healthy: Execu-
tive brain dysfunction in professional boxers. Psychophysiol-
ogy. 2010; 47: 425-434.

Schmidt R, Herrojo Ruiz M, Kilavik BE, Lundqvist M, Starr
PA, Aron AR. Beta Oscillations in Working Memory, Executive
Control of Movement and Thought, and Sensorimotor Function.
The Journal of Neuroscience: the Official Journal of the Society
for Neuroscience. 2019; 39: 8231-8238.

Singh A. Oscillatory activity in the cortico-basal ganglia-
thalamic neural circuits in Parkinson’s disease. The European
Journal of Neuroscience. 2018; 48: 2869-2878.

Eierud C, Craddock RC, Fletcher S, Aulakh M, King-Casas B,
Kuehl D, et al. Neuroimaging after mild traumatic brain injury:

&% IMR Press


https://www.imrpress.com

review and meta-analysis. Neurolmage. Clinical. 2014; 4: 283—
294,

[76] Miller EK, Lundqvist M, Bastos AM. Working Memory 2.0.
Neuron. 2018; 100: 463-475.

[77] Malekmohammadi M, Shahriari Y, AuYong N, O’Keeffe A,
Bordelon Y, Hu X, ef al. Pallidal stimulation in Parkinson dis-
ease differentially modulates local and network j3 activity. Jour-
nal of Neural Engineering. 2018; 15: 056016.

[78] Conti M, Stefani A, Bovenzi R, Cerroni R, Garasto E, Placidi

&% IMR Press

[79]

[80]

F, et al. STN-DBS Induces Acute Changes in S-Band Cortical
Functional Connectivity in Patients with Parkinson’s Disease.
Brain Sciences. 2022; 12: 1606.

Guterman A, Smith RW. Neurological sequelae of boxing.
Sports Medicine (Auckland, N.Z.). 1987; 4: 194-210.

Bianco V, Di Russo F, Perri RL, Berchicci M. Different proac-
tive and reactive action control in fencers’ and boxers’ brain.
Neuroscience. 2017; 343: 260-268.

15


https://www.imrpress.com

	1. Introduction 
	2. Materials and Methods
	2.1 Participants
	2.2 Procedure
	2.3 EEG Recording
	2.4 EEG Data Preprocessing 
	2.5 Computation of Resting-State EEG Functional Network Connectivity
	2.5.1 Phase-Locking Value (PLV)
	2.5.2 Functional Centrality
	2.5.3 Graph Theory-Based Analysis
	2.5.4 Comparison of Functional Network Connectivity

	2.6 Statistical Analysis 

	3. Results
	3.1 Participant Characteristics
	3.2 Group Differences in Phase Synchronization and the Distribution of Functional Hubs
	3.3 Graph-Theoretic Analysis
	3.4 Group Differences of Functional Network Connectivity

	4. Discussion
	5. Conclusions
	Abbreviations
	Availability of Data and Materials
	Author Contributions
	Ethics Approval and Consent to Participate
	Acknowledgment
	Funding
	Conflict of Interest

