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Abstract

Background: Methamphetamine (METH) is a highly addictive drug that directly affects the central nervous system. METH use not only
harms the user’s health but also poses risks and costs to society. ProlongedMETH dependence has been shown to impair cognition, which
may be the primary factor in impulsive drug-seeking behaviors and high relapse rates. However, the molecular mechanisms underlying
METH addiction and METH-induced cognitive decline remain poorly understood. Methods: To illuminate the potential molecular
mechanisms underpinning METH addiction, we compared serum protein expression levels between 12 long-term METH users and
12 healthy controls using label-free quantitative proteomics. Bioinformatic analyses were conducted to determine functional networks
and protein-protein interactions. Results: In total, 23 differentially expressed proteins were identified between the two groups. The
differentially expressed proteins were related to cognitive dysfunction, neuroinflammation, immune impairment, metabolic disturbances,
and calcium binding and regulation. Conclusions: These 23 proteins may underpin the multi-system damage induced by chronic METH
exposure. Our findings provide novel insights into the molecular basis of METH addiction and inform potential prevention and treatment
strategies for individuals with METH dependence.
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1. Introduction
Methamphetamine (METH) is a highly addictive psy-

chostimulant drug that causes euphoria and arousal. Orig-
inally used as an anti-fatigue and diet aid, METH is now
recognized to have dependence-forming properties and is
classified as a Schedule II controlled substance by the USA
Food and Drug Administration (Scheduling of Controlled
Substances: Placement of Methamphetamine into Sched-
ule II. Federal Register) [1]. Due to easy access to its
components and simple manufacturing process, alongside
its strong rewarding effects, METH is used as an illicit
drug globally, causing substantial individual and societal
harm [2]. It is noteworthy that due to the highly addictive
nature of METH, prolonged use of this substance signifi-
cantly increases the likelihood of developing an addiction.
Therefore, in this manuscript, the terms ‘METH addiction’
and ‘prolonged/long-term METH use/dependence’ are em-
ployed interchangeably for the sake of conceptual coher-
ence and effective paraphrasing.

ProlongedMETH use damages both health and cogni-
tion [3]. The chronic effects of METH elicit hyperactivity
in the central nervous system (CNS) by elevating extracel-

lular dopamine, serotonin, and norepinephrine [4]. Long-
term METH exposure may result in significant cognitive
impairments [3]. Ameta-analysis found that individuals ad-
dicted to METH have significant deficits in impulsive be-
havior, reward processing, and social cognition processes
[3]. Attention, executive function, speech, learning, mem-
ory, visual memory, and working memory processes are
also mildly impaired [3]. A comprehensive review incor-
porating numerous neuroimaging studies revealed that in-
dividuals with METH dependence exhibit various abnor-
malities in brain activity. These abnormalities are primar-
ily observed in the prefrontal cortex and striatum, areas that
are essential for cognitive flexibility, inhibitory control, and
decision-making [5]. Those cognitive deficits likely con-
tribute to the impulsive drug-seeking behavior of METH
users. Due to the legal prohibition of METH use in many
countries, such as China, testing cognitive function in ac-
tiveMETHusers raises significant ethical concerns. Conse-
quently, most studies exploring the molecular mechanisms
underlyingMETH-induced cognitive dysfunction have pre-
dominantly utilized animal models. Rodent studies have
shown that chronic METH exposure damages brain struc-
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ture and function by disrupting the blood-brain barrier, elic-
iting neuroinflammation, impairing neuron formation and
differentiation [6], and altering gene expression [7,8].

Prolonged METH exposure also enhances amyloid
precursor protein (APP) expression, indicative of the neu-
rodegenerative changes observed in Alzheimer’s disease
(AD) and Parkinson’s disease (PD) [9,10]. In rats, chronic
METH exposure leads to emotional disorders and impul-
sive drug-seeking behavior associated with prefrontal cor-
tical dopamine depletion and decreased striatal dopamine
transporters [10]. Dopaminergic deficits persist even after
prolonged withdrawal, suggesting potential long-term im-
pacts on cognitive function [10].

Given the significant impact of the dopaminergic sys-
tem in METH-induced cognitive effects, it is crucial to rec-
ognize METH’s extensive influence on a broader spectrum
of biological pathways [11]. An illustrative example of this
is the damage that METH inflicts on midbrain dopamine
neurons, leading to the release of neuroinflammatory agents
like nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-κB) [12,13]. A study focusing on three com-
mon immune cell lines revealed that METH exposure leads
to distinct expression patterns at the mRNA level, thereby
contributing to an increased incidence of infectious diseases
[14]. Moreover, METH usage is associated with height-
ened inflammatory and oxidative stress markers, as evi-
denced by the rise in blood C-reactive protein levels [15].
Such widespread effects underscore the necessity of em-
ploying proteomic methodologies, particularly label-free
proteomics, for a comprehensive understanding ofMETH’s
multifaceted impact, which transcends the confines of neu-
rotransmitter systems.

Proteomic approaches, especially the label-free tech-
nique, offer an expansive framework for elucidating
METH’s complex mechanisms. This sophisticated method
facilitates in-depth analysis of proteomic changes associ-
ated with METH use, potentially uncovering diverse bio-
logical pathways that contribute to cognitive deterioration
and the development of addictive behaviors [11]. The cen-
tral hypothesis of this study is that prolonged METH ex-
posure leads to substantial alterations in serum proteomic
profiles, reflecting not only disruptions in neurotransmitter
function but also a range of biological processes integral to
the pathophysiology of addiction and cognitive impairment.

Although the dopamine reward system appears to me-
diate METH addiction in part, the specific mechanisms un-
derpinning addiction remain unclear [16,17]. Proteomic
analyses enable exploration of the mechanisms of drug de-
pendence. Label-free proteomics quantitatively analyzes
differences in protein expression between samples and has
been widely used in neuroscientific research. Compared
with labeling techniques, this technology is more cost-
effective, sensitive, and accurate.

Thus, in the present study, we used label-free pro-
teomics to compare serum protein profiles between long-

term METH users and healthy controls. This systems-level
analysis aimed to investigate the potential molecular mech-
anisms of METH addiction and the associated cognitive
decline. Our findings shed light on the molecular under-
pinnings of METH dependence, revealing a comprehensive
profile of serum proteins that are differentially expressed in
individuals with METH dependence. In addition, these re-
sults offer novel insight into the multi-systemic nature of
METH’s adverse effects and may guide the design of com-
prehensive treatment strategies that address both the addic-
tion and its widespread health implications.

2. Materials and Methods
2.1 Participants

This study was approved by the Ethics Committee
of Shanghai University of Sport (No. 102772019RT044)
and conducted in accordance with the Helsinki Declara-
tion of 1975. All participant information remained con-
fidential and all patients provided written informed con-
sent. Twelve individuals with METH dependence were re-
cruited from compulsory detoxification programs in Zhe-
jiang province, China. Twelve control subjects were
recruited from the community within Changhai Street,
Yangpu District, Shanghai. These participants were se-
lected according to the following criteria: (1) men aged
18–45 years; (2) with long-term use of METH (2 or more
years); (3) confirmed to meet the criteria for metham-
phetamine dependence as outlined in the DSM-V (Diagnos-
tic and Statistical Manual of Mental Disorders, Fifth Edi-
tion) based on the Structured Diagnostic Interview [18];
(4) without a serious infectious disease, autoimmune dis-
ease, severe mental illness, neurological disease, Human
Immunodeficiency Virus (HIV) infection, obvious disease
that would affect organ quality, hypertension, hyperlipi-
demia, diabetes, tumor, or other disease; (5) without use of
nonamphetamine-type drugs; and (6) without consumption
of pharmaceutical drugs, cocaine-like substances, alcohol,
or tobacco within 2 weeks of serum sampling. The METH-
dependent group had a mean age of 29.83 years (standard
deviation [SD] = 5.80 years), an average duration of drug
use spanning 4.18 years (SD = 1.40 years), a typical weekly
drug usage frequency of 2.21 times (SD = 1.94 times), and
a mean quantity of 0.265 g per drug consumption event
(SD = 0.11 g). Participants in the control group were 12
healthy men (mean age 32.58 years, SD = 6.32 years) who
met the same criteria as theMETH-dependent group, except
without history of drug misuse. The 12 control participants
were randomly assigned to one of three subgroups (A, B,
or C), with four participants in each subgroup. Similarly,
the 12 participants with METH dependence were randomly
assigned to one of three subgroups (D, E, or F), with four
participants in each subgroup.
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Fig. 1. Hierarchical clustering analysis of genes. Each column represents a sample and each row represents a gene. The tree structure
above the colored area represents the clustering of similarity between samples, and the tree structure on the left represents the clustering of
similarity between genes. Red indicates a high level of expression, and green indicates a low level of expression. Letters along the x-axis
indicate the participant group. Along the y-axis, positive numbers indicate upregulation and negative numbers indicate downregulation.

