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Abstract

Background: The accuracy of decoding fine motor imagery (MI) tasks remains relatively low due to the dense distribution of active
areas in the cerebral cortex. Methods: To enhance the decoding of unilateral fine MI activity in the brain, a weight-optimized EEGNet
model is introduced that recognizes six types of MI for the right upper limb, namely elbow flexion/extension, wrist pronation/supination
and hand opening/grasping. The model is trained with augmented electroencephalography (EEG) data to learn deep features for MI
classification. To address the sensitivity issue of the initial model weights to classification performance, a genetic algorithm (GA)
is employed to determine the convolution kernel parameters for each layer of the EEGNet network, followed by optimization of the
network weights through backpropagation. Results: The algorithm’s performance on the three joint classification is validated through
experiment, achieving an average accuracy of 87.97%. The binary classification recognition rates for elbow joint, wrist joint, and hand
joint are respectively 93.92%, 90.2%, and 94.64%. Thus, the product of the two-step accuracy value is obtained as the overall capability
to distinguish the six types of MI, reaching an average accuracy of 81.74%. Compared to commonly used neural networks and traditional
algorithms, the proposed method outperforms and significantly reduces the average error of different subjects. Conclusions: Overall,
this algorithm effectively addresses the sensitivity of network parameters to initial weights, enhances algorithm robustness and improves
the overall performance of MI task classification. Moreover, the method is applicable to other EEG classification tasks; for example,
emotion and object recognition.
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1. Introduction
Brain-computer interface (BCI) technology provides

a new paradigm of human-computer interaction with the
evolving integration of brain science and computer technol-
ogy. BCI establishes a communication path between human
users and external entities through brain activity, primarily
scalp electroencephalography (EEG) [1]. Motor imagery
(MI) EEG signals are elicited by subjective motor imagery
tasks. Different MI tasks produce specific EEG rhythm
changes at different positions across the cerebral cortex.
Compared with steady-state evoked potential (SSVEP) or
P300, MI-based BCI systems provide more natural and in-
tuitive communication between the user and external de-
vices. MI signals are highly useful in assisting motor func-
tion and significant progress has been achieved in pattern
recognition research for MI tasks.

Currently, most MI-based BCI systems are only ca-
pable of distinguishing a limited number of MI tasks and
decoding a few MI patterns from specific brain areas to
function as control commands. The most used MI-based
BCI systems rely on hand, foot and tongue MI tasks, which
anatomically are physically distant from each other in the
brain [2]. Interestingly, there is limited research on unilat-
eral joint MI tasks. Compared to left and right-hand move-
ments, recognizing MI movements in the different joints

and directions of unilateral movement is more refined and
practical. It is easily evident that performing a series of
actions with one joint, such as the hand, can significantly
assist in completing a task when mapping MI movements.
However, different motor imagery tasks involving the same
limb have similar spatial representations in the motor cor-
tex area [3,4] and unilateral movement is often accompa-
nied by additional and redundant noise. Further, individual
differences and variations in experimental paradigms can
lead to poor signal discrimination. Therefore, it is essen-
tial to develop an effective methodology for classifying MI
EEG signals to improve the recognition accuracy of the BCI
system.

Event-related desynchronization (ERD)/event related
synchronization (ERS) phenomena refer to the occurrence
of ERD potential in the contralateral brain region and ERS
potential in the ipsilateral brain region during unilateral
limb movement or imaginary movement. During the pro-
cess of motor imagination, changes in ERD/ERS phenom-
ena are caused, through which different states of the brain
can be distinguished. The recognition of different MI tasks
by the same limb has been pursued in several studies. For
three temporal features, an autoregressive model, wave-
form length and root mean square with optimal support vec-
tor machine, were proposed to decode the rest state and two
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MI tasks (hand and elbow), reaching an average accuracy
of 74.2% [5]. Additionally, time-domain features from spe-
cific low-frequency band EEG are utilized to decode motor
execution and imagery for six types of single upper limb
movements. The classification accuracy for motor execu-
tion was approximately 55% [6]. Cho et al. [7], instructed
subjects to perform five tasks of left-hand extension, right-
hand fist, left rotation, right rotation and rest state. The MI
tasks including both the left and right hand, collected EEG
signals and task decoding was perform with a decoding ac-
curacy of 51.01%. Furthermore, it is widely recognized
that the classification accuracy decreases significantly as
the complexity and diversity of MI task categories increase.