2.2 Serum Sample Preparation

Fasting venous blood samples (5 mL) were drawn
from the 24 participants and clotted at 4 °C for 30 min. The
samples were then centrifuged at 1000 ×g for 10 min, then
the supernatants were collected. The samples were sub-
grouped as described above to create a total of six serum
samples (A, B, C, D, E, and F). Albumin and Immunoglob-
ulin G (IgG) Depletion SpinTrap columns (No. 28-9480-
20, GE Healthcare, Buckinghamshire, UK) were used, and
the manufacturer’s instructions were followed to remove
the high-abundance proteins from the serum. The total pro-
tein concentration was then determined using a Pierce™
Coomassie (Bradford) Protein Assay Kit (Cat. No. 23200,
Thermo Fisher Scientific, Rockford, IL, USA).

2.3 Proteolysis and Peptide Purification

Sodium dodecyl sulfate–polyacrylamide gel elec-
trophoresis was used to separate the proteins in the serum

sample (40 µg/sample). The gels were cut and the pieces
were washed twice with double-distilled water. Silver dye
decolorizer (equal volumes of 100 mmol/L sodium thiosul-
fate (Thermo Fisher Scientific, Fair Lawn, NJ, USA) and 30
mmol/L potassium ferricyanide (Thermo Fisher Scientific,
Fair Lawn, NJ, USA)) was used to destain the gel, which
was then washed twice with water. Acetonitrile was used
to dehydrate the gel fractions. The reducing reagent (dithio-
threitol, I1149-25G, 10 mmol/L, SIGMA, Saint Louis, MO,
USA) was allowed to react for 1 h at 37 °C with the gel frac-
tions, which were then dehydrated with acetonitrile. A cys-
teine blocking reagent (iodoacetamide, 25mmol/L, Thermo
Fisher Scientific, Fair Lawn, NJ, USA) was added and re-
acted with the gel fractions for 30 min at room tempera-
ture in the dark. The fractions were washed twice and de-
hydrated. The gel pieces were then digested using trypsin
(V5113, Promega, Madison, WI, USA) overnight at 37 °C.
An acetonitrile (50%) and trifluoroacetic acid (0.1%) solu-
tion (400 µL) was added and incubated at 37 °C for 30 min.
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Fig. 2. Correlation analysis of the samples. The ordinate and
abscissa represent the six samples: A, B, C, D, E, and F. The color
depth represents the degree of correlation between the samples as
indicated in the color bar.

This step was repeated twice. Finally, the eluates from each
respective sample were combined, and the peptides were
desalted and freeze dried.

2.4 Liquid Chromatography–Mass Spectrometry Analysis

The peptides were analyzed using an Orbitrap Fusion
Lumos Tribrid (Thermo Fisher Scientific, San Jose, CA,
USA) mass spectrometer using a chromatographic column
(ChromXP, C18, 3 µm, 120 Å; catalog No. 805-00120,
SCIEX, Framingham, MA, USA). A binary solvent system
composed of water containing buffer A (0.1% formic acid
and 2% acetonitrile in water) and buffer B (98% acetonitrile
and 0.1% formic acid) was used for liquid chromatography.
The peptides were separated by a gradient of buffer B (5%
B, 0–5 min; linearly increasing concentrations of 5%–40%
B within 100 min; increased to 80% B in 1 min and washed
for 5 min; decreased to 5% B in 1 min and isocratic at 5% B
for 13 min). The solvent system flow rate was 300 nL/min.
The mass spectrometer was operated in the scan range of
300–1400 m/z, with a spray voltage at 2500 V and a dy-
namic exclusion time of 12 s. All data were acquired using
“high-low” mode, in which during a maximum 3-s cycle
time, the most abundant multiply-charged parent ions were
selected with high resolution (120,000 at m/z 200) from the
full scan for higher-energy collisional dissociation fragmen-
tation. Precursor ions with singly charged and charge states
over 7 were excluded. The target value for the second mass
spectrometry (MS2) spectra was set at 5000 (the automated
gain control was enabled with a maximum injection time of
35 ms), the isolation window was set to 1.6 m/z, and 35%
was used for the normalized collision energy. Data were

acquired using Xcalibur software 4.1 (Thermo Fisher Sci-
entific, Waltham, MA, USA) [19].

2.5 Bioinformatic Analysis

All mass-spectrometric data were analyzed using
MaxQuant 1.5.2.8 (University of Halle-Wittenberg, Halle,
Germany; https://www.maxquant.org) [20] against the hu-
man UniProt FASTA database (https://www.uniprot.org/pr
oteomes/UP000005640). Carbamidomethyl cysteine was
searched as a fixed modification, and oxidized methion-
ine and protein N-terminal acetylation as variable modifi-
cations. Enzyme specificity was set to trypsin/P. Two miss-
ing cleavage sites were allowed. Formass spectrometry and
tandemmass spectrometry, the tolerance of the main search
for peptides was set at 7 ppm and 20 ppm, respectively. The
peptide, protein, and site false discovery rates were fixed at
a significance level not greater than 0.01. Label-free protein
quantitation was performed with a minimum ratio count of
2.

Quantitative data for the detected proteins were an-
alyzed using MetaboAnalyst software 5.0 (McGill Uni-
versity, Montreal, Canada; https://www.metaboanalyst.ca)
[21]. Proteins were removed from further analysis if the de-
tection values were missing in more than 50% of the sam-
ples from either theMETH-dependent or control group or if
the quantitative values were consistent across all samples.

For proteins with missing quantitative values, missing
values were imputed as one-half the minimum positive
value in the original data using the minimum fill method.
To obtain normalized protein abundance data for subse-
quent analyses, the summed intensity values for all proteins
measured in each sample were calculated, and individual
protein intensities within a sample were divided by the
sample’s total intensity value. Hierarchical clustering anal-
ysis and visualization of the acquired protein profiles for all
samples and genes were performed using Multiple Array
Viewer software 4.9.0 (Agilent Technologies, Santa Clara,
CA, USA; https://webmev.tm4.org) [22]. Principal com-
ponent analysis of the proteins was carried out using MAT-
LAB software R2019b (MathWorks, Natick, MA, USA;
https://www.mathworks.com) [23]. The orthogonal partial
least squares discriminant analysis was performed using
SIMCA software 14.1 (Umetrics, Umeå, Sweden; https:
//www.sartorius.com/en/products/process-analytical-techn
ology/data-analytics-software/mvda-software/simca) [24].

To identify proteins with significantly different ex-
pression between METH-dependent and control groups,
Statistical Package for the Social Sciences (SPSS, 24.0) (In-
ternational Business Machines Corporation, Armonk, NY,
USA; https://www.ibm.com/products/spss-statistics) soft-
ware [25] was utilized. A threshold filter requiring at least
a two-fold change in the protein ratio between groups and
a p-value < 0.05 was applied. Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way analyses were conducted using the Database for Anno-
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Fig. 3. Principal Component Analysis. Letters indicate the participant group, with A, B, and C representing samples from healthy
individuals and D, E, and F representing samples from individuals with methamphetamine dependence. METH, methamphetamine.

Fig. 4. Orthogonal partial least squares discriminant analysis. Letters indicate the participant group, with A, B, and C representing
samples from healthy individuals and D, E, and F representing samples from individuals with methamphetamine dependence.

tation, Visualization and Integrated Discovery. A general
pathway and network analysis was performed with Inge-
nuity Pathway Analysis (IPA) software (QIAGEN, Hilden,
Germany; https://digitalinsights.qiagen.com/IPA) [26].

3. Results
3.1 Proteins Identified by Mass Spectrometry in
METH-dependent and Healthy Control Groups

A total of 459 proteins were identified by proteomic
workflow, and 308 proteins with quantitative information
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were finally obtained using MetaboAnalyst software anal-
ysis (SupplementaryTable 1). We used theMultiple Array
Viewer software to perform hierarchical clustering analysis
at both the sample- and gene-levels of those 308 proteins
(Fig. 1). The clustering results indicated that the protein
expression profiles of the METH-dependent group sam-
ples (D, E, and F) exhibited a high degree of resemblance,
suggesting that these samples share a closely related pat-
tern of protein expression. Similarly, the protein expres-
sion profiles within the control group samples (A, B, and
C) displayed a substantial similarity, reflecting a consistent
pattern of expression distinct from the METH-dependent
group. This similarity, as evidenced by the proximity of the
samples to one another on the dendrogram and the homo-
geneity in expression levels represented by the color coding
on the heat map, underscores the comparative analysis of
gene expression levels within each group. Significant dif-
ferences in the protein expression profiles were observed
between the two sets of groups. Correlation analysis of the
samples showed high intragroup correlation but low inter-
group correlation between the METH-dependent and con-
trol groups (Fig. 2).

We used MATLAB software to perform two- and
three-dimensional principal component analyses of the 308
proteins (Fig. 3) and completed the orthogonal partial least
squares discriminant (OPLS) analysis using SIMCA soft-
ware (Fig. 4). Both the principal component analysis and
OPLS results indicated close clustering of samples within
the same group and a clear separation between METH-
dependent and control groups based on protein expression
levels.

3.2 Screening and Functional Analysis of Differentially
Expressed Proteins (DEPs)
3.2.1 Screening of DEPs

To identify differentially expressed proteins (DEPs)
between theMETH-dependent and control groups, a thresh-
old filter requiring at least a two-fold change in expres-
sion ratio and a value of p < 0.05 was applied. This anal-
ysis found 23 significant DEPs (Figs. 5,6, and Table 1).
Compared with the control group, the METH-dependent
group displayed decreased expression of four proteins but
increased expression of 19 proteins.

3.2.2 GO Analysis of DEPs
GO analysis provides a standardized system for func-

tional characterization of genes and gene products using
controlled vocabulary terms. A GO analysis consists of
three structured ontologies that describe cellular compo-
nents (location), molecular functions, and biological pro-
cesses. We performed a GO analysis for DEPs between the
METH-dependent and control groups. The results indicated
the predominant subcellular localizations (Fig. 7A), molec-
ular functions (Fig. 7B), and biological processes (Fig. 7C)
associated with the DEPs. In brief, the majority of DEPs lo-

Fig. 5. Screening for differentially expressed proteins. The x-
axis shows the logarithm of the ratio of protein expression between
the METH-dependent and control groups, and the y-axis shows
the p value. Each dot in the figure represents a protein. A red
dot is a highly expressed protein, whereas a green dot is a protein
with low expression. Gray dots represent proteins with expression
levels that do not differ between the two groups.

calized to eight cellular components, performed seven key
molecular functions, and participated in 10major biological
processes.

3.2.3 KEGG Metabolic Pathway Analysis
A KEGG pathway analysis was conducted to ana-

lyze enriched metabolic and signaling pathways among the
DEPs. The results showed that the top two metabolic path-
wayswere the extracellularmatrix (ECM)–receptor interac-
tion pathway (Fig. 8, Ref. [27]) and the hematopoietic cell
lineage signaling pathway (Fig. 9, Ref. [27]). The ECM–
receptor interaction pathway was enriched in DEPs that in-
cluded platelet glycoprotein V and cartilage oligomeric ma-
trix protein thrombospondin. The hematopoietic cell lin-
eage pathway contained colony stimulating factor 1 recep-
tor (CSF1R) CD115 and the platelet glycoprotein V (CD42)
DEPs.

3.2.4 IPA
IPA provides a comprehensive analysis of proteomic

data to elucidate protein expressionmechanisms and related
biological processes, such as post-translational modifica-
tions, signaling pathways, protein interactions, and differ-
ential protein signatures.
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Table 1. Information on differentially expressed proteins.
Entry Entry name Gene name Ratio (METH/Control) Log2 (Ratio) p value Sig (METH/Control)

A0A075B6K0 LV316_HUMAN IGLV3-16 0.003025 −8.36868 0.000149 −1
A0A075B6Q HV364_HUMAN IGHV3-64 0.476451 −1.0696 0.022344 −1
A0A0C4DH72 KV106_HUMAN IGKV1-6 9.177759 3.198142 0.010307 1
O43300 LRRT2_HUMAN LRRTM2,

KIAA0416, LRRN2
104.4256 6.706332 0.017745 1

O75636 Ficolin-3_HUMAN Ficolin-3, FCNH,
HAKA1

2.058334 1.041477 0.01615 1

P01717 LV325_HUMAN IGLV3-25 0.003759 –8.05539 0.002862 −1
P01721 LV657_HUMAN IGLV6-57 11.47183 3.520024 0.006416 1
P01833 PIGR_HUMAN PIGR 5.182036 2.373519 0.000298 1
P02745 C1QA_HUMAN C1qA 18.68545 4.223843 0.003406 1
P05067 A4_HUMAN APP, A4, AD1 219.4922 7.778026 0.00148 1
P05109 S10A8_HUMAN S100A8, CAGA,

CFAG, MRP8
6.596966 2.721803 0.025996 1

P07195 LDHB_HUMAN LDHB 2.318441 1.213155 0.006908 1
P07333 CSF1R_HUMAN CSF1R, FMS 5.604841 2.486673 0.014825 1
P0DJI8 SAA1_HUMAN SAA1 316.1776 8.304592 0.014613 1
P0DOX3 IGD_HUMAN 3.064636 1.615716 0.000975 1
P0DOX6 IGM_HUMAN 3.263239 1.706304 0.015359 1
P11597 CETP_HUMAN CETP 263.3256 8.040704 0.010555 1
P27487 DPP4_HUMAN DPP4, ADCP2,

CD26
67.86644 6.084626 0.010224 1

P33151 CADH5_HUMAN CDH5 2.13414 1.093655 0.017554 1
P40197 GPV_HUMAN GP5 80.28949 6.327139 0.001601 1
P49747 COMP_HUMAN COMP 16.36481 4.032525 0.018041 1
Q12805 FBLN3_HUMAN EFEMP1, FBLN3,

FBNL
6.012555 2.587978 0.014533 1

Q9HDC9 APMAP_HUMAN APMAP, C20orf3,
UNQ1869/PRO4305

0.34513 −1.53479 0.029935 −1

METH indicates methamphetamine; Sig indicates differential protein expression between the control (A, B, and C) and METH (D, E, and
F) group samples, with sig = 1 representing an upregulated protein and sig = –1 representing a downregulated protein. For the full names
of the differentially expressed proteins, please refer to the supplementary information.