Given the low spatial resolution and weak signal-to-
noise ratio of MI-EEG signals, an effective signal process-
ing method is required [8]. Traditional feature extraction
methods are insufficient for optimizing the efficiency of
decoding fine MI movements of the upper limbs. In con-
trast, deep learning methods, which have shown unique
advantages in fields such as computer vision and charac-
ter recognition [9], hold great potential. In many appli-
cations, end-to-end EEG signal decoding using automatic
feature extraction improves the robustness of signal classi-
fication. Numerous studies have applied deep learning to
EEG signal analysis [10], including a multi-level weighted
feature fusion architecture based on a convolutional neu-
ral network (CNN) proposed for EEG MI classification
[11] and the success of Deep Belief Networks in classify-
ing smaller data sets [12]. In 2018, Lawhern et al. [13]
proposed a compact convolutional network called EEGNet,
which used deep convolution and separable convolution in-
stead of standard convolution. Results showed that EEGNet
achieved relatively high classification performance with
limited training data and demonstrated good paradigm gen-
eralization. Heilmeyer et al. [14] evaluated different deep
learning frameworks, including Braindecode Deep4 Con-
vNet, Braindecode Shallow ConvNet and two other ver-
sions of EEGNet and found that Braindecode Deep4 and
EEGNet performed the best. Compared to such previously
proposed networks, EEGNet has a more compact structure,
resulting in faster training while maintaining the same ac-
curacy.

The initial parameters of the network are randomly
generated and different parameters have a strong impact
on model capability. Inappropriate or suboptimal param-
eters cause a network find a local minimum, resulting in
low classification accuracy and slow network convergence
speed [15]. Additionally, large individual differences may
lead to an unstable global classification ability. To address
this issue, the genetic algorithm (GA), an optimization al-
gorithm, simulates biological evolution in nature, demon-
strating great adaptability to complex problems such as non-
linearity [16]. GAs have been used in many fields due
to their strong generalization ability, robustness and ease
of operation [17,18]. Recent studies have employed GAs

to optimize deep learning models, where it was used as a
search engine to extract features in [19,20] and appropriate
parameters were obtained for CNN through GA in [21,22].
Previous studies have shown that genetic algorithm support
vector machines (GA-SVM) identifies optimal SVM pa-
rameters. Moreover, the GA-backpropagation (BP) model,
that optimizes a BP neural network by GA, can effectively
prevent entrapment in a local minimum [23]. Based on
these findings, here an approach to combining GA with
deep learning is proposed. Specifically, by using EEGNet
and a GA together, the aim is to achieve global optimization
of initial network parameters to decode motor imagery of
joints and corresponding directions. Additionally, by aug-
menting the data with balanced noise, the accuracy of mod-
els can be improved. Overall, the proposed approach may
provide a viable solution to the challenge of decoding uni-
lateral MI.

2. Experiments and Methods
2.1 Subjects and Data Acquisition

Five college students (three males, two females, 23–
27 years old) were recruited for this experiment. All partic-
ipants were healthy, free of neurological diseases and pro-
vided informed consent. The protocol was standard for de-
velopment of wearable electronic devices within the elec-
trical and hardware field, with no involvement of human
biological or clinical factors. It causes no harm to the sub-
jects and no personal information was collected for anal-
ysis. EEG data was collected using the UE-16B ampli-
fier and an EEG cap (Beijing Xintuo Company, Beijing,
China). The cap contained 16 AgCl electrodes following
the international 10-20 system. Before the cap was fitted,
the electrodes were inserted into gel to reduce skin resis-
tance. The amplifier sampling frequency was 500 Hz, with
a low-pass filter (cut-off frequency range 15–120 Hz, with
a 50 Hz frequency notch module). The forehead electrode
was set as a ground electrode and the reference electrodes
were the eardrum electrodes (A1 and A2). According to
the ERD/ERS phenomenon generated during the MI pro-
cess [24], the EEG band was mainly concentrated in the
range of 8–30 Hz. Among them, ERD and ERS respec-
tively refer to the phenomenon of decreasing or increasing
of the amplitude of the 8–30 Hz EEG signals activated dur-
ing exercise. The low-pass cutoff frequency of the EEG
amplifier was set to 100 Hz. All 16-channels of data were
analyzed.

2.2 Experimental Paradigm
The experiment included six types of unilateral upper

limbMI movements: elbow flexion/extension, wrist prona-
tion/supination and hand grasping/opening. Each subject
performed 50 trials for each type of MI task, resulting in a
total of 300 trials per subject. Data was collected using the
experimental paradigm illustrated in Fig. 1. For simplic-
ity, elbow flexion/extension is referred as M1, wrist prona-
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Fig. 1. MI experiment paradigm. MI, motor imagery.