3.2.5 Signal Pathway Enrichment Analysis

Significant pathway enrichment analysis using IPA
identified key metabolic and signaling pathways enriched
with the DEPs between the METH-dependent and control
groups (Fig. 10). Major DEPs involved in those pathways
were serum amyloid A-1 (SAA1), S100A8, cholesterol es-
ter transfer protein (CETP), dipeptidyl peptidase 4 (DPP4),
APP, L-lactate dehydrogenase B chain (LDHB), colony-
stimulating factor 1 receptor (CSF1R), and C1q subcom-
ponent subunit A (C1qA).

3.2.6 Functional Enrichment Analysis

We used IPA software and the Ingenuity Knowledge
Base to perform biological function and disease analyses
(Fig. 11A) as well as toxicological analysis (Fig. 11B) for
the DEPs. The results demonstrated that the DEPs were
predominantly associated with cellular movement, immu-
nity, inflammatory response, the blood system, cell assem-
bly and tissue, cell morphology, neurological diseases, in-

tercellular signals and interactions, connective tissue dis-
eases, and cardiovascular system development and func-
tion.

3.2.7 Protein Interaction Network Analysis

The IPA showed that the DEPs were enriched in
five protein interaction networks (Fig. 12). The net-
work shown in Fig. 12A that is related to cellular assem-
bly/organization, metabolic disease, and cellular movement
contained DEPs, APP, SAA1, DPP4, leucine-rich repeat
transmembrane neuronal protein 2 (LRRTM2), cartilage
oligomeric matrix protein (COMP), calcium-binding pro-
tein S100A8, polymeric immunoglobulin receptor (PIGR),
macrophage CSF1R, LDHB, and cadherin-5 (CDH5). The
network shown in Fig. 12B that is associated with lipid
metabolism, molecular transport, and small molecule bio-
chemistry included DEPs, CETP and complement C1qA.
The network shown in Fig. 12C that is linked to immune re-
sponse, inflammatory response, and cardiovascular disease
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Fig. 6. Cluster analysis of differentially expressed proteins.
Each column represents a sample and each row represents a named
gene. The tree structure above the colored area represents the clus-
tering of similarity between samples. Red indicates a high level
of expression, whereas green indicates a low level of expression.

involved the DEP ficolin-3. DEP glycoprotein V (GP5) is
part of the network shown in Fig. 12D, which is related
to connective tissue disorders, hematological disease, and
organismal injury and abnormalities. Epidermal growth
factor-containing fibulin-like extracellular matrix protein 1
(EFEMP1) was the DEP involved in the network shown in
Fig. 12E, which was associated with cellular growth, pro-
liferation, cancer, and organismal injury and abnormalities.

4. Discussion
METH is a potent CNS stimulant that elicits eupho-

ria and pleasure through activation of the brain’s reward
pathway [3]. However, chronic use leads to dependence,
addiction, and adverse health effects, including of the ner-
vous, cardiovascular, cerebrovascular, and immune sys-
tems [4,5].

The present study utilized a proteomics approach to
identify differentially expressed serum proteins between in-
dividuals with METH dependence and healthy control in-
dividuals. In total, 23 proteins were significantly altered,

Fig. 7. Gene ontology analysis of proteins differentially ex-
pressed between methamphetamine-dependent and healthy
control individuals. (A) Locations of differentially expressed
proteins. (B) Molecular functions of the differentially expressed
proteins. (C) Biological processes that the differentially expressed
proteins participate in. The ordinate (P) represents the degree of
enrichment.

with four downregulated and 19 upregulated proteins in the
METH-dependent group compared with the control group.
In-depth bioinformatic analyses indicated that these DEPs
participated in pathways and processes related to cogni-
tive disorder, neuron impairment, immune response, energy
metabolism, and calcium binding or regulation. This pro-
teomics profile provides insights into the biological impact
at the protein level of METH addiction and misuse.

4.1 Cognitive Disorder-related Proteins

The misuse of METH has been associated with cog-
nitive impairment, including AD [28], a neurodegenerative
disorder characterized by amyloid beta (Aβ) plaques, neu-
ronal death, and memory decline [29]. In the present study,
we found DEPs in long-term METH users related to Aβ
accumulation and AD pathology, including APP, SAA1,
CETP, and adipocyte serum membrane-associated protein
(APMAP).

APP is a single transmembrane neuronal protein
widely distributed in tissues and concentrated at neuronal
synapses [30]. APP can be cleaved into different fragments
by α-, β-, or γ-protease, including cleavage by β- and γ-
protease that generates Aβ [31]. As the precursor of Aβ,
APP is implicated in early neuronal damage, but may also
have positive protective roles in cell adhesion, maintaining
synaptic membrane stability, inhibiting serine protease ac-
tivity, and participating in the immune response of the CNS
[32]. Our results showed an elevated expression of APP in
individuals with METH dependence, suggesting increased
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Fig. 8. Differentially expressed proteins are involved in the extracellular matrix (ECM)-receptor interaction pathway. Red stars
represent the identified differentially expressed proteins. GPV, platelet glycoprotein V; HA, hemagglutinin; THBS, thrombospondin;
VLA, very late antigen. The information about all abbreviations can be found at: https://www.genome.jp/pathway/hsa04512 [27].

risk of Aβ plaque formation and neurodegeneration. These
results are consistent with previous studies, which suggest
METH abuse is related to types of cognitive decline such
as deficits in cognitive control, decision-making, and so-
cial skills [33], all of which are clinical symptoms of AD
[34].

CETP promotes cholesterol transfer from high-density
lipoprotein to low-density lipoprotein or very low-density
lipoprotein, which may be associated with atherosclerosis.
Intracellular cholesterol accumulation also stimulates Aβ
production [35]. The high expression of CETP in chronic
METH users in the present study suggests heightened risks

of cardiovascular disease and Aβ-associated neurodegener-
ative diseases.

APMAP is a membrane protein ubiquitously ex-
pressed in various tissues and organs, where it promotes
pre-adipocyte differentiation into mature adipocytes to
maintain normal physiological metabolism of fat cells.
Studies have shown that inhibition of APMAP expression
destabilizes APP and increases Aβ production [36]. The
present study found decreased serum APMAP protein in
METH users compared with healthy controls, which may
lead to an increase in the level of Aβ to thereby increase
the risk of neurodegeneration.
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Fig. 9. Differentially expressed proteins are involved in the hematopoietic cell lineage pathway. Red stars represent the proteins
identified as differentially expressed between the methamphetamine-dependent and control individuals. The information about all ab-
breviations can be found at: https://www.genome.jp/pathway/hsa04640 [27].
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Fig. 10. Pathways enriched with proteins differentially expressed betweenmethamphetamine-dependent and healthy individuals.
FXR, farnesoid X receptor; IL, interleukin; LXR, liver X receptor; RXR, retinoid X receptor; THOP1, Thimet Oligopeptidase 1.

Collectively, our findings indicate that METH mis-
use modulates the expression of proteins such as CETP and
APMAP, implicating cardiovascular function and neurode-
generative pathways. The upregulation of CETP is sug-
gestive of an augmented risk for cardiovascular pathology
and Aβ-related neurodegenerative processes, whereas the
downregulation of APMAP may signal an enhanced pro-
gression towards neurodegeneration through increased Aβ
accumulation. These proteomic alterations shed light on the
systemic ramifications of METH abuse and underscore the
imperative for integrated treatment modalities that concur-
rently tackle the multifaceted repercussions of METH de-
pendency and its extensive health sequelae.

4.2 Nervous System-related Proteins
Prolonged stimulation of the nervous system by

METH impairs dopaminergic nerve endings and induces
neuronal necrosis [37], potentially contributing to the de-
velopment of PD [10]. Microglia are important neuroim-
mune cells in the CNS. Following nervous system damage,
microglia become activated, releasing neurotrophic factors
to repair tissue, engulfing damaged neurons, and promot-
ing repair, thus acting in a neuroprotective capacity [38].
However, in neurodegenerative diseases, overactivated mi-

croglia trigger inflammation and release neuroinflamma-
tory factors, such as nitric oxide, interleukins 6 and 1β, and
tumor necrosis factor α, inducing neurotoxicity [12]. Mi-
croglia overactivation has been associated with the NF-κB
signaling pathway [39].

The present study also found significantly elevated ex-
pression ofDPP4 andCSF1R in theMETHgroup compared
with the healthy control group. CSF1R regulates microglial
proliferation and differentiation [40]. DPP4, also known
as CD26, is a cell surface serine protease that activates the
extracellular signal-regulated kinase 1/2 (ERK1/2)–NF-κB
signaling pathway [41]. Because NF-κB can activate mi-
croglia, DPP4 may have dual roles: protecting and repair-
ing damaged neurons, while also promoting inflammatory
reactions and aggravating damage to the nervous system.

We also observed increased serum LRRTM2 and
EFEMP1 protein expression in the METH group. LR-
RTM2, a neural cell adhesion molecule containing leucine-
rich repeats, is involved in neurodevelopmental processes,
including axon growth, synapse formation, and axon
bundling [42,43]. EFEMP1, an extracellular matrix glyco-
protein containing epidermal growth factor-like domains,
regulates glial cell development, migration, differentiation,
and synaptic proliferation, suggesting roles in nervous sys-
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Fig. 11. Differential expressed protein enrichment results. (A) Biological functions and diseases enriched in the differentially ex-
pressed proteins between methamphetamine-dependent and healthy control individuals. (B) Toxicological types enriched in the differ-
entially expressed proteins.

tem development, learning, and memory [44,45]. While
we did not examine the functional effects of elevated LR-
RTM2 and EFEMP1 in chronic METH users, it is still rea-
sonable to suspect that these two proteins may contribute
toMETH-induced neurological changes. These results pro-
vide new potential molecular targets for exploring cognitive
deficiency in METH users.

4.3 Immune Response-related Proteins

Prolonged METH use compromises both the innate
and adaptive arms of the immune system, increasing sus-
ceptibility to viral and bacterial infections, indicating ad-
verse effects on immune function [46]. Multiple mecha-
nisms likely contribute to METH-induced immunosuppres-
sion. First, METH elevates synaptic dopamine, which is
metabolized by monoamine oxidase into reactive oxygen
species (ROS). This oxidative stress damages DNA, lipids,
and proteins, directly impairing immune cell viability [47].
Second, METH inhibits the function of innate immune
cells, such as natural killer cells, dendritic cells, monocytes,
macrophages, and granulocytes, thereby suppressing front-
line defenses against pathogens [48,49]. We found several

differentially expressed immune-related proteins in METH
users that may represent compensatory responses to coun-
teract immunosuppression. Immunoglobulin lambda vari-
able 3 (IGLV3)-16, IGLV3-25, and immunoglobulin heavy
variable 3-64 showed decreased expression, suggesting im-
paired antibody production. Meanwhile, immunoglobulin
kappa variable 1-6, IGLV6-57, PIGR, C1qA, and ficolin-
3 were upregulated, suggesting attempts to boost humoral
immunity.

Immunoglobulins are antigen-binding antibody pro-
teins composed of two light chains and two heavy chains.
As immune complexes, immunoglobulins can activate the
complement cascade. The complement system is an enzy-
matic cascade that amplifies immunity through classic, al-
ternative, and lectin pathways [50]. Complement activa-
tion on pathogen surfaces mediates cell lysis, while split
products interact with adaptive immunity [51]. PIGR is a
crucial transmembrane glycoprotein receptor that transports
immunoglobulins across mucosal epithelial cells into secre-
tions [52]. Each immunoglobulin molecule requires one
PIGR molecule for secretion; therefore, PIGR deficiency
reduces antibody levels on the mucosal surface. C1q, part
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Fig. 12. Five protein interaction networks identified by Ingenuity Pathway Analysis. (A) Protein interaction network related to
cellular assembly/organization, metabolic disease, and cellular movement. (B) Protein interaction network related to lipid metabolism,
molecular transport, and small molecule biochemistry. (C) Protein interaction network related to immune response, inflammatory re-
sponse, and cardiovascular disease. (D) Protein interaction network related to connective tissue disorders, hematological disease, and
organismal injury and abnormalities. (E) Protein interaction network related to cellular growth, proliferation, cancer, and organismal
injury and abnormalities. Colors identify differentially expressed proteins, with color saturation representing the level of protein expres-
sion: dark red indicates higher expression, light pink represents lower expression.

of the complement C1 complex, binds immunoglobulin
(Immunoglobulin G [IgG] or Immunoglobulin M [IgM])
complexes to trigger the classic pathway. Elevated C1qA
in the brain of individuals with AD suggests a pathogenic
role [53,54]. Ficolin-3 is a pattern recognition receptor
that activates the lectin complement pathway through its

collagen-like and fibrinogen-like domains, contributing to
innate pathogen sensing [53,55]. The differential expres-
sion of these immune-related proteins indicates thatMETH-
induced dysfunction provokes compensatory responses to
bolster both innate and adaptive immunity against infec-
tions. However, more research is needed to fully eluci-
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date the mechanisms of METH-induced immunosuppres-
sion and compensatory immune protein expression. Addi-
tionally, the discovery of differentially expressed immune-
related proteins in METH users may inform the creation
of targeted immunomodulatory treatments. Such therapies
would aim to recalibrate the immune equilibrium, mitigat-
ing the increased vulnerability to infectious diseases ob-
served among individuals with METH dependence.

4.4 Energy Metabolism-related Proteins
METH directly enters neuronal mitochondria through

its lipophilic properties, impairing the respiratory chain
and disrupting cellular energy metabolism. Brain function
maintenance requires substantial energy input, and there-
fore METH-induced energy deficits can promote neuronal
death and neurodegenerative diseases [56,57].

Lactate dehydrogenase (LDH) interconverts pyruvate
and lactate, participating in cellular anaerobic respiration
[58]. In AD models, early stage neuronal lactate dehy-
drogenase (LDHA) upregulation reduces mitochondrial ac-
tivity and ROS production, conferring Aβ toxicity resis-
tance and improving survival [59]. However, late stage
LDHA downregulation shunts pyruvate into mitochondria,
elevating ROS and apoptosis, impairing cognition. In our
study, LDHB was upregulated in the METH group, possi-
bly an adaptive response similar to early AD, countering
Aβ/ROS by supplementing anaerobic Adenosine Triphos-
phate (ATP) generation upon METH-induced respiratory
damage. However, LDHB upregulation may also reflect a
shift toward aerobic glycolysis and reduced mitochondrial
pyruvate metabolism. Further research is required to deter-
mine whether LDHB upregulation is beneficial or maladap-
tive, and to elucidate effects across cell types. Nonetheless,
our data indicate perturbed energy homeostasis in METH-
induced neurodegeneration.

4.5 Calcium-binding and Regulation-related Proteins
Calcium is a key intracellular messenger regulating

neuronal functions such as long-term potentiation, neu-
ronal perception, synaptic plasticity, and cell prolifera-
tion [60]. Calcium dysregulation can promote neurode-
generation [61,62]. The calcium-binding protein S100A8
mediates inflammatory/oxidative stress responses. Its ex-
pression in immune cells is stimulated by nerve injury,
eliciting neuroinflammation [63]. Cadherin-5 (CDH5) is
a calcium-dependent cell adhesion glycoprotein involved
in cell recognition, migration, and tissue morphogenesis.
Cadherin expression is developmentally regulated, includ-
ing N-cadherin enrichment in developing neurons [64]. We
found that S100A8 and CDH5 were upregulated in the
METH-dependent group. This may represent adaptive re-
sponses, with S100A8 counteracting drug-induced calcium
perturbations and neuroinflammation, while CDH5 pro-
motes structural plasticity repairing neuronal damage.