Table 1. EEGNet Structure Parameters.
Layer Layer type Kernel Params Output

1 Input (C, T)
Conv2D F1 * (1, 64) 64 * F1 (F1, C, T)
BatchNorm 2 * F1 (F1, C, T)
DepthwiseConv2D D * F1 * (C, 1) C * D * F1 (D * F1, 1, T)
BatchNorm 2 * D * F1 (D * F1, 1, T)
Activation (D * F1, 1, T)
Pool (D * F1, 1, T //4)

2 SeparableConv2D F2 * (1, 8) 8 * D * F1 + F2 * (D * F1) (F2, 1, T //4)
BatchNorm 2 * F2 (F2, 1, T //4)
Activation (F2, 1, T //4)
Pool (1, 8) (F2, 1, T //32)
Flatten (F2 * (T //32))

Classifier Softmax N * (F2 * (T //32)) N
EEG, electroencephalography.

tion/supination as M2 and hand grasping/opening as M3.
Visual stimulation in the form of video was provided to
the subjects during the experiment for better comprehen-
sion. To reduce the effect of visual stimulation on the EEG
record, artifacts of eye trace and others irrelevant signals
were eliminated during pre-processing.

The procedure for a single trial was: During the ex-
periment preparation stage, an indication picture appeared
on a screen for two seconds to remind the subject to pre-
pare for the MI task. At the time stamp of that duration, the
corresponding MI prompt video, four seconds, appeared on
the screen and the subject performed the MI task according
to the actions in the video. At the time point of six seconds,
a specified image appeared on the screen, indicating to the
subject to take a momentary break prior to the next trial.

2.3 Methodology

To address the issue of low recognition rates in up-
per limb multi-joint MI tasks, a GA weight optimization-
based EEGNet classification method is proposed. Firstly,
the original data are preprocessed using band-pass filters
and discrete wavelet transform. The sample size is then ex-
panded by adding Gaussian noise. Finally, GA_EEGNet is
used for feature extraction and MI task classification. Af-
ter data augmentation, 80% of the data is used to train the
EEGNet network model, with 10% reserved for model ver-
ification and another 10% for testing. All experiments were
conducted using Keras API (Keras 2.7.4, Google, Mountain
View, CA, USA) on Tensorflow (Tensorflow 2.0, Google),
configured with NVIDIA (Version 417.23 GeForce GT
1030, NVIDIA, Santa Clara, CA, USA) i5-4210M CPU
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Fig. 2. Signal processing flow chart. ELU, exponential linear unit; DWT, discrete wavelet transform; BN, batch normalization; DP,
dropout; GA, genetic algorithm.

Table 2. Average classification accuracy of three joints under different data augmentation multiples and noise standard.
m

0 1 2 3 4 5
σ

0.001 58.6 64.8 67.8 80.6 73.3 72.2
0.01 58.6 66.7 68.4 73.3 70.4 74.1
0.1 58.6 67.6 81.5 85.2 75.4 80.6
0.2 58.6 69.4 77.8 75.2 80.6 76.9
0.5 58.6 63.9 80.6 79.6 74.6 78.7
Mean ± STD 58.6 ± 0 66.5 ± 2.2 75.2 ± 6.6 78.8 ± 4.7 74.9 ± 3.7 76.5 ± 3.4

STD, standard deviation.

Table 3. Comparison of three joint classification accuracy
between EEGNet and GA_EEGNet (%).

Subject 1 2 3 4 5 Mean

EEGNet 85.83 86.67 90.13 84.11 72.67 83.88
GA_EEGNet 88.30 89.81 92.13 87.50 82.11 87.97

@2.60GHz. The detailed signal processing flow is illus-
trated in Fig. 2 and is explained further in subsequent sec-
tions.

2.3.1 EEG Preprocessing

Due to external noise and physiological artifacts that
interfere with EEG signals, data cleaning is necessary. The
brain produces specific ERD and ERS phenomena during
MI tasks [25], with the sensorimotor rhythm in the mo-
tor cortex being the primary oscillation investigated in MI-
based BCI. This rhythm includes the alpha/mu (8–13 Hz)
and beta (13–30 Hz) bands. Collected data is first down-
sampled to 128 Hz and then fifth-order Butterworth filtered
between 8–30 Hz. Subsequently, discrete wavelet trans-
form is utilized to denoise the signal. Using DB6 as the
mother wavelet, the EEG signal is decomposed into three
wavelet layers, from which three high-frequency coeffi-

cients and three low-frequency coefficients are obtained,
then reconstructed according to the characteristics of the
EEG signal.

2.3.2 Data Augmentation

Due to the high demand for parameter tuning in neural
networks, a large number of data samples are required for
training models, particularly in the case of MI EEG signals.
However, obtaining a sufficient number of labeled samples
is time-consuming, making data augmentation strategies
necessary. In image processing, two basic augmentation
tactics are used: geometric transformation and noise ad-
dition [26]. Geometric transformation involves techniques
such as rotation, scaling and color enhancement. However,
these methods cannot be applied to EEG signals as they are
continuous time-dependent signals and their time-domain
features will be destroyed if the EEG signal is rotated or
scaled. The data augmentation methods for EEG signals in-
clude Gaussian noise addition [27], empirical mode decom-
position [28] and deep generative adversarial nets [29,30].
Considering factors such as algorithm complexity and train-
ing time, Gaussian noise is added to the EEG signal to in-
crease the number of training samples. Since the experi-
ment only collected data from five subjects, the amount of
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Fig. 3. GA-based EEGNet weight optimization flow chart. BP, backpropagation; Y, yes; N, no.

data is relatively small, so data augmentation is necessary.
After augmentation, the separation of training and testing
data is carried out to avoid data duplication in the training
and testing processes, which generates false positive results.

PG(z) =
1

σ
√
2π

e
−(z−µ)2

2σ2 (1)

where µ denotes the mean and σthe standard deviation. To
ensure that the amplitude of the EEG signal is not affected
by noise, µ = 0 is set.

To investigate the impact of various levels of data aug-
mentation and standard deviation of added Gaussian white
noise on EEG signal classification performance, values are
varied between 0.001 and 0.5 and six different data aug-
mentation multiples (m = 0,…, 5) are used, where, the data
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Fig. 4. Average classification accuracy of three joints under different data augmentation multiples and noise standard.

Table 4. Classification accuracy of EEGNet and GA_EEGNet in M1, M2 and M3 tasks (%).

Subject
M1 M2 M3

EEGNet GA_EEGNet EEGNet GA_EEGNet EEGNet GA_EEGNet

1 75.3 87.5 77.2 85.8 87.5 89.3
2 91.4 96.8 81.5 93.3 95.3 96.8
3 93.9 97.5 89.6 94.8 81.5 97.5
4 85.0 92.5 87.5 92.5 93.9 94.8
5 79.5 95.3 83.3 84.6 91.4 94.8
Mean 85.0 93.92 83.8 90.2 89.9 94.6

Fig. 5. Average classification accuracy and standard deviation
of three joints and single joints. M1 task is to distinguish elbow
flexion and extension, M2 task is to distinguish wrist pronation
and supination, M3 task is to distinguish hand grasp and open.

enhancement multiple represents the standard deviation of
the added Gaussian white noise. When m = 0, no data ex-
pansion is applied. These parameters will be assessed in
subsequent comparative experiments.

2.3.3 Pattern Classification

EEGNet is a condensed CNN model used for classi-
fying and visualizing EEG signals. This model stands out
from other network structures due to its reduced training
parameters and faster training speed. However, one of its
weaknesses is its high sensitivity to initial weights [31],
making it less robust. To address this issue, it is proposed
here to combine it with GA optimization.

(1) EEGNet
The network structure diagram of EEGNet (Fig. 2),

makes use of both depthwise and separable convolution.
The latter consists of two steps: depthwise convolution and
pointwise convolution [32]. By only connecting the depth-
wise convolution layer to a subset of the feature map from
the previous layer, the extent of computational resources
required for convolution is significantly reduced.

The network structure parameters of the EEGNet
model are presented in Table 1. Conv2D and DepthwiseC-
onv2D respectively represent the two-dimensional convo-
lution layer and the depthwise convolution layer. Separa-
bleConv2D is the separable convolution layer and pool de-
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Fig. 6. Confusion matrix and loss value curve of the validation set of the three joint classification. (a) Three-joint classification
confusion matrix. (b) Loss value curve of M1, M2, M3 task classification. M1 task is to distinguish elbow flexion and extension, M2
task is to distinguish wrist pronation and supination, M3 task is to distinguish hand grasp and open.

notes the pooling layer, while C gives the number of sig-
nal channels and T the number of time points, F1 gives the
number of time-domain convolution kernels, D the number
of spatial convolution kernels, F2 the number of pointwise
convolution kernels and N represents the number of signal
categories. The neural network is fitted using Adam opti-
mizer, the batch size is set to 32, the loss function is calcu-
lated by cross entropy and the batch is normalized to 0.1.