It is worth mentioning that, unlike in rodent mod-
els, serum represents a minimally invasive human sam-
ple. The association between changes in serum proteins
and cognitive impairments suggests that the systemic ef-
fects ofMETH extend beyond the blood-brain barrier, man-
ifesting as peripheral biomarkers that may reflect concur-
rent changes in the CNS [65]. This implies that METH’s
systemic impact transcends the blood-brain barrier. Serum
proteins can be utilized for the early detection and moni-
toring of the progression of neurodegenerative diseases as-
sociated with METH abuse. For instance, the observed in-
crease in serum levels of APP in this study potentially sig-
nals an elevated risk of amyloid plaque formation. Simi-
larly, changes in serum levels of proteins such as CETP and
APMAP may indicate underlying neuropathological pro-
cesses. The differential expression of these genes in serum
likely indicates a systemic response to METH’s neurotoxi-
city.

5. Study Limitations
While the sample size of this study may appear small,

it is noteworthy that previous investigations employing the
same label-free proteomics methodology have similarly fo-
cused on selected subpopulations, such as individuals with
schizophrenia or cancer. In such prior studies, the sample
sizes for the specialized groups were often lower than 20
[66–68], yet they yielded statistically significant findings
regarding alterations in serum protein expression. Conse-
quently, the inclusion of 12 participants with METH depen-
dence in our present study can be deemed sufficient to sub-
stantiate our research findings. In addition, the functions
of the proteins exhibiting differential expression in individ-
uals with METH dependence have been discussed herein.
Nevertheless, owing to the limited number of participants
in this study, it is imperative to validate the findings on a
broader scale by recruiting a larger cohort of individuals
with METH addiction.

6. Conclusions
In summary, our serum proteomic analysis revealed

numerous DEPs between individuals with METH de-
pendence and health individuals. The identified pro-
teins were involved in cognitive dysfunction, nervous sys-
tem inflammation and disease, immune response, energy
metabolism, and calcium binding and regulation. These
expression changes likely reflect molecular adaptions un-
derlying METH-induced damage to the nervous, immune,
and metabolic systems. Further exploration of the func-
tional roles of these DEPs will provide insights into the
molecular mechanisms of METH dependence. Elucidating
the involvement of these proteins in the brain’s response to
chronic METH exposure will also reveal novel targets for
the prevention and treatment of METH addiction. Thus,
overall, this proteomic profile highlights candidate media-
tors of the systemic effects of long-term METH use, point-
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ing toward new avenues for understanding the biological
basis of dependence and for developing targeted therapeu-
tics.

Availability of Data and Materials
The data sets generated and analyzed during the cur-

rent study are available in the ProteomeXchange Con-
sortium (http://proteomecentral.proteomexchange.org) via
the iProX partner repository with the dataset identifier
PXD040112.

Author Contributions
YW, CZ and CL were responsible for the study con-

cept and design. CZ is responsible for Funding acquisi-
tion. YZ contributed to the collection of participate serum
and data curation. YL performed the proteomics analy-
sis. LL contributed to conducting the literature searches.
XW contributed to interpreting the data. Furthermore, both
LL and XW were involved in drafting the manuscript, with
XW providing the final approval for the version to be pub-
lished. HW was responsible for designing and editing im-
ages and tables for this article. YW, CZ and CL provided
critical revision of the manuscript for important intellec-
tual content. All authors contributed to editorial changes
in the manuscript. All authors read and approved the fi-
nal manuscript. All authors have participated sufficiently
in the work and agreed to be accountable for all aspects of
the work.

Ethics Approval and Consent to Participate
This study was approved by the Ethics Committee of

Shanghai University of Sport (No. 102772019RT044) and
conducted in accordance with the Helsinki Declaration of
1975. All participant information remained confidential,
and all patients provided written informed consent.

Acknowledgment
We thank the Shiliping Compulsory Isolation Detox-

ification Center in Zhejiang Province for collecting basic
information and serum samples.

Funding
This work was supported by the National Social Sci-

ence Fund of China (No. 17ZDA330).

Conflict of Interest
The authors declare no conflict of interest.

Supplementary Material
Supplementary material associated with this article

can be found, in the online version, at https://doi.org/10.
31083/j.jin2305107.

References

[1] Drug Enforcement Administration. 2007. Available at: https://
www.dea.gov (Accessed: 13 March 2022).

[2] Chomchai C, Chomchai S. Global patterns of methamphetamine
use. Current Opinion in Psychiatry. 2015; 28: 269–274.

[3] Potvin S, Pelletier J, Grot S, Hébert C, Barr AM, Lecomte T.
Cognitive deficits in individuals with methamphetamine use dis-
order: A meta-analysis. Addictive Behaviors. 2018; 80: 154–
160.

[4] Krasnova IN, Justinova Z, Cadet JL. Methamphetamine addic-
tion: involvement of CREB and neuroinflammatory signaling
pathways. Psychopharmacology. 2016; 233: 1945–1962.

[5] London ED, Kohno M, Morales AM, Ballard ME. Chronic
methamphetamine abuse and corticostriatal deficits revealed by
neuroimaging. Brain Research. 2015; 1628: 174–185.

[6] Cuomo I, Motta P, Fini C, Kotzalidis GD, De Filippis S. The Ef-
ficacy of Asenapine in the Treatment of Bipolar Disorder: a Nat-
uralistic Longitudinal Study Indicating a Favourable Response
in Patients with Substance Abuse Comorbidity. European Psy-
chiatry. 2015, 30: 1152.

[7] Jackson AR, Shah A, Kumar A. Methamphetamine alters the
normal progression by inducing cell cycle arrest in astrocytes.
PloS One. 2014; 9: e109603.

[8] Yamamoto BK, Moszczynska A, Gudelsky GA. Amphetamine
toxicities: classical and emerging mechanisms. Annals of the
New York Academy of Sciences. 2010; 1187: 101–121.

[9] Arida RM, Gomes da Silva S, de Almeida AA, Cavalheiro EA,
Zavala-Tecuapetla C, Brand S, et al. Differential effects of ex-
ercise on brain opioid receptor binding and activation in rats.
Journal of Neurochemistry. 2015; 132: 206–217.

[10] Hiebert NM, Seergobin KN, Vo A, Ganjavi H, MacDonald
PA. Dopaminergic therapy affects learning and impulsivity in
Parkinson’s disease. Annals of Clinical and Translational Neu-
rology. 2014; 1: 833–843.

[11] Polvat T, Prasertporn T, Na Nakorn P, Pannengpetch S,
Suwanjang W, Panmanee J, et al. Proteomic Analysis Re-
veals the Neurotoxic Effects of ChronicMethamphetamine Self-
Administration-Induced Cognitive Impairments and the Role
of Melatonin-Enhanced Restorative Process during Metham-
phetamineWithdrawal. Journal of ProteomeResearch. 2023; 22:
3348–3359.

[12] Kingwell K. Neurodegenerative disease: Microglia in early dis-
ease stages. Nature Reviews. Neurology. 2012; 8: 475.

[13] Park JH, Seo YH, Jang JH, Jeong CH, Lee S, Park B. Asiatic
acid attenuates methamphetamine-induced neuroinflammation
and neurotoxicity through blocking of NF-kB/STAT3/ERK and
mitochondria-mediated apoptosis pathway. Journal of Neuroin-
flammation. 2017; 14: 240.

[14] Kong D, Mao JH, Li H, Wang JY, Li YY, Wu XC, et al. Effects
and associated transcriptomic landscape changes of metham-
phetamine on immune cells. BMCMedical Genomics. 2022; 15:
144.

[15] Nazari A, Zahmatkesh M, Mortaz E, Hosseinzadeh S. Effect of
methamphetamine exposure on the plasma levels of endothelial-
derived microparticles. Drug and Alcohol Dependence. 2018;
186: 219–225.