Time-domain convolution and spatial convolution are
performed sequentially in the first layer. Due to the time do-
main characteristics of the signal and the independence of
each channel signal, a one-dimensional convolution kernel
is used in the time domain convolution layer, with the length
of the filter set to half the sampling rate. Time-domain con-
volution is performed by F1 with a two-dimensional con-
volution filter of size (1, 64), a depthwise convolution is
then performed by D spatial filters of size (C, 1). The ex-
ponential linear unit (ELU) is used as the activation func-
tion, with the dropout probability set to 0.25. Finally, the
average pooling layer of size (1, 4) is used for parameter
dimensionality reduction.

In the second layer, deep separable convolution is ap-
plied. First, a spatial filter of size (1, 8) is used for depth-
wise convolution, this is followed by a F2 pointwise con-
volutions of size (1, 1). In this layer, the ELU activation
function is also adopted, the data is then compressed us-
ing an average pooling layer of size (1, 8) and the dropout
probability is set to 0.25. There are N units in the Softmax
classification layer, where N represents the input data cate-
gory.

EEGNet networks with different architectures can be
obtained by changing the number of time domain (F1) and
spatial filters (D). F2 < D*F1 is a compressed represen-
tation, that is, the learned feature mapping is less than the
input feature mapping. F2 > D*F1 is an over-complete
representation, that is, the learned feature mapping is more
than the input feature mapping. In this experiment, F2 =
D*F1, F1 = 8 and D = 2.

(2) EEGNet optimized by GA
In multi-class MI classification, the choice of initial-

ization weights greatly impacts the performance of EEG-
Net, which results in significant differences in classification
accuracy across different training samples. To address this
issue, a GA is proposed to pre-train the network to avoid
getting attracted to local minima, followed by fine-tuning
the parameters with a BP algorithm.

GA is an optimization method that simulates the bio-
logical evolution of nature and is highly adaptable to com-
plex problems such as nonlinearity [33]. The essence of GA
is an aggressive optimization search. First, a randomly ini-
tialized population is created, individual genes in the popu-
lation are then selected, crossed and mutated at each itera-
tive step. Offspring are then screened through a customized
individual fitness function and optimal individuals are fi-
nally retained after several generations of population repro-
duction and evolution.

During the weight optimization of EEGNet with the
GA, the network structure remains unchanged. Firstly, the
GA is used to conduct preliminary training on the convolu-
tion kernel parameters of EEGNet, completing global opti-
mization in the weight solution space. Next, a set of convo-
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Fig. 7. Comparison experiment results of three joint and M1, M2, M3 classification. (a) Classification results of three joints. (b)
Classification results of M1. (c) Classification results of M2. (d) Classification results of M3. The M1 task is to distinguish elbow
flexion and extension, M2 task is to distinguish wrist pronation and supination, M3 task is to distinguish hand grasping and opening.
CSP, common spatial pattern; LCD, local characteristic-scale decomposition; SRDA, spectral regression discriminant analysis.

lution kernel parameters with high fitness are selected and
the weights are modified twice using the BP algorithm. The
final weights of EEGNet are then obtained based on the er-
ror minimization criterion. The GA flow chart is given in
Fig. 3.

The steps of EEGNet network initial weights training
are as follows:

Step 1: As the weight values of EEGNet are non-
integer decimals, decimas are used to encode parameter val-
ues in this experiment. The convolution kernel parameters
are randomly initialized using numbers within the range of
[–0.2, 0.2], mean zero, with a small interval between them.
These parameter values are treated individually as mem-
bers of the initial population, expressed as ΩCi, where i
= {1, 2, 3, ...P} in [33]. P denotes the population size, with
the number of individuals in the initial population set to 10.

Step 2: The classification accuracy of EEGNet is cal-
culated for each weight parameter, which is then considered
as the individual fitness for each member of the population.

Step 3: The roulette wheel selection method, also
known as the proportional selection method, is combined
with an optimal individual preservation strategy to select
individuals from the population [34,35].

An optimal strategy for individual preservation in-
volves comparing the maximum fitness value of individuals
in the current population with the highest historical value in
each iteration. The genes of fitter individuals in both groups
should be preserved. Finally, the gene with the highest in-
dividual fitness value is accepted once the iteration is com-
plete.

The proportional selection method, is based on the as-
sumption that the fitness value of an individual is propor-
tional to its survival probability. The calculation process is
as follows: First, the fitness of all individuals in the con-
temporary population and the retention probability of each
individual in the next generation are obtained and the cu-
mulative probability q1(i = 1, 2, ..., n) is calculated. Then,
a pseudo-random uniformly distributed number r generated
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in the interval [0, 1]. If r < q1 is true, an individual is se-
lected; otherwise, individual is selected, so that: qk−1 < r
≤ qk.

Step 4: Individual crossover. According to the
crossover probability pc, some individuals are selected
among parents to exchange genetic information, so that sev-
eral offspring are generated. To adjust the crossover prob-
ability between individuals adaptively, the adaptive cross
probability is calculated by Eqn. 2.

pc = pc0 − (pc0 − pcmin) ∗
d

D
(2)

where pc0 denotes the initial crossing probability, pcmin de-
notes theminimum crossing probability, d gives the number
of contemporary iterations, and D gives the total number of
iterations set. As the population continues to iterate, the
crossover probability calculated by Eqn. 2 will gradually
decrease until it reaches the minimum value.

Step 5: To ensure diversity within the population
genes, individual mutations are necessary. This entails ran-
domly changing the genes of individuals, with a specific
mutation probability. However, to prevent a decrease in
the algorithm’s stability or the emergence of a local opti-
mal solution, an adaptive mutation probability is calculated
by Eqn. 3.

pm =

[
pm0 −

(
pm0 − p

m min
)
∗

d

D
+ pm0 ∗

meanF (Ci)

maxF (Ci)

]
/2 (3)

where pm0 denotes the initial mutation probability, pmmin
denotes the minimum mutation probability, meanF(Ci) de-
notes the mean value of individual fitness in the population
andmaxF(Ci) gives the fitness value of the optimal individ-
ual in the contemporary population. According to Eqn. 3,
the mutation probability of the population can be adjusted
adaptively to balance the evolution process and overall pop-
ulation fitness.

Step 6: Algorithm termination. When the maximum
number of iterations is reached, the algorithm stops running
and outputs all individuals in the final generation of the pop-
ulation, otherwise steps 2–5 are repeated.

The maximum number of iterations is set to 50.
According to the literature [29], the value range of the
crossover probability is 0.4~0.9. In this experiment, the
initial crossover probability pc0 was set to 0.7 and the min-
imum crossover probability value pcmin was set to 0.5. The
value range of the mutation probability is 0.001~0.1, the
initial mutation probability pm was set to 0.04 and the min-
imum mutation probability pm0 was set to 0.001.

3. Results and Discussion
3.1 Data Augmentation Parameter Setting

In this experiment, a hierarchical classification strat-
egy is applied [36]. Firstly, the three joints of the upper limb
are classified and the twomovement directions of each joint

are then identified. Based on a combination of information
about the motion of the three joints and the movement di-
rection of each joint, the complete decoding of upper limb
MI movements is realized. To enhance the generalization
ability and robustness of the EEGNet network model, data
augmentation and noise addition were utilized. However,
excessive data or improper noise standard differences may
impede valid sample creation and network convergence.
Furthermore, proper parameter selection is crucial for ac-
curate classification performance of the three joints. Refer
to Table 2 for experimental results.

In Table 2 and Fig. 4, when m = 0, the average accu-
racy of three joint classifications without data augmentation
is only 58.6%. However, after doubling the training sam-
ple size, the classification accuracy improves significantly
to more than 65%, indicating that data augmentation sub-
stantially enhances EEGNet performance in the three-joint
MI task. As m is increased from one to three, the over-
all classification accuracy for the three joints gradually in-
creases. But with further increases in m, classification ac-
curacy begins to decrease. When m = 3 and the standard
deviation of Gaussian white noise is set to 0.1, the classifi-
cation accuracy reaches its highest point at 85.2%, which is
a 26.6% improvement compared to results without data en-
hancement. These findings confirm that data augmentation
effectively solves the problem of insufficient learning with
small sample training sets in EEGNet, resulting in signif-
icant improvements of classification accuracy. Therefore,
the multiple of data amplification is set to three, and the
standard deviation of added Gaussian noise is set to 0.1.