[16] Maskell PD, Albeishy M, De Paoli G, Wilson NE, Seetohul LN.
Postmortem redistribution of the heroin metabolites morphine
and morphine-3-glucuronide in rabbits over 24 h. International
Journal of Legal Medicine. 2016; 130: 519–531.

[17] Zhu L, Li J, Dong N, Guan F, Liu Y,Ma D, et al. mRNA changes
in nucleus accumbens related to methamphetamine addiction in
mice. Scientific Reports. 2016; 6: 36993.

[18] USAn Psychiatric Association. Diagnostic and statistical man-
ual of mental disorders. 5th edn. USAn Psychiatric Publishing:

15

http://proteomecentral.proteomexchange.org
https://doi.org/10.31083/j.jin2305107
https://doi.org/10.31083/j.jin2305107
https://www.dea.gov
https://www.dea.gov
https://www.imrpress.com


Arlington, VA. 2013.
[19] Thermo Fisher Scientific. Xcalibur software. 2022. Available

at: https://www.thermofisher.com/order/catalog/product/OPT
ON-30965?SID=srch-srp-OPTON-30965 (Accessed: 3 March
2023).

[20] Cox J, Mann M. MaxQuant enables high peptide identification
rates, individualized p.p.b.-rangemass accuracies and proteome-
wide protein quantification. Nature Biotechnology. 2008; 26:
1367–1372.

[21] MetaboAnalyst software. 2017. Available at: https://www.meta
boanalyst.ca/ (Accessed: 15 April 2017).

[22] Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, et al.
TM4: a free, open-source system for microarray data manage-
ment and analysis. BioTechniques. 2003; 34: 374–378.

[23] MathWorks. MATLAB (Version R2019b). 2019. Available at:
https://www.mathworks.com (Accessed: 14 April 2019).

[24] Umetrics. SIMCA 14.1. 2018. Available at: https:
//www.sartorius.com/en/products/process-analytical-techn
ology/data-analytics-software/simca (Accessed: 23 August
2018).

[25] IBM Corp. IBM SPSS Statistics for Windows, Version 24.0.
2017. Available at: https://www.ibm.com/products/spss-statist
ics (Accessed: 23 August 2018).

[26] Ingenuity Pathway Analysis (IPA) software. 2018. Available
at: https://digitalinsights.qiagen.com/IPA (Accessed: 23 Au-
gust 2018).

[27] Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-
Watanabe M. KEGG for taxonomy-based analysis of pathways
and genomes. Nucleic Acids Research. 2023; 51: D587–D592.

[28] Garwood ER, Bekele W, McCulloch CE, Christine CW. Am-
phetamine exposure is elevated in Parkinson’s disease. Neuro-
toxicology. 2006; 27: 1003–1006.

[29] Eimer WA, Vijaya Kumar DK, Navalpur Shanmugam NK, Ro-
driguez AS, Mitchell T, Washicosky KJ, et al. Alzheimer’s
Disease-Associated β-Amyloid Is Rapidly Seeded by Her-
pesviridae to Protect against Brain Infection. Neuron. 2018; 99:
56–63.e3.

[30] Bergström P, Agholme L, Nazir FH, Satir TM, Toombs J,
Wellington H, et al. Amyloid precursor protein expression and
processing are differentially regulated during cortical neuron
differentiation. Scientific Reports. 2016; 6: 29200.

[31] Kasai T, Tokuda T, Taylor M, Kondo M, Mann DMA, Foulds
PG, et al. Correlation of Aβ oligomer levels in matched cere-
brospinal fluid and serum samples. Neuroscience Letters. 2013;
551: 17–22.

[32] Rice HC, de Malmazet D, Schreurs A, Frere S, Van Molle I,
Volkov AN, et al. Secreted amyloid-β precursor protein func-
tions as a GABA_BR1a ligand to modulate synaptic transmis-
sion. Science (New York, N.Y.). 2019; 363: eaao4827.

[33] Mizoguchi H, Yamada K. Methamphetamine use causes cogni-
tive impairment and altered decision-making. Neurochemistry
International. 2019; 124: 106–113.

[34] Shukla M, Vincent B. The multi-faceted impact of metham-
phetamine on Alzheimer’s disease: From a triggering role to a
possible therapeutic use. Ageing Research Reviews. 2020; 60:
101062.

[35] Gamba P, Testa G, Sottero B, Gargiulo S, Poli G, Leonar-
duzzi G. The link between altered cholesterol metabolism and
Alzheimer’s disease. Annals of the New York Academy of Sci-
ences. 2012; 1259: 54–64.

[36] Mosser S, Alattia JR, Dimitrov M, Matz A, Pascual J, Schneider
BL, et al. The adipocyte differentiation protein APMAP is an
endogenous suppressor of Aβ production in the brain. Human
Molecular Genetics. 2015; 24: 371–382.

[37] Mott RT, Ait-Ghezala G, Town T, Mori T, Vendrame M, Zeng
J, et al. Neuronal expression of CD22: novel mechanism for in-

hibiting microglial proinflammatory cytokine production. Glia.
2004; 46: 369–379.

[38] Perry VH, Nicoll JAR, Holmes C. Microglia in neurodegenera-
tive disease. Nature Reviews. Neurology. 2010; 6: 193–201.

[39] Gong QH, Pan LL, Liu XH, Wang Q, Huang H, Zhu YZ.
S-propargyl-cysteine (ZYZ-802), a sulphur-containing amino
acid, attenuates beta-amyloid-induced cognitive deficits and
pro-inflammatory response: involvement of ERK1/2 and NF-
κB pathway in rats. Amino Acids. 2011; 40: 601–610.

[40] Elmore MRP, Najafi AR, Koike MA, Dagher NN, Spangenberg
EE, Rice RA, et al. Colony-stimulating factor 1 receptor signal-
ing is necessary for microglia viability, unmasking a microglia
progenitor cell in the adult brain. Neuron. 2014; 82: 380–397.

[41] Wronkowitz N, Görgens SW, Romacho T, Villalobos LA,
Sánchez-Ferrer CF, Peiró C, et al. Soluble DPP4 induces in-
flammation and proliferation of human smooth muscle cells via
protease-activated receptor 2. Biochimica et Biophysica Acta.
2014; 1842: 1613–1621.

[42] Anderson NE, Somaratne J, Mason DF, Holland D, Thomas
MG. Neurological and systemic complications of tuberculous
meningitis and its treatment at Auckland City Hospital, New
Zealand. Journal of Clinical Neuroscience: Official Journal of
the Neurosurgical Society of Australasia. 2010; 17: 1114–1118.

[43] Pandian JD, Thomas SV, Santoshkumar B, Radhakrishnan K,
Sarma PS, Joseph S, et al. Epilepsia partialis continua–a clinical
and electroencephalography study. Seizure. 2002; 11: 437–441.

[44] Ulrich R, Imbschweiler I, Kalkuhl A, Lehmbecker A, Ziege S,
Kegler K, et al. Transcriptional profiling predicts overwhelm-
ing homology of Schwann cells, olfactory ensheathing cells, and
Schwann cell-like glia. Glia. 2014; 62: 1559–1581.

[45] Vukovic J, Marmorstein LY, McLaughlin PJ, Sasaki T, Plant
GW, Harvey AR, et al. Lack of fibulin-3 alters regenerative tis-
sue responses in the primary olfactory pathway. Matrix Biology:
Journal of the International Society for Matrix Biology. 2009;
28: 406–415.

[46] Prakash MD, Tangalakis K, Antonipillai J, Stojanovska L,
Nurgali K, Apostolopoulos V. Methamphetamine: Effects on
the brain, gut and immune system. Pharmacological Research.
2017; 120: 60–67.

[47] Cadet JL, Brannock C. Free radicals and the pathobiology of
brain dopamine systems. Neurochemistry International. 1998;
32: 117–131.

[48] Liu X, Silverstein PS, Singh V, Shah A, Qureshi N, Kumar A.
Methamphetamine increases LPS-mediated expression of IL-8,
TNF-α and IL-1β in human macrophages through common sig-
naling pathways. PloS One. 2012; 7: e33822.

[49] Loftis JM, Choi D, Hoffman W, Huckans MS. Metham-
phetamine causes persistent immune dysregulation: a cross-
species, translational report. Neurotoxicity Research. 2011; 20:
59–68.

[50] Kouser L, Madhukaran SP, Shastri A, Saraon A, Ferluga J, Al-
Mozaini M, et al. Emerging and Novel Functions of Comple-
ment Protein C1q. Frontiers in Immunology. 2015; 6: 317.

[51] Stephan AH, Madison DV, Mateos JM, Fraser DA, Lovelett EA,
Coutellier L, et al. A dramatic increase of C1q protein in the
CNS during normal aging. The Journal of Neuroscience: the Of-
ficial Journal of the Society for Neuroscience. 2013; 33: 13460–
13474.

[52] Turula H, Wobus CE. The Role of the Polymeric Immunoglob-
ulin Receptor and Secretory Immunoglobulins during Mucosal
Infection and Immunity. Viruses. 2018; 10: 237.

[53] Fonseca MI, Kawas CH, Troncoso JC, Tenner AJ. Neuronal lo-
calization of C1q in preclinical Alzheimer’s disease. Neurobiol-
ogy of Disease. 2004; 15: 40–46.

[54] Zhou J, Fonseca MI, Pisalyaput K, Tenner AJ. Complement C3
and C4 expression in C1q sufficient and deficient mouse models

16

https://www.thermofisher.com/order/catalog/product/OPTON-30965?SID=srch-srp-OPTON-30965
https://www.thermofisher.com/order/catalog/product/OPTON-30965?SID=srch-srp-OPTON-30965
https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
https://www.mathworks.com
https://www.sartorius.com/en/products/process-analytical-technology/data-analytics-software/simca
https://www.sartorius.com/en/products/process-analytical-technology/data-analytics-software/simca
https://www.sartorius.com/en/products/process-analytical-technology/data-analytics-software/simca
https://www.ibm.com/products/spss-statistics
https://www.ibm.com/products/spss-statistics
https://digitalinsights.qiagen.com/IPA
https://www.imrpress.com


of Alzheimer’s disease. Journal of Neurochemistry. 2008; 106:
2080–2092.

[55] Skjoedt MO, Palarasah Y, Munthe-Fog L, Jie Ma Y, Weiss G,
Skjodt K, et al. MBL-associated serine protease-3 circulates
in high serum concentrations predominantly in complex with
Ficolin-3 and regulates Ficolin-3 mediated complement activa-
tion. Immunobiology. 2010; 215: 921–931.

[56] Kapogiannis D, Mattson MP. Disrupted energy metabolism
and neuronal circuit dysfunction in cognitive impairment and
Alzheimer’s disease. The Lancet. Neurology. 2011; 10: 187–
198.

[57] Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt
ML, et al. PGC-1α, a potential therapeutic target for early inter-
vention in Parkinson’s disease. Science Translational Medicine.
2010; 2: 52ra73.

[58] Burgner JW II, Ray WJ Jr. On the origin of the lactate dehydro-
genase induced rate effect. Biochemistry. 1984; 23: 3636–3648.

[59] Newington JT, Rappon T, Albers S, Wong DY, Rylett RJ, Cum-
ming RC. Overexpression of pyruvate dehydrogenase kinase 1
and lactate dehydrogenase A in nerve cells confers resistance to
amyloid β and other toxins by decreasing mitochondrial respi-
ration and reactive oxygen species production. The Journal of
Biological Chemistry. 2012; 287: 37245–37258.

[60] SrivastavaU,AromolaranAS, Fabris F, LazaroD,Kassotis J, Qu
Y, et al. Novel function of α_1D L-type calcium channel in the
atria. Biochemical and Biophysical Research Communications.
2017; 482: 771–776.

[61] Mitaeva YI, Mozherov AM, Kastalskiy IA, Mishchenko TA,
Mukhina IV. Intracellular Calcium Network Activity in the Hip-
pocampus CA3 Region in Rat Postnatal Development. Sovre-

mennye Tehnologii v Medicine. 2016; 8: 167–177.
[62] Saddouk FZ, Ginnan R, Singer HA. Ca2+/Calmodulin-

Dependent Protein Kinase II in Vascular Smooth Muscle. Ad-
vances in Pharmacology (San Diego, Calif.). 2017; 78: 171–
202.

[63] Chernov AV, Dolkas J, Hoang K, Angert M, Srikrishna G, Vogl
T, et al. The calcium-binding proteins S100A8 and S100A9 initi-
ate the early inflammatory program in injured peripheral nerves.
The Journal of Biological Chemistry. 2015; 290: 11771–11784.

[64] Redies C. Cadherins in the central nervous system. Progress in
Neurobiology. 2000; 61: 611–648.

[65] Janigro D, Bailey DM, Lehmann S, Badaut J, O’Flynn R, Hirtz
C, et al. Peripheral Blood and Salivary Biomarkers of Blood-
Brain Barrier Permeability and Neuronal Damage: Clinical and
Applied Concepts. Frontiers in Neurology. 2021; 11: 577312.

[66] Li Y, Zhou K, Zhang Z, Sun L, Yang J, Zhang M, et al. Label-
free quantitative proteomic analysis reveals dysfunction of com-
plement pathway in peripheral blood of schizophrenia patients:
evidence for the immune hypothesis of schizophrenia. Molecu-
lar BioSystems. 2012; 8: 2664–2671.

[67] Sun Y, Chu JZ, Geng JR, Guan FL, Zhang SC, Ma YC, et
al. Label-free based quantitative proteomics analysis to explore
the molecular mechanism of gynecological cold coagulation
and blood stasis syndrome. Anatomical Record (Hoboken, N.J.:
2007). 2023; 306: 3033–3049.

[68] Verathamjamras C, Chantaraamporn J, Sornprachum T,Mutapat
P, Chokchaichamnankit D, Mingkwan K, et al. Label-free quan-
titative proteomics reveals aberrant expression levels of LRG,
C9, FN, A1AT and AGP1 in the plasma of patients with col-
orectal cancer. Clinical Proteomics. 2023; 20: 15.

17

https://www.imrpress.com

	1. Introduction
	2. Materials and Methods
	2.1 Participants
	2.2 Serum Sample Preparation
	2.3 Proteolysis and Peptide Purification
	2.4 Liquid Chromatography–Mass Spectrometry Analysis
	2.5 Bioinformatic Analysis

	3. Results
	3.1 Proteins Identified by Mass Spectrometry in METH-dependent and Healthy Control Groups
	3.2 Screening and Functional Analysis of Differentially Expressed Proteins (DEPs)
	3.2.1 Screening of DEPs
	3.2.2 GO Analysis of DEPs
	3.2.3 KEGG Metabolic Pathway Analysis
	3.2.4 IPA
	3.2.5 Signal Pathway Enrichment Analysis
	3.2.6 Functional Enrichment Analysis
	3.2.7 Protein Interaction Network Analysis


	4. Discussion
	4.1 Cognitive Disorder-related Proteins
	4.2 Nervous System-related Proteins
	4.3 Immune Response-related Proteins
	4.4 Energy Metabolism-related Proteins
	4.5 Calcium-binding and Regulation-related Proteins

	5. Study Limitations
	6. Conclusions
	Availability of Data and Materials
	Author Contributions
	Ethics Approval and Consent to Participate
	Acknowledgment
	Funding
	Conflict of Interest
	Supplementary Material