However, while the data augmentation step effectively
expands the data set, it also brings the potential of data
leakage. After data enhancement by adding noise, there
is a chance that the data will be divided into the training
set and the test set, which will lead to the hidden dan-
ger of data leakage [37,38]. Specifically, in the data en-
hancement, sample x is expanded into three samples by
adding Gaussian white noise, which can be represented as
x1 = x+ noise1, x2 = x+ noise2, x3 = x+ noise3, re-
spectively. In subsequent data set partitioning, x1, x2 may
be in the training set and x3 in the test set. Since they are
derived from the same data x expansion, the model may
have trained the features of x data in the training process
and the features of x data appear in the test stage, resulting
in an overestimation of the test accuracy. Adjusting the se-
quence of data enhancement and data set partitioning can ef-
fectively avoid this problem [39]. Subsequent study should
adjust and optimize the data enhancement experiment such
that a dataset can be artificially expanded while avoiding
data leakage.

3.2 Performance Comparison of EEGNet and
GA_EEGNet

To verify the effectiveness of the proposed algorithm,
the classification performance of EEGNet and EEGNet
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combined with GA (GA_EEGNet) is firstly compared in
the three joint classification of five subjects (Table 3).

The original average classification accuracy of EEG-
Net in the three joint classifications is 83.88%, while that
with the combined genetic algorithm is 87.97%, showing an
improvement of about 4.90%. The classification results of
all five subjects are improved after combining GA, which
shows that GA effectively improves the classification ef-
fect of three joint MI. The comparison of the experiment
results between EEGNet and GA_EEGNet in M1, M2 and
M3 tasks are given in Table 4.

For M1, M2 and M3 tasks, after combining with GA,
the classification performance is greatly improved. Among
them, the improvement of the M1 task is the most signifi-
cant, with an increase of 8.9%, while the average classifi-
cation accuracy of M2 and M3 tasks is improved by 6.38%
and 4.72%, respectively. For all three tasks, the classifi-
cation results of the five subjects under GA_EEGNet are
higher than that of EEGNet alone, which further demon-
strates the validity of the algorithm here. From Tables 3,4,
the product of the two-step strategy can be used to distin-
guish the six-types of MI to achieve an overall accuracy of
81.74% by inclusion of GA optimization. In comparison,
the overall accuracy is only 72.33% when using EEGNet
alone.

The average classification accuracy and standard devi-
ation of five subjects in three joint classifications (M1, M2
and M3) are given in Fig. 5, indicating that GA_EEGNet
exhibits a significant improvement in classification perfor-
mance for the M1 task compared to all other tasks. Addi-
tionally, GA_EEGNet significantly reduces the classifica-
tion standard deviation for each task in comparison to EEG-
Net, highlighting its effectiveness in decreasing the impact
of different initial parameters on classification results. Con-
sequently, this modification reduces subject differences and
enhances overall classification performance.

The confusion matrix of the three joint classification
and the loss value curve of the validation set in the M1,
M2 and M3 task classifications are given in Fig. 6. From
the confusion matrix, it can be seen that the best classifi-
cation effect of the three joints is hand movement, with a
classification accuracy reaching 93.6%, followed by the el-
bow classification at 87.5%. Because hand movements are
easier to imagine and elbow movements have a greater M1
range, these two types of joint movements are easier to dis-
tinguish. From the loss function curve of M1, M2 and M3
task training models, it can be seen that the loss value of the
M2 task classification model is the largest, while the M1
task has the best classification with the smallest loss value.
The motor imagery task of elbow flexion and extension in
M1 is well executed and easily discriminable, whereas the
imagery task of wrist movement in M2 is more challeng-
ing, resulting in lower accuracy compared to the other two
categories.

3.3 Comparison of the Proposed Method with Commonly
Used Neural Networks and Traditional Algorithm

To further verify the effectiveness of the proposed
GA_EEGNet algorithm, a comparison experiment was per-
formed with two other types of neural network, Deep Con-
vNet and Shallow ConvNet [40]. There are four convo-
lutional layers with Deep ConvNet, which also used batch
normalization and dropout techniques, with a final dense
softmax classification layer. The first layer was divided into
two parts, first for time-domain convolution, then for spatial
convolution in the channel dimension, finally for maximum
pooling. Each of the remaining three layers consists of a
standard convolution layer and a maximum pooling layer.
ELU is the nonlinear activation function used in the net-
work. In addition to the shallow ConvNet’s time-domain
and spatial convolutional layers, there is also a square non-
linear activation and average pooling layer, culminating
in a dense classification layer. Alongside the deep learn-
ing method, this experiment compared results with a tradi-
tional manual feature extraction algorithm. Spatial and fre-
quency domain features were extracted using common spa-
tial pattern (CSP) and local characteristic-scale decomposi-
tion (LCD) algorithms, followed by classifiers using spec-
tral regression discriminant analysis. Results of the exper-
imental comparison for three joint classifications and M1,
M2, M3 task classification are illustrated in Fig. 7.

The comparison results of three-joint classifica-
tion given in Fig. 6, indicate that the proposed algo-
rithm outperforms the other algorithms with an excep-
tion for Subject 5. The traditional feature classifica-
tion method (common spatial pattern_local characteristic-
scale decomposition_spectral regression discriminant anal-
ysis, CSP_LCD_SRDA) has the lowest average classifica-
tion accuracy (56.5%), while the GA_EEGNet algorithm
achieves the highest average accuracy (87.97%) among the
four types of algorithms examined. The proposed algorithm
performs particularly well in M1 and M3 tasks, with an av-
erage classification accuracy 18.52% and 18.14% higher,
respectively, than the second-highest performing algorithm,
Deep ConvNet. In the M2 task, in addition to Subject 5, the
algorithm employed here also achieves the best results for
the other four subjects. Compared with Deep and Shallow
ConvNets, EEGNet combines deep convolution and sepa-
rable convolution, separates regional features from channel
features and effectively decouples the relationship within
and across feature maps. The proposed algorithm has more
prominent classification advantages when compared to the
traditional CSP_LCD_SRDA algorithm. Manual feature
extraction algorithms struggle to extract detailed and com-
prehensive information for fine motor imagery on the same
side of the upper limbs. EEGNet enables end-to-end EEG
signal decoding with high robustness while automatically
extracting depth features. The algorithm proposed here
achieves the best results in both the three-joint classification
andM1, M2, M3 two-class classification tasks, demonstrat-
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ing excellent performance in decoding themulti-joint motor
imagery of upper limbs. It is an algorithm that has potential
applications in rehabilitating stroke patient upper limbs.

3.4 The Neuro-Cognitive Relationship between MI and
Cortical Activity

The high-precision classification of MI tasks is of
great significance to rehabilitation training. The neurocog-
nitive relationship between motor imagery and cortical ac-
tivity provides theoretical guidance for rehabilitation train-
ing of patients with nerve injury. Sensorimotor processing
has been shown to specifically affect psychosomatic repre-
sentations [41]. Through transcranial magnetic stimulation
combined with EEG technology, the rehabilitation mech-
anism of motor function reconstruction and neural remod-
eling of patients after stroke is analyzed, which can reveal
the function of the cerebral cortex network at a deeper level
[42]. Moreover, understanding the function of the cerebral
cortex network provides a theoretical basis for the high-
precision classification ofMI tasks. Transcranial direct cur-
rent stimulation has been shown to modulate cortical plas-
ticity, enhance motor learning and induce upper limb motor
recovery after stroke. It has also been shown to boost the
activation of BCI in stroke patients. The MI-BCI task im-
proves motor function in patients with moderate to severe
injury in chronic stroke patients with stroke patients. More-
over, it has been shown by transcranial direct current stimu-
lation experiments that contralateral M1 may play a role in
stroke recovery in patients with more severe involvement
[43]. Therefore, the neurocognitive relationship between
MI task and cortical activity is of great significance for re-
habilitation training. In this work, it was only classifica-
tion of M1 tasks that was attempted with high accuracy. In
follow-up work, it is planned to establish an understanding
of the neurocognitive relationship between motor imagery
and cortical activities by means of near-infrared and trace-
ability analysis and assist MI task classification from the
perspective of the cerebral cortex network. The aim is to
achieve higher classification accuracy and provide feasible
technical means for identification of cerebral cortex cogni-
tive function.

4. Conclusions
Here, a novel algorithm has been proposed for the

analysis of MI EEG signals to allow recognition of fine
motor EEG imagery obtained during upper limb activity.
EEGNet, based on deep and separable convolution and op-
timized with GA, is employed to tackle the issue of MI task
recognition. The algorithm achieves an average classifica-
tion accuracy of 87.97% for three joint classifications, with
classification accuracies of 93.92%, 90.2% and 94.64% for
M1, M2 and M3 tasks, respectively. Compared with other
commonly used neural networks and algorithms, the algo-
rithm introduced here effectively learns the distinguishing
features in MI signals and significantly improves the de-

coding performance. It substantially overcomes the nega-
tive interference of initial weights on network model per-
formance. It facilitates a machine learning application for a
brain computer interface, which may contribute to further-
ing efficient interaction between human and machine.
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